Introduction to Gamma-Ray Astronomy

Prof Nukri Komin University of the Witwatersrand

nukri.komin@wits.ac.za

Outline

What are gamma rays?
How are they emitted?
How can we detect them?
What are the major results?

Gamma Rays

O gamma rays:

- -E > 100 keV
- -high energy (HE) gamma rays: 100 MeV ... 100 GeV
- -very-high-energy (VHE) gamma rays 100 GeV ... 100 TeV
- emission mechanisms
 - -inverse Compton scattering
 - -pion production and decay

Synchrotron Radiation

- ♦ charged particles spiral around magnetic field lines
 ♦ energy loss
 → photon emission
 ♦ energy E_{sy} of photon
 - depends on
 - -magnetic field B
 - –electron energy $E_{\rm e}$

$$\mathbf{E}_{sy} = 2 \left(\frac{B}{100 \,\mu \,\mathrm{G}} \right) \left(\frac{E}{1 \,\mathrm{TeV}} \right)^2 \mathrm{eV}$$

TeV electrons produce synchrotron radiation in keV

-X-ray observations

N. Komin

Inverse Compton Scattering

- relativistic electron hits low-energy photon
 - -blue-shifting of photon

c energy of IC photon depends on

- -energy of electron
- -energy of photon
 - typically: Cosmic Microwave Background
 - but also: star light, infra-red, ...

Simple case, only CMB:

$$E_{\rm IC,CMB} = 6 \left(\frac{E}{1 \,{\rm TeV}}\right)^2 {\rm GeV}$$

↔ TeV electron emits GeV photon → γ-ray observations

-

N. Komin

Hadronic Emission

 \odot inelastic proton-proton scattering \rightarrow pion production

-target density!

 \bigcirc pion decay \rightarrow photon production

$$-E_{\min, \text{ photon}} = \frac{1}{2} m_{\pi} c^2 = 67.5 \text{ MeV}$$

 $-E_{\rm max, photon} \approx 0.1 E_{\rm proton}$, up to 100 TeV

Gamma Ray Detection

✿ space based

- -direct detection
- -small effective area
- -high duty cycle
- -full-sky coverage
- -Fermi/LAT
- ground based
 - -indirect detection (air showers and Cherenkov light)
 - -large effective area
 - -small field of view
 - -H.E.S.S., Veritas, MAGIC
- ground based
 - -indirect detection (air showers)
 - -large field of view
 - -high duty cycle
 - -HAWC

N. Komin

AVN training, HartRAO, 29/05/2019

Space Based: Fermi Satellite

Chris Meaney / NASA 2007

- ♥ NASA satellite (launched 11/06/2008)
- Large Area Telescope
 - -pair conversion: $\gamma \rightarrow e^- + e^+$
 - -silicon strip detector for direction
 - -caesium iodide calorimeter for energy

AVN training, HartRAO, 29/05/2019

♦ energy range: 100 MeV ... 500 GeV

 \odot surface ~1 m² \rightarrow sensitivity (4 years) 10⁻⁹ cm⁻²s⁻¹

✿ field of view: ~40°

♦ angular resolution: 0.2° ... 10°

Observation mode: sky survey

-satellite is orbiting Earth

-satellite changes orientation

high duty cycle: 24/7

operated as observatory

-data publicly available:

http://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi

advantages:

-large FoV + scanning mode = full-sky coverage

-high duty cycle

Gamma-ray Space Telescope

nearly 7 years of data

AGN

diffuse emission from electrons and protons

supernova remnants

pulsars and pulsar wind nebulae

The Real Property in the Real

Fermi/LAT: Pulsars

Fermi/LAT: Pulsars

Note: "Galactic Centre pulsar" lies above the Galactic plane!

