Radio sources

P. Charlot Laboratoire d'Astrophysique de Bordeaux

Outline Introduction Continuum and spectral line emission processes > The radio sky: galactic and extragalactic Active Galactic Nuclei (AGN) > A brief history of their discovery > Observational properties Standard unified model > Astrometric implications Imaging AGN > The quest for resolution

From connected arrays to VLBI

Radio emission processes

Electromagnetic emission can be divided into two types:

Continuum emission

- emission over a very broad frequency range
- usually due to the acceleration of charged particles moving with a wide-range of energy

• Spectral line emission

- emission over a very narrow frequency range
- usually due to the discrete transitions in the internal energy states of atoms or molecules

Continuum emission

Thermal emission

- Black body radiation for objects with temperature T ~3-30 K
- Bremsstrahlung (free-free) emission: deflection of a charged particle (electron) in the electric field of another charged particle (ion)

Non-thermal emission

Synchrotron radiation: relativistic electrons spiraling around weak magnetic field lines

Spectral line emission

- Neutral hydrogen (21 cm)
 - spin-flip transition between high-energy state and low-energy state of the H atom (aligned vs opposed spins for p+ and e-)
- Molecular lines (CO, CS, CN,...)
 - produced by changes in the vibrational or rotational states of their electrons (due to collisions or interactions)
- Maser emission
 - Amplification of incident radiation passing through clouds of gas

The radio sky: galactic objects

Ionized gas in the Orion nebula

Betelgeuse

Masers around the star TX Cam

Supernova remnant

Credits: M. Kramer (pulsar animation) - all other images courtesy of NRAO/AUI

AVN Training School, Hartebeesthoek, 28 May 2019

6

Atomic hydrogen emission

Continuum emission

Images courtesy of NRAO/AUI

AVN Training School, Hartebeesthoek, 28 May 2019

Active Galactic Nuclei (AGN)

AGN: brief history

- <u>1949</u>: identification of two strong radio sources (Cen-A, Virgo A) with nearby galaxies (Bolton et al.)
- <u>1954</u>: identification of the radio source Cyg-A with a distant galaxy (Baade & Minkowski)

- <u>1963</u>: discovery of quasars (quasi-stellar radio source)
 - Identification of 3C273 with a faint 13th magnitude star-like source... but with emission lines shifted longer wavelengths by 16%

→most distant known object in the Universe at the time but also intrinsically the most luminous one

Schmidt (1963)

→ first member of a new class of objects now referred to as « Active Galactic Nuclei » (AGN)

AVN Training School, Hartebeesthoek, 28 May 2019

9

AGN distances

- AGN are located at cosmological distances
- Distance is measured by redshift: $z = \lambda \lambda_0 / \lambda_0$

- highest-redshift quasar known at present is at z=7.54 while the highest-redshift radio source is at z=6.21
- AGN have no detected proper motions

AGN spectra

- Non-thermal emission
- About 15-20% of AGNs are « radio-loud » while the rest are « radio-quiet »

AB

AGN size

Intrinsic fast variations imply very small physical size for the variable region

An object that shows variability on a timescale Δt cannot be larger than c Δt.

Credit: Gene Smith

Variability on a scale of a few minutes means that the AGN size cannot be larger than a few light-minutes.

VLBI morphology

A sample of X band (8 GHz) VLBI maps with milliarcsecond resolution picked up randomly from the *Bordeaux VLBI Image Database (BVID)*

14

AVN Training School, Hartebeesthoek, 28 May 2019

Superluminal motion: a VLBI discovery

- Apparent faster-than-light motions in AGN (known as superluminal motions)
 - 1971: through visibility curves (Whitney et al.)
 - 1981: through VLBI imaging (Pearson et al.)
- Interpreted as a geometrical effect in a relativisticallyexpanding source

16

VLBI movies

Credit: Craig Walker

Credit: MOJAVE database

Credit: MOJAVE database

Credit: MOJAVE database

AGN standard unified model

Major components

- Black hole
- Accretion disk
- Torus
- Pair of relativistic jets

http://heasarc.gsfc.nasa.gov/docs/objects/agn/agn_model.html

Credit: C.M. Urry & P. Padovani

Impact of viewing angle

Object with jet close to the plane of the sky

- weak core
- two-sided jet

Polatidis et al. (1999)

Object with jet pointing towards the observer

- strong core
- one-sided jet

Image courtesy of NRAO/AUI and R. C. Walker

19

The AGN zoo

- Dichotomy radio-loud/ radio quiet
- Classification according to viewing angle
 - Radio loud: BL Lac, quasars, radio galaxies
 - Radio-quiet: QSO, Seyfert 1, Seyfert 2

Credit: C.M. Urry & P. Padovani

Credit: Alan Marscher

21

• Core emission not superimposed at different frequencies.

