
Systems Engineering at SKAO

Daniel Hayden

31 May 2019



About me

2

• I grew up in Johannesburg.

• For my undergrad I studied physics and astronomy at the University of Cape 

Town (UCT) and the University of South Africa (UNISA).

• I did a Masters in space science and technology in Europe, through a 

programme called Erasmus Mundus.

• For the last several years I’ve been working as a Systems Engineer for the 

SKA project near Manchester, England.



This talk will try to give a flavour of 
what systems engineering at the 
SKAO involves.

Introduction

3

The SKAO (SKA Organisation) is 
responsible for co-ordinating the 
global activities of the SKA project.The office for the SKAO is at 

Jodrell Bank near 

Manchester, England.

My role? I work as the 

Systems Engineer for the 

SKA1-LOW telescope.

(Dragon’s Eye Filming)

SKAO Office

Jodrell Bank during Bluedot festival

(skiddle.com)



• A recap of the SKA

• The need for Systems Engineering (SE)

• Some SE activities at the SKAO. Working with:

– Interfaces

– Product breakdowns

– Requirements

– Integrated design

• Looking forward

Overview

4



• A recap of the SKA

• The need for Systems Engineering (SE)

• Some SE activities at the SKAO. Working with:

– Interfaces

– Product breakdowns

– Requirements

– Integrated design

• Looking forward

Overview

5



https://www.youtube.com/watch?v=Hog411ZSzEY

SKA1 – a quick recap

6

https://www.youtube.com/watch?v=Hog411ZSzEY


SKA1 - a quick recap

7

You’ve heard about the 

SKA1 in several talks at 

this training, so here’s just 

a quick recap

SKA1 MID – S.A

SKA1 LOW – Australia



8



• The technical challenge – data from 200 dishes and 500 groups of 250 

antennas. That’s 150,000 baselines at 65,000 different frequencies, so up to 

10 Billion data streams!

SKA1 – 2 types of challenge 

9



Data flow 1
0

SKA1-LOW

SKA1-M ID

7.2 Tb/ s

8.8 Tb/ s

~50 PFlops

~5 Tb/ s

~250 PFlops

~300 PB/ yr

~2 Pb/ s

Global internet traffic ~360 Tb/s
(Cisco: 2016)

SKA1 – 2 types of challenge

(Slide taken from presentation by P. Diamond 2018)



• The organisational challenge – The SKA is an international project, 

currently with 13 member countries, bringing together over 1,000 engineers 

and scientists from 270 institutions in 20 countries across 20 time zones.

SKA1 – 2 types of challenge 

11

(Taken from presentation by J. Santander-Vela, 2017)



• A recap of the SKA

• The need for Systems Engineering (SE)

• Some SE activities at the SKAO. Working with:

– Interfaces

– Product breakdowns

– Requirements

– Integrated design

• Looking forward

Overview

12



The need for systems engineering

13

Technical challenge

(millions of components handling 

billions of data streams)

Organisational challenge

(work being split between 270 

institutions)

A serious need to make sure all the 

bits fit together into a working unit!



Discuss for 2 min:

What presents a bigger challenge to a large design project – technical 

complexity or organisational complexity?

QUESTION TIME:

14



• In addition to designing the detailed parts of the telescope, you also need a system 

view to consider things like:

– Will all the parts fit together properly? (interfaces)

– Will the end result be what you originally wanted? (requirements)

– Even if all the parts fit and do want you want, is this the most cost effective solution?

• Rule of thumb: if one person can’t hold a view of the whole system in their mind, 

you need Systems Engineering! Corollary: No one person has the whole view of 

the system in their mind. So where does this view exist?

• The system view needs to be created and managed using formal techniques. This 

is what systems engineering does.

The need for systems engineering

15(https://blog.prototypr.io/)



What if you don’t do systems engineering?

• A lesson from Hubble. A review found 

that “People working on the design of 

the solar arrays were not coordinating 

with people working on the design of 

the control system. Therefore, as the 

solar arrays would swing in and out of 

the sunlight, they would irrevocably 

excite satellite motion in return and 

there was no image motion 

compensation or effective correction 

inside the control loop.” 

The need for systems engineering

16

(NJ Slegers, 2012 – inspired by a presentation by Simon Wright)



What if you don’t do systems engineering?

• The Mars Climate Orbiter was a robotic 
space probe launched by NASA on 
December 11, 1998. 

