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Antenna Basics
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The HartRAO 26m telescope => equatorially mounted Cassegrain radio telescope

The antenna reflectors concentrate
incoming E-M radiation into the focal
point of the antenna
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Secondary reflector
Sub-reflector (small
reflector of hyperbolic
curvature in front of the
focus of the main reflector).
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support legs

Primary reflector
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Feed housing (feed horns 9

receivers and support
structure)

electrical currents in a conductor.

26 m telescope receivers (7):

1.6,2.3,5,6.7,84,12.2 GHz
5 & 8.4 GHz dual beam
new 22 GHz cooled receiver
15 GHz dual beam coming

Deck Room
Local oscillator and mixers

Antenna positioner

The antenna positioner
points the antenna at the desired
location in the sky.

Converts E-M radiation in free space to
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Signal chain: Main components of a typical microwave receiver and radiometer
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Signal chain: Main components of a typical microwave receiver and radiometer

Incoming signal: are very Feed horn and waveguide (to
faint and noise like. e connect feed horn to first ampilifier).
All incoming signals are split into
mmw,‘:’““““ LCP & RCP by a hybrid
waveguide polarisation splitter
feeding LCP to one receiver chain
and RCP to the other.

T M LA Wy NN Y

T 00407 PYIONGOI SENal 11CODNY TLOAZIING CVONI NG Zrown 7 ix)

oo TE 20004 00 COURIZT TJooes 1100 of 208 ZeTrion Zigna

To calibrate the system a high o ,
stability noise diode injects a - LY .',.,_.,,,.,_,.
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Signal chain: Main components of a typical microwave receiver and radiometer

If feed 1 is pointing at
the source (angular

size of source smaller Feed 1
than separation of the
beams from the two
feeds) then feed 2 will Total- Inte—
point off-source but -« L,\h power tor —@
measure nearly the 1 revr gratot
same sample of N
atmosphere in the
near field. Peed 2
_ o Switch
Dicke-swiching
g rapidly o
between two
identical feed horns 9
that are installed FR— —

East-West next to "

each other on the

telescope. Output of receiver is multiplied by +1 when receiver is connected to feed 1 and by

-1 when connected to feed 2. Fluctuations in atmospheric emission and drifts due to
changes in receiver gain are canceled for frequencies below the switching rate.
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Signal chain: Main components of a typical microwave receiver and radiometer

RF signal is down converted to
a lower frequency in order to
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Signal chain: Main components of a typical microwave receiver and radiometer
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Voltage to frequency
converter converts the signal
to a square wave train 1T g, bevaegans 4k <
(@amplitude remains constant
but the frequency is
proportional to the DC voltage
input).

The signal is then
SN detected by a Square law
detector which converts the IF
signal into an output DC voltage
proportional to the input power.
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These oscillations are then
measured with a e e et T e
N oo Signals are loaded onto the Hart26m

counter such that the count
rate (in units of Hert2) is W server in FITS (Flexible Image
proportional to the original IF e Transport System) format

signal’s power.
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109 | T For a black body radiator, the

1010 | : Brightness B is given by;
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1020 . Rayleigh-Jeans Law:

1041 . i The brightness B and hence the
107 108 {0% {00 10" {10'2 10'% {0% 10'S {0'6 {07 {10'8 10 power measured by a radio

FREQUENCY (Hz) telescope is proportional to the

temperature T of the emitting source

Blackbody radiation from solid objects of the same angular size, at LT
different temperatures. h << kT, B = S
Brightness as a function of frequency. A



Theory: Ts and Ta
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- “Blank” sky ~ 2.73 K (thermal big bang BB radiation)

- Sun at 300 MHz = 500000 K (mostly non-thermal)

- Orion Nebula at 300 GHz ~ 10-100 K (“warm” thermal molecular clouds)
- Quasars at 5 GHz ~ 10112 K (non-thermal synchrotron)

measured by a radio telescope is
meaningful as a physical temperature.
Radiation mechanisms are often
non-thermal => effective temperature that
a black body would need to have.
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* When the telescope looks at a radio source in the sky, the receiver output is
the sum of radio waves received from several different sources:

The sum of these parts is called the system temperature Sky temperature Tsky ~ 10K
Tsys ':[Tchb"l'TA‘('Tt"l"va"FT '_l'TR [K]

Cam*
- -

CMB radiation coming from
every direction in space.
~2.7Kat1.4or4 GHz,

reducing to 2.5 Kat 12 GHz
(but at lower frequencies

the radio emission from the Milky
Way becomes increasingly stronger.)

The amplifiers in the
antenna produce their own
electronic noise, receiver
noise temperature.

Radiation from the water vapour in
the atmosphere.

At 12 GHz adds 1 - 2 K, depending

on the humidity.

The emission from the radio source
we want to measure, which

produces the antenna temperature. The radiation the feed receives

through the antenna sidelobes from
Radiation from the dry atmosphere. the (warm ~ 290 K) ground.
Adds about 1 K., Adds 5 - 15 K pointing straight up at
zenith, and increases when pointing
close to the horizon.



Detecting Radio Emission from Space P ..
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* The antenna needs to be calibrated to convert the signal amplitude in units
of Hertz to units of Antenna Temperature in Kelvins [K], as it is the standard
physically meaningful scale used with most radio analysis techniques.

* The output signal from the radiometer is proportional to the Tsys, from which
we can extract the Ta.

