Microwave Receiver Systems

2019 AVN May Training School

Tinus Stander Carl and Emily Fuchs Institute for Microelectronics Dept. EEC Engineering, University of Pretoria tinus.stander@up.ac.za

Agenda

- Key RF principles
- Noise & Distortion
- Receiver architectures
- Important RF circuits
- RF measurement equipment

RF Basics

The Decibel (dB)

- Used wherever we have a ratio
 - Usually loss or gain
- $A_T = A_1 \times A_2$
- Power: AX (dB) = $10\log(A_X)$
- Voltage / Current / S-parameters:
 A_x (dB) = 20log(A_x)
- $A_{T}(dB) = A_{1}(dB) + A_{2}(dB)$
- A > 0 dB : gain
- A < 0 dB : loss

The S-parameter (Scattering Matrix)

- Incident and reflected voltage wave relationships
 - Frequency variant
 - Complex
- All ports terminated Z₀
- Important ones for N = 2:
 - S₂₁: Forward transmission
 - S₁₁: Input reflection
 - S₂₂: Output reflection
 - S₁₂: Reverse transmission
- Reciprocal: $S_{21} = S_{12}$

$$S_{ij} = \left. \frac{V_i^-}{V_j^+} \right|_{V_k^+ = 0 \text{ for } k \neq j}$$

$$[S] = \begin{bmatrix} 0.15\angle 0^{\circ} & 0.85\angle -45^{\circ} \\ 0.85\angle 45^{\circ} & 0.2\angle 0^{\circ} \end{bmatrix}$$

Smith chart

- Superimpose Z on Γ
 - For given $Z_0!$
- Basic "Movements"
 - Shunt L,C
 - Series L,C
 - Cascaded TX line

$$Z_{\rm in} = Z_0 \frac{1 + \Gamma e^{-2j\beta\ell}}{1 - \Gamma e^{-2j\beta\ell}},$$

Wires and Interconnects

- DC approximation: $i(z=0) = i(z = z_x)$, $v(z=0)=v(z=z_x)$
- Non-negligible other effects:
 - Inductance
 - Resistance
 - Stray capacitance (get to that with TX lines)
- Lumped Element approximation: $z_x << \lambda/10 \rightarrow \lambda/20$

Transmission Lines

- Wave propagating along medium
 - v(z,t), i(z,t)
 - Finite phase shift
- Medium characteristics
 - Ζ, β, α
 - Reflection
- TEM modes
 - Nondispersive, 2+ conductors

 $\frac{V_0}{2}$

- TE, TM modes
 - Dispersive, 1+ conductor

Transmission media (1)

Adjustable short

- Waveguide
 - Coax
 - Modes!
 - Parallel Plate
 - Parasitic!
 - Surface Waves
 - Parasitic!
 - Rectangular, Circular

Transmission media (2)

- Planar
 - Stripline
 - Microstrip
 - CPW, GCPW
 - And others...
- Integrate with SMD components

Non-planar system integration

- Waveguide
 - Split block / finline
 - WR standards
- Microwave coax connectors
 - Different standards for different frequencies
 - SMA most common
- Mixed modules
 - WG RF, coax IF
- Cables
 - Limited by overmoding, connectors

Package Alignment Pin WR10 Waveguide

Impedance matching

- Maximum power delivery between matched source and load
- Sometimes a specific source impedance is sought
 - We'll get to that later
- In cases of mismatch: impedance matching network

$$Z_{\rm in} = Z_0 \frac{1 + \Gamma_{\ell} e^{-2j\beta\ell}}{1 - \Gamma_{\ell} e^{-2j\beta\ell}} = Z_0 \frac{Z_{\ell} + jZ_0 \tan\beta\ell}{Z_0 + jZ_{\ell} \tan\beta\ell}, \quad \underline{\underline{Z_0}} \quad \underline{Matching}_{\rm network} \quad \underline{Load}_{Z_L}$$
$$\Gamma_{\ell} = \frac{Z_{\ell} - Z_0}{Z_{\ell} + Z_0}.$$

Cascaded line transformer

- Typ. used for real-impedance matching
- Simplest: quarter-wave
 - Single frequency
- Cascade multiple sections: broadband
 - Binomial, Chebyshev

Transistors

- Different semiconductors
 - Si: Cheap, moderate performance
 - SiGe: More expensive, fasterIII-V
 - GaAs: Common in Radio Astronomy
 - InP: The best, most expensive choice

Diodes

- PN: low frequency
 - Varactor: Vary C with DC (depletion layer)
- PIN
 - DC biasing -> very linear R at RF
 - I layer stores charge
 - Switches, variable attenuators
- Schottky
 - Metal-semi contact
 - Fast switching; no recovery time
 - Detectors
- Tunnel Diode
 - Negative I-V region
 - Quantum well
 - Detectors, switches

Noise

General principles (1)

- Random variation
 - Internal: charge carriers
 - Thermal noise (Johnson / Nyquist)
 - Shot noise
 - Flicker (1/f) noise
 - External: physical phenomenon
 - Thermal emissions, cosmic background
 - Sources = interferers, not noise
 - Flat spectrum = "white noise"
 - Zero average, nonzero RMS
- Limits dynamic range
 - Other end: compression / distortion