• Mission was to study the Martian climate, 
Martian atmosphere, and surface changes. 

• However, on September 23, 1999, 
communication with the spacecraft was lost 
as it passed too close to the planet. 

• Why? The ground-based computer software 
produced output in non-SI units instead of 
the SI units specified in the contract between 
NASA and Lockheed. This resulted in a 
miscalculation by the trajectory calculation 
software.

The need for systems engineering

17



What is systems engineering?

18

This is one of several possible 

definitions. But one that I like. 

Systems engineering is a discipline that concentrates on the design and 

application of the whole (system) as distinct from the parts. It involves looking at 

a problem in its entirety, taking into account all the facets and all the variables 

and relating the social to the technical aspect. (FAA, 2006)

(INCOSE SE handbook)



Discuss for 2 min:

When building large systems, what are two reasons that systems engineering is 

more necessary today than it was in the past?

QUESTION TIME:

19



20

Systems

(whatmyfriendsthinkido.net)

So what are some of the 

Systems Engineering 

activities we do at the 

SKA Organisation?



• A recap of the SKA

• The need for Systems Engineering (SE)

• Some SE activities at the SKAO. Working with:

– Interfaces

– Product breakdowns

– Requirements

– Integrated design

• Looking forward

Overview

21



Interfaces

22

• During the design phase of the 

SKA, 8 design consortia were 

each responsible for delivering 

the design of one sub-system 

or ‘Element’.

• Therefore the system was 

broken up into these different 

Elements.

• Between these Elements, 

interfaces exist that need 

careful definition and 

management.

SKA Elements

• DSH – Dish

• LFAA – Low Frequency 
Aperture Array

• SADT – Signal and Data 
Transport

• TM – Telescope 
Manager

• CSP – Central Signal 
Processor

• SDP – Since Data 
Processor

• INAU – Infrastructure 
Australia

• INSA – Infrastructure 
South Africa



SKA Elements

23

(Taken from presentation by J. Santander-Vela, 2014)

Note: The 2 infrastructure 

Elements are not shown here



Interfaces – external and internal

24

• Because an interface is a boundary 

between two sub-systems, its definition 

depends on how your system is divided. 

• This N Squared diagram shows all the 

External interfaces between the 

Elements. The SKAO was responsible 

for these.

• Each of these interfaces is defined and 

detailed in an Interface Control 

Document (ICD).

• Since each Element consists of many 

sub-systems, there are also multiple 

Internal interfaces for each Element. 

The consortia were responsible for 

these.

To define an interface in an 

ICD, you need to define the 

characteristics of each sub-

system at the interface, the 

media involved in the 

interaction, and the 

characteristics of the thing 

crossing the interface 
(Wheatcraft, 2010)



• The distinction between External 

and Internal interfaces is based on 

organisational boundaries during 

the design phase.

• For the construction phase, the 

boundaries might be different. In 

this case, the content of the 

external and internal ICDs will need 

to be re-packaged along these new 

boundaries. 

• The distinction between External 

and Internal interfaces will fall away 

during construction.

Interfaces – external and internal

25

(fbaforward.com)

The moral: always remember that 

distinctions and categories in SE are 

not intrinsic but are human-made to 

serve a particular use at a particular 

time, and this can change.



Interfaces – another example

26

(Fundamentals of Systems Engineering – MIT Open Courseware)



• System 1 and system 2 might be 

self-consistent, but they must also 

be consistent with each other at 

the boundary between them.

• This boundary is not fully under 

either System’s control.

• A single definition for this boundary 

needs to be developed and 

negotiated by the designers of 

both systems.

• There is an old saying “If you want 

to sabotage someone’s system, do 

it at an interface.” (Wheatcraft, 2010).

Interfaces – so what are they?

27

(Wheatcraft, 2010)

• An interface is not a thing 

in itself. It is a “boundary 

where, or across which, 

two or more parts interact.”
(Wheatcraft, 2010).



The SKA has many kinds of interfaces. Some examples are:

Interfaces – so what are they?

28

Power 

supply 

point

Power 

distribution 

module

Trenches 

in ground

Fibre 

cables

Router Switch

Correlator
Data 

processor

Monitoring 

software

Monitoring 

software

Processing 

racks
Floor

Beamformer

Pulsar 

search 

engine

Cooling pipe
Heat 

exchanger

electricity

data (packets)

visibilities

queries

pulsar beams

N/A N/A

Water



Turn to your partner and discuss for 2 min:

Think of an example from your life when you needed to define and manage an 

interface. Think out of the box!