14

Fermi/LAT: Vela Pulsar

[ApJ 696:**1084** (2009)]

Fermi/LAT: Supernova Remnants

"pion bump" → clear indication for proton acceleration

N. Komin

D³PO: denoised, deconvolved, decomposed Fermi sky [Selig et al. A&A 581:A126 (2015)]

N. Komin

AVN training, HartRAO, 29/05/2019

point sources removed \rightarrow diffuse emission colour coding: ~1 GeV, ~100 GeV

N. Komin

IR emission, 2.2 µm, from Porter (ICRC 2015)

inverse Compton emissiontraces

- -electron distribution
- -photon distribution

bremsstrahlung and pion productiontraces

- -cosmic-ray protons
- -matter distribution in Milky Way

N. Komin

The Fermi Bubbles

outflow from Milky Way electrons? protons? source is still unknown

Gamma-ray emissions

X-ray emissions

Milky Way

50,000 light-years

Sun

Imaging Air Cherenkov Telescopes

Electromagnetic Air Shower

Cherenkov Emission of Air Shower

→ detects individual photons!

Imaging Air Cherenkov Technique

Imaging Air Cherenkov Technique

stereoscopic reconstruction of shower axis

Imaging Air Cherenkov Telescopes

H.E.S.S.

- High Energy Stereoscopic System
 location Nambia

 Khomas highland, 100 km from Windhoek

 Operational since
 - -2004 (4 telescopes)
 - -2013 (5 telescopes)

H.E.S.S. CT1 - 4

12 m diameter

mirror

- -382 mirror facets
- -focal length 15 m
- -108 m²

Camera:

- -field of view 5°
- -960 photo multipliers

H.E.S.S. CT5

28 m diametermirror

- -875 mirror facets
 -focal length 36 m
 -614 m² area
 Camera
 - -field of view 3.2°
 - -2048 photo-multipliers

Imaging Air Cherenkov Technique

Observation of Cherenkov light of air showers energy range: 50 GeV ... several 10 TeV \odot sensitive area: ~10 000 m² → sensitivity 10-13 cm-2s-1 in 25 h small field of view: several degrees low duty cycle -clear, moonless nights $-\sim$ 1000 h per year ✿ good angular resolution: 0.05° … 0.1°

advantages:

-large effective area, good angular resolution

TeV Catalogue

AVN training, HartRAO, 29/05/2019

163 sources

mainly galactic sources!

32

H.E.S.S. Results: Galactic Plane

H.E.S.S. Results: Galactic Plane

Gamma-Ray Shells seen with H.E.S.S.

Vela Junior (Ø 2°)

RX J1713.7–3964 (Ø 1.2°)

SN 1006 (Ø 0.5°)

Three New TeV Shells

[HESS A&A 612 (2108) A8]

Systematic search for shells in H.E.S.S. Galactic Plane Survey

-test for shell-like morphology

CHESS J1534-571: clear association with radio SNR

two additional candidates

-one with Fermi counter-part

High-Energy Cut-Off

AVN training, HartRAO, 29/05/2019

Implications

example: RCW 86 [HESS A&A 612 (2018) A4]

magnetic field: $B = 22 \ \mu G$

E² Flux [cm⁻² s⁻¹ eV]

Magnetic Field Amplification

magnetic field amplification up to mG

- -[Bell&Lucek 2001]
- X-ray filaments
 - -[Bamba et al. 2005]
 - -gyro-radius of electrons
 - –Vela Junior: several 100 μ G
 - -or thin sheet of magnetic field
- X-ray variability
 - -[Uchiyama et al. 2007]
 - -fast variability
 - → short life-time
 - $\rightarrow B$ up to 1000 μ G

Implications II

example: RCW 86 [HESS A&A 612 (2018) A4]

magnetic field: $B = 100 \ \mu G$

- emission from protons possible
- proton spectral index different than expected -2

E² Flux [cm⁻² s⁻¹ eV]

SNRs and Target Material

molecular cloud (high density ~1000cm⁻³)

protons escape SNR

- -gamma-ray production in nearby molecular cloud
- -[e.g. Gabici 2011]
- Shock front crushes cloud
 - -OH masers tracer for shock/cloud interaction
 - -1720 MHz
 - -[Frail et al. 1996]

AVN training, HartRAO, 29/05/2019

Cosmic Ray Escape: W 28

gamma-ray emission correlated with molecular clouds [HESS 2008]

-12CO emission as tracer for molecular clouds

Crab pulsar PSR B0531+21

(also detected by MAGIC)

