Pulsar Timing

Sarah Buchner May 2019 sbuchner@ska.ac.za

Pulsars

The Pulsar

Unambiguously number each pulse

Between 11 Mar 2009 20:55:37 and 29 Apr 2009 21:41:37

There were exactly **47 414 570** pulses

Integrate many pulses

Single pulses of PSR 1133+16

Dispersion

Fig. 3: A depiction of a received pulsar signal as a function of frequency and time, showing the three parameters employed in the pulsar search analysis: dispersion, pulse period, and pulse width.

Dispersion smearing

time Smear=8.3µs $\frac{B}{MHz}\left(\frac{v}{GHz}\right)$ \int_{0}^{-3} DM

frequency

Incoherent dedispersion

Pulsar Timing

Record arrival times

53075.8716014048 53076.6068099029 53076.6315093162 53076.6352589534 53076.6390085897 53076.7453055512 53076.7728053205 53076.8144370828 53076.8440091993

Transform to SSB

Measurement of a pulse time of arrival at the observatory is a relativistic event. It must be transformed to an inertial frame: that of the solar system barycenter.

Time transfer:

Observatory clock \rightarrow GPS \rightarrow UT \rightarrow TDB Position transfer:

 For Earth and Sun positions, use a solar system ephemeris, e.g., JPL 'DE405' For earth orientation (UT1, etc.), use IERS bulletin B

Timing equation

$t = t_{\rm t} - t_0 + \Delta_{\rm clock} - \Delta_{\rm DM} + \Delta_{\rm R\odot} + \Delta_{\rm E\odot} + \Delta_{\rm S\odot} + \Delta_{\rm R} + \Delta_{\rm E} + \Delta_{\rm S}.$

As before, t_0 is a reference epoch, $\Delta_{\rm clock}$ represents a clock correction that accounts for differences between the observatory clocks and terrestrial time standards, and Δ_{DM} is the frequency-dependent dispersion delay caused by the ISM. The other Δ terms are delays from within the Solar System and, if the pulsar is in a binary, from within its orbit. The **Roemer delay** $\Delta_{\rm RO}$ is the classical light travel time across the Earth's orbit. Its magnitude is $\sim 500 \cos \beta$ s, where β is the **ecliptic latitude** of the pulsar (the angle between the pulsar and the **ecliptic plane** containing the Earth's orbit around the Sun), and Δ_R is the corresponding delay across the orbit of a pulsar in a binary or multiple system. The **Einstein delay** Δ_E accounts for the time dilation from the moving pulsar (and observatory) and the gravitational redshift caused by the Sun and planets or the pulsar and any companion stars. The **Shapiro delay** Δ _S is the extra time required by the pulses to travel through the curved space-time containing the Sun, planets, and pulsar companions. Errors in any of these parameters, as well as other parameters such as f, \dot{f} , and proper motion, give very specific systematic signatures in plots of timing residuals (see Figure 6.7), which are simply the differences between the observed TOAs and the predicted TOAs based on the current timing model parameters.

• Pulsars gradually lose energy – spin slower

• Model the spin-down as

$$
\phi_{\rm S}(\mathbf{t} - \mathbf{t}_0) = \phi_0 + \mathbf{v}_0(\mathbf{t} - \mathbf{t}_0) + \frac{1}{2}\dot{\mathbf{v}}_0(\mathbf{t} - \mathbf{t}_0)^2 + \frac{1}{6}\ddot{\mathbf{v}}_0(\mathbf{t} - \mathbf{t}_0)^3
$$

Phase Residuals

Phase residuals

Fit a model

 $\phi_S(t-t_0) = \phi_0 + \upsilon_0(t-t_0) + \frac{1}{2}\dot{\upsilon}_0(t-t_0)^2 + \frac{1}{6}\ddot{\upsilon}_0(t-t_0)^3$

Fit a model

 $\phi_{S}(t-t_0) = \phi_0 + \upsilon_0(t-t_0) + \frac{1}{2}\dot{\upsilon}_0(t-t_0)^2 + \frac{1}{6}\ddot{\upsilon}_0(t-t_0)^3$

Timing residuals

• Figure 6.7: Pulsar timing residuals. The top panel shows a "good" timing solution for a fairly average millisecond pulsar with an rms timing precision of about 5 μμs over 4 years. The four remaining panels show how the timing residuals are affected by various timing parameter errors. From top to bottom, an error of 1% in the spin-down rate of the pulsar (causing a quadratic drift in pulsar phase), a position error in either right ascension or declination of only 50 mas (an annual sinusoid reflecting the Earth's motion), a pulsar proper motion of 10 mas/yr (an annual sinusoid growing linearly with time), or the presence of a planet with the mass and orbital period of Mars around the pulsar.

Science Questions

- Testing GR in strong fields
- Detecting gravitational waves using pulsar timing arrays
- Pulsar interiors
	- Glitches

Testing Einstein

- Experiments in the solar system test GR but in weak gravitational fields
- Does GR apply in strong gravitational fields
- Energy in gravitational fi

$$
\varepsilon = \frac{E_{\text{gravity}}}{mc^2}
$$

Neutron stars & Black Holes:

$$
\varepsilon_{_{NS}} \approx 0.15
$$

$$
\varepsilon_{_{BH}} \approx 0.5
$$

Solar system: $\varepsilon_{\text{Moon}} \approx 0.00000000001$ $\varepsilon_{\text{Earth}} \approx 0.0000000001$ $\varepsilon_{\textit{Sun}} \approx 0.000001$

First binary pulsar

Orbital decay of PSR B1913+16.[\[7\]](https://en.wikipedia.org/wiki/Hulse%E2%80%93Taylor_binary#cite_note-wt2005-7) The data points indicate the observed change in the epoch of [periastron](https://en.wikipedia.org/wiki/Apsis) with date while the parabola illustrates the theoretically expected change in epoch according to [general relativity.](https://en.wikipedia.org/wiki/General_relativity)

Pulsar Glitches

0833-45 (rms = 26509.938 μ s) post-fit

-
- Sudden increase in frequency or "spin-up"
- Frequency increases by few parts per million

Sudden spin-up

Gradual recovery in nudot

Vela Pulsar Glitches

MJD