General principles (2)

- Link between noise and temperature
- Planck blackbody
 - Rayleigh-Jeans approx. okay, except
 - f > 1 THz, K << 300K
- Equivalent noise temperature
- Used for noise-generating components
- Used for antennas

Noise Measurement

- Y-factor method
- Switch between
 "hot" and "cold" loads
- Need Y >> 1
 - T1 >> T2
 - T1, T2 >> Te
- Re-write i.t.o. ENR: T1/T2
 - ENR tables provided in noise sources

$$V_1 = GkT_1B + GkT_eB, \quad Y = \frac{N_1}{N_2} = \frac{T_1 + T_e}{T_2 + T_e} > 1,$$

$$V_2 = GkT_2B + GkT_eB, \quad Y = \frac{N_1}{N_2} = \frac{T_1 + T_e}{T_2 + T_e} > 1,$$

$$T_e = \frac{T_1 - YT_2}{Y - 1},$$

Noise Figure

- Measure of SNR_i/SNR_o, > 1
- Nomenclature:
 - F = Noise Factor, linear
 - NF = Noise Figure, dB
- Defined for:
 - Matched load input
 - Reference T₀
 - Else: stick to T_e
 - Or: T_A, for antenna front-end.
- Passive, lossy components:
 - IL = F
 - Can apply to mismatch too: gain lower

NF in Cascaded Systems

- Amplifiers amplify gain AND noise!
 - SNR_i/SNR_o increases down the chain
 - F increases
- Subsequent noise contribution mitigated by prior gain stages...
- First stage NF dominant in system!
 - Want T_A low as well.
- Use T, not NF, to avoid T \neq T₀

 $N_1 = G_1 k T_0 B + G_1 k T_{e1} B,$

$$N_o = G_2 N_1 + G_2 k T_{e2} B$$

= $G_1 G_2 k B \left(T_0 + T_{e1} + \frac{1}{G_1} T_{e2} \right).$

$$T_{\text{cas}} = T_{e1} + \frac{T_{e2}}{G_1} + \frac{T_{e3}}{G_1 G_2} + \cdots,$$

$$F_{\text{cas}} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \cdots.$$

NF of mismatched amplifiers

• F increases with mismatch

 $N_o = kT_0 GB(1 - |\Gamma|^2) + kT_0 (F - 1) GB$

$$F_m = \frac{S_i N_o}{S_o N_i} = 1 + \frac{F - 1}{1 - |\Gamma|^2}.$$

Phase noise

- Random variation of tone f₀
 - Frequency or phase variation
 - Increase noise power
 - Error in downconversion
- Expressed in dBc/Hz @ offset f_m
- Spectrum described by Leeson's model
 - For oscillators with resonators of Q.
 - High Q reduces L
- f_{α} corner frequency of 1/f
 - Transistor dependent
- Far out: amplifier NF

$$S_{\phi}(\omega) = \frac{kT_0F}{P_0} \left(\frac{K\omega_0^2\omega_{\alpha}}{4Q_0^2\Delta\omega^3} + \frac{\omega_0^2}{4Q_0^2\Delta\omega^2} + \frac{K\omega_{\alpha}}{\Delta\omega} + 1 \right)$$

Phase noise (2)

- Downconversion error
- Maximum interferer tolerable -> choice of L spec.

 $\mathscr{L}(f_m) = C (dBm) - S (dB) - I (dBm) - 10 \log(B), (dBc/Hz),$

Distortion

Nonlinear effects & distortion

- Harmonic generation
- Saturation (gain reduction, AM-AM distortion)
- Intermodulation (two tones mix)
- AM-PM conversion (amplitude -> phase shift)
- N order of terms
 - DC, linear, quadratic, etc.

$$v_i$$
 Nonlinear v_o device or network

$$v_o = a_0 + a_1 v_i + a_2 v_i^2 + a_3 v_i^3 + \cdots,$$

$$w_{o} = a_{0} + a_{1}V_{0}\cos\omega_{0}t + a_{2}V_{0}^{2}\cos^{2}\omega_{0}t + a_{3}V_{0}^{3}\cos^{3}\omega_{0}t + \cdots$$

= $\left(a_{0} + \frac{1}{2}a_{2}V_{0}^{2}\right) + \left(a_{1}V_{0} + \frac{3}{4}a_{3}V_{0}^{3}\right)\cos\omega_{0}t + \frac{1}{2}a_{2}V_{0}^{2}\cos2\omega_{0}t + \frac{1}{4}a_{3}V_{0}^{3}\cos3\omega_{0}t + \cdots$

Different kinds of distortion

- Gain compression (P1db)
 - Lower than expected output
- Third order intercept (IIP3/OIP3)
 - Mixing term of two-tone input
- Passive intermodulation (PIM)
 - Parasitic diodes from oxidation on metal
 - Only a consideration at high power