QUESTION TIME:

29



Turn to your partner and discuss for 2 min:

If an Interface Control Document (ICD) defines the interface between two sub-

systems, can you think of 2 occasions when this document might be used in the 

life-cycle of a project?

QUESTION TIME:

30



There are several ‘process’ challenges

to do with developing ICDs. Such as…

Interfaces – process challenges

31

(ewocnj.org)



1

32

Scenario 1: System A (in development) has an interface with system B 

(already exists). ‘B’ drives the definition of the interface which constrains the 

design of ‘A’. 

Scenario 2: Both ‘A’ and ‘B’ are both being developed concurrently. ‘A’ drives 

the definition of the interface which constrains the design of ‘B’ and vice versa! 

This is a bit of a chicken-and-egg problem. The interface definition has to 

evolve iteratively.



2

33

ICD Rev 1
ICD Rev 1A agreed 
by both consortia

SKAO Review

Recommendations 
implemented in 

Rev 1B
ICD Rev 2 Signed

• The definition of an interface may have changed a while before this change is 

formally captured in an ICD.

• Although the design of an interface is always changing, it has to be frozen and 

reviewed at various times to provide a stable baseline that can be referenced 

elsewhere in the design. The baselining process can lag behind the actual state 

of the design.

Process description



An aside - baselines and the meaning 

of a ‘signature’

34

Don’t refer to that part of 

the design, it’s wrong!

Yes, but at least it’s 

baselined!

• Imagine design A refers 

to design B which refers 

to design C.

• But these designs are 

always changing, so 

which version of ‘A’ and 

‘B’ and ‘C’?

• Answer: ones that have 

been agreed and frozen, 

even if they are not the 

most correct and current.

Often this is the meaning of 

a document signature. It 

doesn’t mean the document 

is 100% correct, but rather 

that it has been agreed and 

baselined.



3

35

• Critical design reviews (CDRs) for some Elements are separated by 1 year. 

• This means the ICD is frozen at CDR1. But Element 2’s design continues to 

evolve for 1 more year. This evolution will likely drive changes to the 

interface, leading to a different version of the ICD to be frozen at CDR2.

• But then you have 2 different ICDs describing 1 interface! If two designs are 

consistent against two different definitions of the same interface, there’s no 

guarantee the designs will be consistent with each other.



Some examples of interface issues 

from reviews

36

• The interface for the sequential 

powering up of equipment to prevent 

step loads needs to be defined.

• The timing accuracy provided by 

Element 1, consistent with their 

architecture, is not sufficient for the 

needs of Element 2.

• A change to the design removes the 

long range transmitters from the scope 

of one Element and transfers them to 

another Element. The interface needs 

to be redefined.

• Clipping of data is performed above a 

certain threshold. But who sets this 

threshold and how is it communicated?

• Is the infrastructure interface to the 

hydrogen masers stable enough in 

terms of vibration?

• Access to the TEC readings from 

GNSS/GPS receivers needs to be 

defined.



Not just interfaces between Elements

37

• Interfaces don’t just exist 

between Elements within a 

telescope. They also exist:

➢ Between the telescopes 

and systems that are 

common to both 

Telescopes (e.g. 

Engineering and 

Observation 

Management Systems).

➢ Between the telescopes 

and systems external to 

SKA.

All these interfaces 

need to be identified 

and managed!



• A recap of the SKA

• The need for Systems Engineering (SE)

• Some SE activities at the SKAO. Working with:

– Interfaces

– Product breakdowns

– Requirements

– Integrated design

• Looking forward

Overview

38



Product breakdown structures –

how to split up a system

39

(https:teslamotorsclub.com)



• You may have wondered by now 
– what determines how the SKA 
is divided into its 8 Elements?

• There are many ways to split up a 
system. 

• A system can be decomposed 
along:

– Functional boundaries

– Physical boundaries (LRUs)

– Organisational boundaries

– Contractual boundaries

• Sometimes it is necessary to use 
different ‘product breakdown 
structures (PBS) ’ and be able to 
translate from one to the other.

Product breakdown structures

40

(springbok-puzzles.com)



Something to be careful of...