Tsys = IBemp + 1A + 1ot + Lo + Tg =+ TR [K]

* Prior to each drift scan, the noise diode injects a noise signal with a known
temperature and this is used to calibrate the antenna.

* Comparing the noise diode’s temperature to its count rate - can derive a
conversion factor [K/Hz] to convert from counts (Hz) to antenna temp (K).
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* The “antenna temperature” Ta of a source is the increase in in temperature
(receiver output) measured when the antenna is pointed at a radio emitting
source.

* NB: The antenna temperature has nothing to do with the physical
temperature of the antenna.

* The antenna temperature will be less than the brightness temperature if the
source does not fill the whole beam of the telescope. Must also correct for
the aperture efficiency.

Tp = 444 [K]

Qsem

* By pointing the antenna at objects of known temperature that completely fill
the beam we can calibrate the output signal in units of absolute temperature
(Kelvins). One can think of a radio telescope as a remote-sensing thermometer.
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Theory: Radio Telescope Antennas g R

Pointing accuracy

As the radio emitter moves away from the middle of
the beam the angle of the waves hitting the beam
changes.

When all waves from each part of dish are in phase
=> strongest signal.

Moving away from the centre =>
destructive interference

phase error due to
surface roughness Telescope sensitivity falls to a minimum =>

phase difference of about 1 A across diameter of dish

Factors reducing the aperture efficiency (0.80, 0.75, 0.64)
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* The source flux density S, is the product of the brightness and source solid
angle

hw << kT, B = 2;\{2T [W m~2 Hz 1 Sl"_l]

S = QkTQ (W m~2 Hz?]

Remember !!! 1 Jy = 1072¢ [W m~—2 Hz 2]
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* It is important to note that the flux density of a radio source is intrinsic to it,

and the same flux density should be measured by any properly calibrated
telescope. However the antenna temperatures measured for the same emitter
by different telescopes will be proportional to their effective collecting areas.

* We can now calibrate the telescope at each frequency of interest. We can carry
out scans of standard calibrator sources (Ott et al. 1994) and measure the
peak antenna temperature in each polarisation.
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For convenience, we often refer to the Point Source Sensitivity (PSS), which
is the number of Kelvins of antenna temperature per polarisation, obtained per
Jansky of source flux density. This is also known as the ‘DPFU’ or ‘Degrees
per Flux Unit’.

For the HartRAO 26 m telescope the PSS is typically about 5 Jy/Kelvin per
polarisation. The PSS in each polarisation is simple to determine
experimentally from the measured Ta of calibrator sources of known flux
density. NB: unpolarised sources => half the total flux density is received
in each polarisation.

S/2 S/2 _ ..
PSSicp = 15/2)  and PSSrcp = % [Jy K1 per polarisation]
* Theoretically the values for the two polarisations should be the same; in
practise there is always a small difference between them, and data from each
polarisation should be corrected using the value appropriate for that
polarisation.
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* So you have a telescope - with certain characteristics

.. and some given observations - with certain characteristics
. some kind of weather, hardware working a certain way ...

* The question is: Can you see the source you want to see 9
|

* The end result - RADIOMETER EQUATION .... all about Signal to Noise

g why do astronomers use
N — AV T all these temperatures =



Radiometer Equation -
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* Radio Astronomers like to think of their telescopes as resistors .....

.. and when you put power into a resistor
. it heats up

Rayleigh-Jeans Law holds all the

hv << kT, B = @ [Wm_2HZ_2S7“_2] way through the radio regime for any
A reasonable temperature.

* The question is: what flux density is received by your antenna 9
|

[BdQ =S [Wm™*Hz?]

Remember !!! 1 Jy = 1072¢ [W m~—2 Hz 2]
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* Now lets look at the power that we actually received by the antenna at a given
frequency .....

... We integrate the flux density over the area of the antenna
[ SdA="P (W H 22

* Now the antenna theorem states: Aeﬂ = )\2

* Lets go one step back from power (wi
... what we effectively just did wa

ut using fancy integration)

SA. = 2kT
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* We have now converted successfully between flux density and source
temperature .....

* This quantity is know as the “forward gain” of the antenna ... property of a
given antenna -> k/Jy or Jy/k
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* Now lets talk about Tsys ...

Tsys — Lsky =+ TR

* Tsky - everything above your antenna you don't want to detect - depends on
frequency

* Tr - thermal noise of the electrical components in your receiver (mixers /
amplifiers - anything with charge carriers that “jitters” around at a given
temperature ( -> cool components)
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- Typically -> o __ 1
N = 7.V AvT

T < T,y

* ... the only way to see your source .... if you “beat down” the noise
fundamental property of the
* Noise: _ system
rms fluctuations in the system number of data points
temperature

- Telescope: N = Ayt
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* So we finally arrive ....

S T T T /
N — Trms  Lsys Tsys AVT

vT

)

* We can re-write this in terms of flux density (rms flux density variations):
SEFD -> System equivalent flux density (Jy) -> fundament. prop. telescope

S E D longer we integrate & more
S — — bandwidth -> higher our S/N and
s the lower our flux density
@ variations

* We can also extend this to interferometers (N dishes):

q _ SEFD _ SEFD
T \/N(]\;_l) T2Av \/N(N_l)TAV
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* So we can see that it really is all about S/N

* The more dishes you have .... the longer you integrate ... and the bigger your
bandwidth is ....

.. the better you will do ....

* The smallest change in antenna temperature Tmin that can realistically be
detected is normally taken as three times the rms noise (Trms)



