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 Informatics in high school (2003) 
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Introducing myself 

I studied… 



 Informatics in high school (2003) 
 Diploma in Geodesy 
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Introducing myself 

I studied… 



 Kinematics of a mass movement constrained by sparse and 
inhomogeneous data  
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Introducing myself 

Diploma thesis 



 Informatics in high school (2003) 
 Diploma in Geodesy  
 PhD 
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Introducing myself 

I studied… 



 Atmospheric effects on measurements of the Earth gravity field 
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Introducing myself 

PhD (2013) 



 Informatics in high school (2003) 
 Diploma in Geodesy  
 PhD 
 PostDoc 
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Introducing myself 

I studied and worked… 



 Earth orientation parameters from VLBI determined with a 
Kalman filter [Karbon et al., 2014] 

 The extension of the parametrization of the radio source 
coordinates in geodetic VLBI and its impact on the time series 
analysis. [Karbon et al., 2016] 

 Long term evaluation of ocean tidal variation models of Earth 
rotation. [Karbon et al., 2018] 
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Introducing myself 

PostDoc (2013- May 2017) 

 



 Informatics in high school (2003) 
 Diploma in Geodesy  
 PhD 
 PostDoc 
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Introducing myself 

I studied and worked… 



 Combination of celestial reference frames on normal equation 
level 
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Introducing myself 

PostDoc (October 2017 – March 2018) 

 

Nebra sky disk 2100-1700 BC 

Johann Bayer, 1603: Uranometria 

Charlot et al.. 2019: 

ICRF3 



 Informatics in high school (2003) 
 Diploma in Geodesy  
 PhD 
 PostDoc 
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Introducing myself 

I studied and worked… 
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Geodesy 

What is it? 



• Geo – desy = Earth – dividing 

• geo (← γη ) 
• Gaia, goddess of the Earth 

• Earth, land, town, acre, soil, estate 

• desy (← δαιομαι, δαιεσθαι) = divide, allot, distribute 
 

• Example: Nile valley 
• border demarcation 

• surveying 

• mapping 

• cadaster 

• real estate regulation 
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Geodesy 

What does it mean? 



 Geodesy is the science of 
measuring and mapping the 
Earth surface. 
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Geodesy 

What is it? 

Friedrich Robert Helmert 

1843 - 1917 



 The objective of geodesy is the 
determination of the potential 
function W(x,y,z). 
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Geodesy 

What is it? 

Ernst Heinrich Bruns  

1848 - 1919 



 Geodesy is what geodesists do 
for their living. 
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Geodesy 

What is it? 

Helmut Moritz 

1933- 



 Geodesy is a discipline that deals with measurement and 
representation of the Earth, including its gravity field, in a three-
dimensional time varying space. 

 

National Research Counci of Canada, 1973  
Vanicek & Krakiwsky, 1982 
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Geodesy 

What is it? 



 Geodesy is a discipline that deals with the measurement and 
representation of the shape of the Earth, its orientation in space 
and its gravity field, in a 3D time varying space. 
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Geodesy 

What is it? 
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Geodesy 



 Figure of the Earth 

 topography, bathymetry, ice surface, sea level 

 

 Earth rotation and orientation 

 polar motion, Earth rotation, nutation, precession 

 

 Gravity field of the Earth  

 gravity, geoid 
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Geodesy 

Three pillars of Geodesy 

http://www.iag-aig.org/ 
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Geodesy 



 studies the aspects of geodesy 
by using natural or artificial 
celestial bodies as observed 
objects or as observing 
platforms.  
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Geodesy 

Space geodesy… 

http://www.iag-aig.org/ 



 studies the aspects of geodesy 
by using natural or artificial 
celestial bodies as observed 
objects or as observing 
platforms.  

 

Global monitoring of the System 
Earth 
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Geodesy 

Space geodesy…what for? 

http://www.iag-aig.org/ 



• Geodetic parameters are closely related to changes of mass distributions within  
and between the Earth‘s subsystems and the related interactions. 