As I said, a system is sometimes decomposed along organisational boundaries. 

But if you’re not careful, this can lead to…

Conway’s law!

Product breakdown structures

41

organizations which design systems ... are constrained to 

produce designs which are copies of the 

communication structures of these organizations.

— M. Conway[2]

https://en.wikipedia.org/wiki/Organizational_structure
https://en.wikipedia.org/wiki/Conway%27s_law#cite_note-Conway-2


Turn to your partner and discuss for 2 min:

Can you think of an example of where Conway’s law could come into effect?

QUESTION TIME:

42



• The SKA has a single Product Breakdown Structure (PBS) which is along 

physical boundaries. These products will be grouped into ‘work packages’ 

which will be contracted out for construction. Therefore work packages can’t 

cut across product divisions.

• Some considerations that determine how to divide up your products:

– What products make the most sense to design as separate units?

– What products do you want to test as separate units against separate sets of 

requirements?

– What division of products minimises the complexity of interfaces?

• But deciding on a single, optimal physical PBS is not easy. Here’s an 

example… see next page.

Product breakdown structures

43



• For SKA1-LOW, the design of the Tile Processing Module has been split up 
into the analog and digital parts (Pre-ADU and ADU). So the design is 
treating these as separate products.

• But the design of the Pre-ADU is closely coupled to the design of the Antenna 
Front End Module. This coupled product is called ‘Analog Receiver’.

• So how do we divide this up as physical products? According to the blue or 
green groupings as shown below?

Product breakdown structures

44

Tile Processing ModuleAntenna Assembly

Antenna + LNA

Analog Receiver

Front End 
Module

Pre-ADU ADU



• A recap of the SKA

• The need for Systems Engineering (SE)

• Some SE activities at the SKAO. Working with:

– Interfaces

– Product breakdowns

– Requirements

– Integrated design

• Looking forward

Overview

45



Requirements

46(medium.com)



• A big part of systems engineering is requirements engineering. 

• This is essentially the following process:

Requirements

47

The science 

SKA must be 

capable of

What the 

pieces of 

SKA must be 

able to do

Requirements 

engineering

The actual 

design

Compliant?
• Requirements engineering translates 

between: what science the SKA must 

be able to achieve and what its 

individual pieces must be able to do.

• We then check that the actual design is 

compliant to this.



Science 
requirements 

(L0)

System 
Requirements 

(L1 – ‘the 
telescope 

shall’)

Element 
Requirements 

(L2 – ‘the 
Element 
shall’)

Sub-Element 
Requirements 

(L3/ – ‘the 
product shall’)

Requirements

48

• There are about ~ 600 SKA system L1 requirements. The SKAO allocates

each of these to one or more Elements.

• The Element’s consortium then analyses this L1 requirement and determines 

what condition their Element needs to fulfil so that this L1 requirement is 

achieved. This leads to L2 requirements (~2500).

• The same allocation and derivation process is applied one level deeper in the 

product hierarchy to obtain L3 requirements. 



Requirements

49

L0 L0

L1 L1 L1

L2 L2 L2 L2 L2 L2

L3 L3 L3 L3 L3 L3 L3 L3 L3



Requirements must be well-written, and there are many ways to write bad 

requirements. See if you can identify what’s wrong with the following 

requirements:

- The car shall be able to accelerate from 0 to 100km/h in 2 sec using nitro-

boosters.

- The range shall be as long as possible.

- Upon contact with air, the glue shall dry within 10 sec and it shall be safe to 

touch.

- The user shall quickly see her balance on the screen.

QUESTION TIME:

50



From these examples of “bad” requirements, we’ve learnt that:

• Requirements must be verifiable! Because once the system is built, it will 

need to be verified against these requirements. When writing a requirement, 

one should always have in mind how this requirement will be verified.

• Requirements should be solution neutral i.e. they should give the ‘what’ not 

the ‘how’. However, this becomes more difficult as you decompose 

requirements to lower levels.

Requirements

51

(medium.com)

Bad requirements Good requirements



Spend 2 minutes writing a good requirement that might have been used in the 

development of one of the following:

QUESTION TIME:

52

(‘Fundamentals of 

Systems Engineering’ 

course – MIT Open 

courseware)



Turn to your partner and discuss for 2 min:

Verification means checking that the system was built right.

Validation means checking that the right system was built.