Dynamic Ranges

- Power range over which performance is desirable
- Limited by which undesired effect we want to avoid!
- Linear dynamic range (LDR)
 - Range over which operation is "linear"
 - Noise floor -> P1db
- Spurious free dynamic range (SFDR)
 - Range over which spurs below noise floor
 - Typ. 3rd order (2f₂-f₁, 2f₁-f₂)
 - SFDR typ. << LDR

Sensitivity

- Definition specific to receiver
- Smallest detectable signal
- Sensitivity (dBm) = -174 + NF + 10logB + SNR
- For antenna temperature NOT 290K
 - More generally: Si(min) = $kB(T_A + (F-1)T_0)SNR_{min}$

Receiver Architectures

Basic TX and RX blocks

- Modulation
 - I/Q common in data
- Digitization
- Filtering
- Mixing
- Generation
- Amplification

Downconversion Architectures (1)

- Tuned receivers
 - Modern: direct digitization receivers

- Direct conversion receivers
 - Zero IF, homodyne
 - No image frequency
 - Stability, precision!
 - Doppler RADAR
 - Sensitive to DC offsets

Downconversion Architectures (2)

- Superheterodyne
 - Non-zero IF (filters)
 - More stages sometimes used
 - More LOs, IFs

Radiometer receivers (1)

- Total power radiometer
 - Simple
 - Gain variation
 - Can't distinguish betweer system and observed T
 - Regular calibration!

Radiometer receivers (2)

- Dicke radiometer
 - Synchronous demodulator
 - 50% scene, 50% load
 - Cancels out gain fluctuation
- Others:
 - Noise injection
 - Noise adding
 - Direct detection

Noise in receivers

- Everything generates noise
 - Loss == noise
- Noise floor increases down So S_i S_i N_o the chain
- Need SNR_{min} for demod

System	SNR (dB)
Analog voice	5-10
Analog telephone	25-30
Analog television	45-55
AMPS cellular	18
AM-PCM	30-40
QPSK ($P_e = 10^{-5}$)	10

Dynamic Range

- "Ceiling" limited by compression
- "Floor" limited by noise

Important RF circuits

Low noise amplifiers

- Transistor, biasing, matching
- Match for
 - Gain
 - Complex conjugate power match
 - Noise
 - NF_{min} , R_N , Γ_{opt} in datasheet
 - Stability
 - ... It's a trade-off.
- Usually multiple stages

$$+V_{BB} \circ \cdots \circ +V_{cc}$$

$$R_{B} \circ \cdots \circ +V_{cc}$$

$$C \circ \cdots \circ +V_{cc}$$

$$G_{S} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - \Gamma_{\text{in}}\Gamma_{S}|^{2}},$$

$$G_{0} = |S_{21}|^{2},$$

$$G_{L} = \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22}\Gamma_{L}|^{2}}.$$

-////-

Broadband amplifiers

- Balanced amplifiers
- Distributed amplifiers
- Apply feedback
 - Stability!

Mixers

• 3-port device for frequency translation

RF

- Image frequencies!
- Diode circuits
- Transistor circuits
 - Gilbert cell
- Harmonic versions

Filters

- Low-pass, high-pass, bandpass, band-stop
- Frequency selective transmission
- Limits received noise band
- Suppresses mixing products
- Reject interferers
- More elements:
 - More selective
 - More loss

Oscillators

- Generate a steady sinusoid
- Characterized by
 - Power
 - Phase noise
 - Tunability
- Gain + astable feedback
 - Can use astable reflection as well

Isolators

- RF transmission in one direction, but not the other
 - S₂₁ ≈ 0 dB, S₁₂ < -40 dB
 - Usually ferromagnetic
- Used to control noise and leakage propagation
 - Eg. LO reflection from antenna
- Three-port: Circulator
 - Signal Merry-go-round

RF measurement equipment

Vector Network Analyser (VNA)

- Two or more ports
- Single frequency tone in
 - Monitors outputs at all other ports
- Linear S-parameters
 - Complex values
 - Can do power sweep
- Calibrated every time before use!

Spectrum Analyser

- Single input port
- Provides a view of the RF spectrum
 - Multiple tones / harmonics
 - Only P over frequency

Signal generator

- Generates an output signal for testing
- Sinusoid of controlled
 - Frequency
 - Power
- Can produce modulated output
 - Digital modulation
 - Pulsed RF

Oscilloscope

- Voltage over time
- Modern versions go to RF frequencies
- Built-in processing available
- Need special probes

Power meter

- Total power over the sensitivity spectrum
- Usually thermal sensor
- Used to verify power levels

Torque wrench

- Used to connect RF connectors and cables
 - SMA, 3.5mm and up
 - Not for BNC
- Prohibits over-torque
- Always use this!
- NEVER USE AN ORDINARY WRENCH!

References

- D. M. Pozar, Microwave engineering, 4th ed. Hoboken, NJ: Wiley, 2012.
- D. M. Pozar, Microwave and RF Design of Wireless Systems. John Wiley & Sons, Inc., 2001.
- R. Ludwig and G. Bogdanov, RF Circuit Design. Pearson Education, 2009.
- I. J. Bahl, Lumped Elements for RF and Microwave Circuits. Artech House, 2013.