• Jet emission less prominent as frequency increases

Source structure vs frequency

2 GHz

24 GHz

Clean HR map. Array: BPHKLMADPS

0458-020 at 24.439 GHz 2002 May 15

Nep peck G/898 4y/beam Dontours: 0.00864 4y/beam = (-1 1 2 4 8 16 32 64 Sontours: 138 }

team fifting piece a 0.200 (mas) at -1.40

miki 0.896 /s/2

Credit: Radio Reference Frame Image Database

→ Source structure gets more compact at higher frequencies

AVN Training School, Hartebeesthoek, 28 May 2019

24

Astrometric implications

The structure index (SI) – defined as the median « source structure effect » over the u-v plane – indicates the astrometric suitability of the sources.

Imaging AGN

P. Charlot

25

Radio interferometers

 Concept of aperture synthesis developed by Martin Ryle (receiving Nobel Prize in 1974)

First radio arrays with baselines of a few km built in the 1950s

In 1954, measurements of the radio emission from Cyg A revealed that it originates from a double structure

Resolution

Very Large Array (27 antennas), 1980

Credit: Huib van Langevelde

AVN Training School, Hartebeesthoek, 28 May 2019

1967: First transatlantic baselines (USA-Sweden) detected compact radio sources

 $\lambda = 5 \text{ cm}$

AVN Training School, Hartebeesthoek, 28 May 2019

Space VLBI

Radioastron image of 3C84

Giovannini et al. (2018)

- VSOP/Halca (launched 1997,operated until 2005), elliptical orbit with apogee 20 000 km
- Radioastron (launched 2011, operated until 2019): highly elliptical orbit (apogee 350 000 km)

VLBI at mm wavelengths

Event Horizon Telescope and Global mm VLBI array

B = 10 000 km

λ (mm)	Θ (mas)	
10	0.2	
3	0.06	
1	0.02	

- Shadow of the supermassive black hole at the center of M87 just imaged.
- Consistent with predictions from General Relativity

Event Horizon Telescope Collaboration (2019)

VLBI imaging surveys

- Bordeaux VLBI Image Database (2 & 8 GHz) <u>http://bvid.astrophy.u-bordeaux.fr/</u>
- Radio Reference Frame Image Database (2 & 8 GHz) http://www.usno.navy.mil/USNO/astrometry/vlbi-products/rrfid
- VLBA Calibrator Survey (2 & 8 GHz) http://www.vlba.nrao.edu/astro/calib/index.shtml
- MOJAVE data base (15 GHz) <u>http://www.physics.purdue.edu/~mlister/MOJAVE/</u>
- VLBI Imaging and Polarimetry Survey (5 & 15 GHz) http://www.phys.unm.edu/~gbtaylor/VIPS/vipscat/vipsncapindx.shtml

AVN Training School, Hartebeesthoek, 28 May 2019

Acknowledgements

Information and figures presented in this lecture have been taken from the following sources:

- Mike Garrett's radioastronomy course <u>https://www.astron.nl/~mag/dokuwiki/doku.php?id=radio_astronomy_course_description</u>
- Huib van Langevelde's radioastronomy course
 <u>https://www.strw.leidenuniv.nl/radioastronomy/doku.php?id=ra_2017</u>
- NRAO Synthesis Imaging Workshops (2002-2012) <u>http://www.aoc.nrao.edu/events/synthesis/2012</u>
- NRAO image gallery <u>http://images/nrao.edu/</u>
- Bordeaux VLBI Image Database (2 & 8 GHz) <u>http://bvid.astrophy.u-bordeaux.fr/</u>
- Radio Reference Frame Image Database (2 & 8 GHz)
 <u>http://www.usno.navy.mil/USNO/astrometry/vlbi-products/rrfid</u>
- MOJAVE data base (15 GHz) <u>http://www.physics.purdue.edu/~mlister/MOJAVE/</u>