What is the difference between the two?

QUESTION TIME:

53



Requirements compliance

Jerry, why do we build a 

L1 compliance matrix?

We want to know if the 

Element designs meet the 

L1 requirements.

So how do we build 

such a matrix?

In three steps:

1) Build a matrix of compliance of Element 

design against L2 requirements

2) Correctly trace L2s to L1s

3) Roll up compliance against L2s to compliance 

against L1s



Requirements compliance

But why do you say 

‘correctly’ trace L2s to 

L1s?

Well, if the logical 

relationship of the L2s to 

the L1s is wrong, then even if 

the design is compliant 

against the L2s, it doesn’t 

imply compliance against the 

L1s.

What then is the right 

logical relationship of 

L2s to L1s?
Sufficiency condition:

Achievement of all children requirements → 

Achievement of parent requirement. 

This is diagnosed through different patterns of 

traceability



Requirements compliance

Ah, okay. But this raises 

a few more questions

Such as…?

Such as:

● What are these different patterns of traceability?

● What exactly does ‘compliance’ mean? What are the possible 

enumerations?

● How is compliance rolled up from L2 to L1?



We won’t answer all these questions now, but 

turn to your partner and discuss for 2 min the 

following:

- What is the meaning of the word 

‘Compliant?’

- If something is not ‘Compliant’, what else 

could it be? Is there only one alternative?

- Can something be compliant only after it is 

built?

QUESTION TIME:

57



• A recap of the SKA

• The need for Systems Engineering (SE)

• Some SE activities at the SKAO. Working with:

– Interfaces

– Product breakdowns

– Requirements

– Integrated design

• Looking forward

Overview

58



• Another important way to check compliance and consistency of the overall 
design, is to do something we call ‘integrated design’

• This means bringing together the designs of different parts of the telescope 
and ‘integrating’ them into a single view.

• There are many different kinds of views one can create e.g. hardware views, 
functional views, monitor and control views, interface views, etc. 

• Different diagramming and modelling tools are used to create these views.

• In this way, gaps and inconsistencies can be

identified and resolved.

Integrated design

59



Footer text

Integrated design – with diagram tools



Integrated design – with diagram tools

61

• As the diagrams are created using 

multiple design documents, issues or 

gaps are noticed.

• These are identified and recorded for 

resolution.



• You can use a diagramming tool to 
create multiple diagrams that 
describe a system.

• But these diagrams are not linked in 
any way. Hence there is no 
guarantee that they are all 
consistent.

• An alternative approach is called 
‘Model Based Systems Engineering’ 
(MBSE).

• This approach uses modelling tools 
to create a single system model. The 
diagrams are just different views of 
the model. This guarantees that they 
are consistent with each other.

Integrated design – with MBSE tools

62
(Paper ‘Architecture to Geometry – Integrating System Models with Mechanical Design, M. Bajaj et al)



• A functional architecture was 

created in a top-down 

fashion.

• This consists of several layers 

of de-composed functions, 

with each layer showing how 

functions are related through 

their inputs and outputs.

• We are now doing a similar 

exercise in a bottom-up 

fashion, using the Element 

CDR designs as inputs.

Integrated design – with MBSE tools

63



Integrated design – with MBSE tools

64

Some other MBSE examples



• Several tools are used for SE related activities.

– Jama Contour (requirements management)

– eB (configuration management and PBS management)

– Confluence (collaboration)

– Jira (ticket creation and resolution)

– Cameo Systems Modeller (systems modelling)

– Visio (diagramming)

More on tools

65

(images subject to copyright)

• These tools together 

make up an 

integrated tool 

environment

• Managing and 

selecting these tools 

needs to be carefully 

done

• Why? To ensure 

exchange of 

information between 

people and tools, and 

between the tools 

themselves, is 

efficient.



• A recap of the SKA

• The need for Systems Engineering (SE)

• SE activities at the SKAO. Working with:

– Interfaces

– Product breakdowns

– Requirements

– Change management

– Integrated design & models

• Looking forward

Overview

66



Looking forward

67



Looking forward

68

• Prototype systems have already 

begun to be deployed.

• The System Critical Design 

Review (CDR) will be end 2019.

• The SKA Observatory Inter-

Governmental Organisation will 

be established in 2020

• Construction will run from 2021 

till 2027



Thank you!

Any questions?