 

• Solid Earth 

• Atmosphere 

• Hydrosphere 

• Cryosphere 

• Biosphere 

• Anthroposphere 

• (Space) 
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Monitoring the System Earth 

Subsystems of the Earth 



• Everything moves! 
• Problem and fascination of geodesy 

 

• Examples:  
• Earth rotation 

• Solid Earth tides 

• Plate tectonics 

• Earthquakes 

• Global weather 

• Sea level change 

• Loading (ice, ocean, atmosphere) 
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Monitoring the System Earth 

 Geometry and deformation of the Earth 

Christchurch, New Zealand,M: 7.1, 04.10.2010. 



• Sudden  
• Earthquake (local, regional) 

• Rockslide and -avalanche (local) 

• Land slide (local)  

• Mud slide (local) 

• Emerging 
• Volcanic eruption (regional, global) 

• Tsunami (local to trans regional) 

• Hurricane, Storm (regional) 

• Flood (regional) 

• Long term 
• Climate change (sea level, temperature, weather activity, atmospheric structure, etc.) (global) 

• Tectonic plate motion (global) 
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Monitoring the System Earth 

Time scales of changes 
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Monitoring System Earth 

Sudden: M 9.0 Tohoku earthquake ,11. March 2011 
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Monitoring System Earth 

Sudden: M 9.0 Tohoku earthquake ,11. March 2011 



Maria Karbon, Geodesy 

29 

Monitoring System Earth 

German Indonesian Tsunami Early Warning System 
Installed after the 2004 Indian Ocean earthquake, 26.12, M: 9.2, 

230,000 – 280,000 dead 
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Monitoring System Earth 

Emerging: Eyjafjallajökull, March-April 2010 

 



• GPS time series of the station THEY 
• (south of the Eyjafjallajökull) 

• Relative to station REYK (Reykjavík) 

  Grey areas (intrusions phases) 

  Red line F (lateral eruption) 

  Red line S (peak eruption) 

 

 

 

F Sigmundsson et al. Nature 468, 426-430 (2010) 
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Monitoring System Earth 

Emerging: Eyjafjallajökull, March-April 2010 
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Monitoring System Earth 

Emerging: Eyjafjallajökull, March-April 2010 

 

[NASA image courtesy Jeff 

Schmaltz, MODIS Rapid Response 

Team at NASA GSFC] 
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Monitoring System Earth 

Emerging: Mount Vesuvius ? 

24.08.79 AD 

http://www.ov.ingv.it/ov/ 
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Monitoring System Earth 

Long term: Sea level rise 
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Monitoring System Earth 

Why geodetic VLBI?  
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The role of VLBI for space geodesy 

Geodetic observation techniques 

  Standards and Models Analysis Centres Combination Centres 

Geodetic products 

Geodetic reference frames 
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The role of VLBI for space geodesy 

X 

X 

 

X 

 



• astronomical objects, radio sources (astrophysics, radio astronomy),  

• propagation of radio in space-time (gravitational physics) and in the 
atmosphere (atmosphere physics)  

• the antenna- and receiver, mechanical and electronical components of the 
instrumentation (radio-frequency engineering), 

• Earth as being the carrier of the interferometer baselines formed by 
antenna pairs (geodynamics), 

• correlator (signal processing), and analysis of VLBI observations, application 
of physically motivated mathematical models through the software based 
on the objective and subjective decisions of the operator(s)  

• (space geodesy) 
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The role of VLBI for space geodesy 

Fields involved 



• Orientational quasi-inertial system realized by VLBI  

• Origin 
• Solar System Barycenter (SSB), i.e. the center of mass of the solar system bodies  

(solar system dynamics) 

• Time scale, metric 
• Barycentric coordinate time (TCB), BCRS 

• Orientation, principal plain 
• True celestial equator at J2000.0 defined by precession (Lieske et al, 1977) and  

nutation (Seidelmann et al., 1982) models 

• Coordinates 
• Right ascension  

• Clockwise hour angle α, Zero = vernal equinox ♈ (intersection of  the mean ecliptic with the true 
celestial equator at J2000.0 (solar system dynamics) 

• Declination  
• Angle w.r.t. the principal plane δ, positive towards celestial north pole PN 

• Orientation stability 
• The stability of the axes is given by the constant positions  of the quasar coordinates 

(kinematically non-rotating) 
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International Celestial Reference Frame 

Quasi-inertial system realized by VLBI  

 

(Arias, E.F., et al., Astron. Astrophys. 303, 604, 1995) 
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International Celestial Reference Frame 



• For geodesy, the radio sources are the most stable remote targets.  