The Large Magellanic Cloud

PAR P

floriansphotographs.blogspot.co.za

The Large Magellanic Cloud

45

The Pulsar Wind Nebula N 157B

PWN

- -energy flux in gamma rays: $F = 1.97 \times 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}$
- -total gamma-ray power:
 - $P = F \times A_{\text{sphere}} = F \times 4 \pi (50 \text{ kpc})^2$ = 5.9 x 10³⁵ erg/s
- = 5.5 × 10³⁵ erg/3
- powered by PSR J0537-6910
 - $-\dot{E} = 4.9 \ 10^{38} \ \text{erg/s}$
- pulsar efficiency: $P / \dot{E} = 0.12\%$

The Pulsar Wind Nebula N 157B

The Pulsar Wind Nebula N 157B

ratio of synchrotron and IC emission

 magnetic field of 41 µG
 integration of electron spectrum

 total energy in electrons 4x10⁴⁹ erg

 \bigcirc all energy from pulsar spin-down \rightarrow birth period of 10 ms

$$W_{\text{tot}} = \epsilon \eta \left(E_{\text{rot},0} - E_{\text{rot}} \right)$$

= $\epsilon \eta \frac{1}{2} I \left(\left(\frac{2\pi}{P_0} \right)^2 - \left(\frac{2\pi}{P} \right)^2 \right)$
= $2 \times 10^{49} \epsilon \eta \frac{I}{10^{45} \text{ g cm}^2} \left(\left(\frac{10 \text{ ms}}{P_0} \right)^2 - \left(\frac{10 \text{ ms}}{P} \right)^2 \right) \text{ erg}$

[A&A 545, L2 (2012)] N. Komin

AVN training, HartRAO, 29/05/2019

Gamma-Ray Binary LMC P3

HAWC

• High Altitude Water Cherenkov Observatory O direct detection of air showers \rightarrow detects individual photons • water Cherenkov tanks 🗘 altitude 4100 m energies: 100 GeV ... 100 TeV ✿ large field of view: 15% of sky ✿ large duty-cycle: 24/7 O 2/3 of sky covered in 24 h ✿ angular resolution 0.2°...2° advantages: large field of view, large duty cycle

HAWC Results

N. Komin

AVN training, HartRAO, 29/05/2019

HAWC Results

- *Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth"
 - -[HAWC Collaboration (2017), Science 358, 6365, pp. 911-914]
- Iarge extended gamma-ray emission around two pulsars
- measurement of diffusion coefficient of electrons and positrons
 - \rightarrow lower then expected, sources are not origin of positron flux on Earth

N. Komin

AVN training, HartRAO, 29/05/2019

HAWC Results

Very-high-energy particle acceleration powered by the jets of the microquasar SS 433"

- [HAWC Collaboration (2018), Nature 562, 82-85]

binary system, microquasar

- -A7I star, compact object
- accretion of stellar material onto compact object
- mildly relativistic jets, perpendicular to line-of-sight
- gamma-ray emission from jet
 - -acceleration in the jet, not the central engine
 - -most likely electrons

Gamma-Ray Instruments

	space based	imaging air Cherenkov Telescopes	ground based
	Fermi/LAT	H.E.S.S., VERITAS, MAGIC	HAWC
energy range	100 MeV 100 GeV	50 GeV 10 TeV	100 GeV 100 TeV
effective size	1 m ²	~10000 m ²	22500 m ²
angular resolution	0.2°10°	0.05°0.1°	0.2°2°
duty cycle	24/7	1000 h per year	24/7
field of view	40°	3°5°	
sky coverage	full	-	2/3

Future: Cherenkov Telesope Array

100 telescopes on 2 sites

- -north: Canary Islands
- -south: Chile
- Oprototypes done, first light observed
- Construction to begin in 2019
- ✿ aim for 10 times better sensitivity than H.E.S.S.

Summary

gamma rays:

- -E > 100 keV
- -high energy (HE) gamma rays: 100 MeV ... 100 GeV
- -very-high-energy (VHE) gamma rays 100 GeV ... 100 TeV

cemission:

- -inverse Compton scattering (electrons)
- -inelastic proton scattering
- -→ probes non-thermal universe!

Odetection:

- -space: Fermi/LAT
- -ground/atmosphere: H.E.S.S. and others
- -ground: HAWC
- \rightarrow detect individual photons
- Some major results:
 - -pulsars, pulsar wind nebulae, supernova remnants, binaries
 - -plus many more...