• They provide the external orientation of Earth (Earth Orientation Parameters). 

 

• ICRF2 (Fey et al., 2015) is the most precise and stable orientational frame available 

• (IAU 2009, IUGG 2011). It is realized by VLBI observations of extragalactic radio sources. 

 

• Other (celestial) reference frames, such as 
• the galactic reference frame (GalRF), 

• other radio reference frames (e.g. at other radio frequencies), 

• the optical star catalogs (FK5, Hipparcos, FK6, etc.), 

• the planetary ephemerides (JPL, IAA, etc.) and  

• the orbits of satellites 

                                                     …are referred to ICRF. 
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International Celestial Reference Frame 

Why do we need the ICRF? 



• Origin 
• Center of mass of system Earth, including solid 

Earth, oceans, atmosphere, cryosphere, … 

• Time scale, metric 
• Geocentric coordinate time (TCG), GCRS 

• Orientation, principal plane 
• BHI 1984.0 reference pole 

• Equatorial system: e1 intersection of equator 
and Greenwich meridian, e3 mean pole, e2 
orthogonal wrt. e1/e3 

• Coordinates 
• Geocentric 3D-cartesian  

• Orientation stability 
• NNR (kinematically non rotating) on Earth crust 

model 
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International Terrestrial Reference Frame 

Geocentric co-rotationg body-fixed system 

e1

e2

e3
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Terrestrial Reference Frame 

From large scale to the smallest detail 

 
AFREF 

TrigNet 

Local reference 

frame 

ITRF 

(Isioye et al.,2015) 

(Combrinck, 2015) 
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Terrestrial Reference Frame 

VLBI contribution to the ITRF: scale 



• HELMERT-transformation between two frames 
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Terrestrial Reference Frame 

VLBI contribution to the ITRF: scale 

YA 

XA 

ZA 
ZB 

YB 

XB 



• HELMERT-transformation between two frames 
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Terrestrial Reference Frame 

VLBI contribution to the ITRF: scale 

YA 

XA 

ZA 
ZB 

YB 

XB 



• HELMERT-transformation between two frames 
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Terrestrial Reference Frame 

VLBI contribution to the ITRF: scale 

YA 

XA 

ZA 
ZB 

YB 

XB 



• HELMERT-transformation between two frames 
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Terrestrial Reference Frame 

VLBI contribution to the ITRF: scale 

YA 

XA 

ZA 
ZB 

YB 

XB 



• Definition 

• The geodetic datum is the fixation of the degree of freedom of a reference frame. It relates the 
reference frame to the reference system through defining/specifying the external geometry.  

 

• Scale 

• The VLBI scale only depends on the speed of light (in vacuum) c, no other physical constant is 
involved.  is the best known physical constant, a defining constant (no uncertainty). 

 

• All observations obtained by the space geodetic techniques (DORIS, GNSS, SLR, VLBI) measure time 
differences. Together with the speed of light the observations realize a polyhedron of metric 
baselines that fully determines the inner geometry of the station networks. The lengths of the 
involved baselines realize the scale.  

 

• The scale of ITRF is defined by VLBI and SLR. 
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Terrestrial Reference Frame 

VLBI contribution to the ITRF: scale 
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The VLBI observable 

b 

k 

• Geometrical delay 
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𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 
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0059+581 

 

𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 
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4C39.25 

 

𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 
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𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 
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Secular abberation drift 

• The gravitational 
attraction of the 
Galactic center leads 
to the centrifugal 
acceleration of the 
Solar system 
barycenter.  

•  It results in secular 
aberration drift which 
displaces the position 
of the distant radio 
sources.  

 

𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 

www.universetoday.com 
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Secular abberation drift 

• The gravitational 
attraction of the 
Galactic center leads 
to the centrifugal 
acceleration of the 
Solar system 
barycenter.  

•  It results in secular 
aberration drift which 
displaces the position 
of the distant radio 
sources.  

 

𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 

[Titov 2011] 



• 4-6 micro arcseconds per year 

 

• The dipole components of the velocity field. The green line represents the equator of the 
Milky Way, its center is indicated by the blue marker. (Titov, 2011) 
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𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 
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Precession & Nutation 

𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 

Ecliptic 

Equator 

Rotation axis 
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Precession & Nutation 

𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 

NASA‘s GSFC Conceptual Image lab 
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Precession & Nutation 

𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 

Ecliptic 

Equator 

Rotation axis 



 Variations in free core nutation (FCN) are connected with various processes in the 
Earth's fluid core and core-mantle coupling, which are also largely responsible for the 
geomagnetic field variations, particularly the geomagnetic jerks. Period ~ 430 days 
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Free Core Nutation 

𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 

Rotation axis 

 of mantle 

Rotation axis  

of fluid core 
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Polar motion 

𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 

NASA‘s GSFC Conceptual Image lab 



 Chandler wobble 
 Free oscillation 

 Amplitude ~6 m 

 Period ~430 d 

 Yearly signal 
 forced oscillation (mainly atmosphere) 

 Amplitude ~3m  

 Pmeriod ~365 d 

 

Maria Karbon, Geodesy 

63 

Polar motion 

𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 
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dUT1 

𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 

dUT1 
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𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 
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Plate techtonics 

-2.86 mm/y 

𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 

-43.32 mm/y 

16.98 mm/y 
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TRF velocities 

𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 



• Melting of ice sheets of last ice age: 
• Vertical up to 12 mm/y 

• Horizontal up to 3 mm/y 
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Post glacial rebound 

𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 

[Johansson et al., 2002] 



 Solid Earth tides +/- 30 cm  

 Atmospheric loading:  
 tidal: 1-2mm 

 Non-tilal: up to 2 mm 

 Ocean tidal loading:  
 Half of atmospheric effects 

 Effect also Earth rotation! 
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Tides 

[VanDam & Wahr,1987] 

𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 
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𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 + 𝝉𝒕𝒓𝒐𝒑𝒐 
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Wather Vapor (zenith wet delay) 
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𝝉𝒈𝒆𝒐𝒎 = −𝟏
𝒄 ∙ 𝒃 − ∆𝒃 ∙ 𝑾 ∙ 𝑹 ∙ 𝑸 ∙ 𝒌 + 𝝉𝒕𝒓𝒐𝒑𝒐 



• Realizes the conventional celestial reference system 

• Is the only technique providing celestial pole offset estimates 
(precession/nutation) and the phase of Earth rotation: UT1 

• This includes the free core nutation (FCN) signal 

• Satellite techniques rely on the parameters provided by VLBI 

• Provides the longest Earth-based baselines (up to 12,000 km) and thus direct 
measurement of tectonic plate motions, post glacial rebound, etc. 

• Provides a long-term stable infrastructure that adds significant, precise, and 
robust information for the realization of the terrestrial reference system 
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Summary 

What is geodetic VLBI good for? 



• Is capable of determining a number of other parameters 
• Clock parameters: Frequency transfer 

• Dispersive delays: Ionosphere, Solar corona 

• Relativistic effects: space-time curvature 

• Love & Shida numbers: geophysical Earth parameters 

 

• Presents a second space-geodetic technique at radio wave-lengths and thus an 
optimal technique for comparison with or calibration of GNSS 

 

• Colocation in space: observation of satellites with VLBI antennas. 
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Summary 

Not shown here: 



 Covers a wide range of topics 
 From astrophysics down to the interior of the Earth 

 No chance to get bored 

 Advent of VGOS 
 New & more data -> new results 

 International community  
 …more like family  
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Summary 

Why di I like it? 
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That‘s it! 

Thanks for your attention! 


