Periodic methanol masers: from a CWB perspective

SP van den Heever $^{1,2},$ Supervisor: Prof. DJ. van der Walt 2 Collaborators: Prof. M.G. Hoare 3 and Dr. J.M. Pittard 3

¹Hartebeeshoek Radio Astronomy Observatory ²Center for Space Research (CSR), North-West University (Potchefstroom) ³School for Physics and Astronomy, Leeds University, Leeds, England

January 30, 2018

- From the title there are two topics of central importance:
 1) Microwave Amplification by Simulated Emission of Radiation (MASERs)
 2) C With Minut Piece (CMD)
 - 2) Colliding Wind Binary (CWB)
- Star formation High-mass
- Masers' association with High mass star formation
- Periodic methanol masers (G9.62+0.20E profile)
- the CWB hypothesis
- the CWB model
- Results
- Summary conclusion

(4回) (日) (日)

- GMC
- MC
- Clumps
- HMC
- HII region

Star formation - High-Mass star formation

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Star formation - On the formation of binaries

- Mostly single star formation has been considered, what about multiplicity?
- Amongst others Bodenheimer 1993 recognized the "angular momentum problem".
- Various surveys (e.g. Duquennoy and Mayor 1991, Zinnecker & Mathieu 2001, low-mass) and (Mason et al 1998, high-mass) have shown that binarity is the rule rather than the exception. ≃ 60-70 % of all stars reside in systems of multiplicity 2 or higher.
- This was also confirmed by numerical calculations (e.g. Bonnell 1998, Bonnell 1999, Bate et al 2002, Bate et al 2003).

・ 同 ト ・ ヨ ト ・ ヨ ト

Masers

- The first maser was discovered in the 1960's and dubbed Mysterium
- It was realized (Weaver et al 1965) to be the stimulated emission produced from an hydroxyl (OH) molecule.
- Masers have been observed from star forming regions and evolved stars.

3

Masers

- Several molecules (H₂O, NH₃, SiO, H₂CO, and CH₃OH, OH, etc) have been discovered to show maser emission.
- Class II CH₃OH masers are exclusively associated (e.g. Ellingsen 2006, Breen et al 2010 and Breen et al 2013) with HMSFRs.
- In addition, 67% of these have associated HII regions (Hu et al 2016).
- More than 2000 are currently known.
- Crude evolutionary model constructed from maser surveys.

SP van den Heever Periodic methanol masers: from a CWB perspective

- Hartebeeshoek Radio Astronomy Observatory (HartRAO) has been monitoring various maser species for \simeq 30 years.
- This enabled us do variability studies. ie, how the flux density of the masers change with time.
- From these variability studies, it was found that some of these masers vary regularly/periodically.

Masers

G351.78 time series

SP van den Heever Periodic methanol masers: from a CWB perspective

Periodic methanol maser - G9.62+0.20E

- Goedhart et al 2003, discovered 5 periodic masers
- G009.62+0.20E was the first.
- Several different flare profiles
- Sources G22.357+0.066 (Szymzcak et al 2011, 2015), G45.473+0.134 (Szymczak et al 2015), G37.55+0.20 (Araya et al 2010) show the same profile.

The decay describes recombination: $n_e^2(t) =$ $n_{e,b}^2 \left(\frac{u_0 + \tanh(\alpha n_{e,b}t)}{1 + u_0 \tanh(\alpha n_{e,b}t)}\right)^2$, $u_0 = \frac{n_{e,0}}{n_{e,b}}$

Decay profile and recombination fit 1200 ... G9.62+0.20E Quiescent state 1000 115 days Flux density (Jy) 800 600 400 A 200 56850 56900 56950 57000 57050 57100 57150 57200 22 G22.357+0.066 20 18 Quiescent Flux density (Jy) stat 16 65 days 14 12 55500 55550 55600 55650 55700 55750 55800 Time (days)

・ロト ・回ト ・ヨト ・ヨト

Э

CWB hypothesis - recombination fits

- $n_{e,max} \simeq 1$ -1.5 10⁶ cm⁻³, and $n_{e,min} \simeq 4$ -7 10⁵ cm⁻³.
- characteristic of densities associated with UCHII regions.

< ∃ >

글 > 글

CWB hypothesis - time series analysis

• $n_{e,min} \rightarrow F_{min}$ • $n_{e,max} \rightarrow F_{max}$ • relative amplitude (R): $=\frac{F_{max}-F_{min}}{F_{min}}$ $=\frac{n_{e,max}^2-n_{e,min}^2}{2}$ $n_{e,min}^2$ • R = 2.2 (Goedhart et al 2003) • suggests $n_e^2(t)$

G9.62+0.20E

- 4 回 ト - 4 回 ト - 4 回 ト

2

- Basic maser relation: $I_{\nu} = I_0 e^{-\tau}$
- CWB model \rightarrow I₀ (background free-free emission from HII region) varies, thus $I_0 \propto n_e^2$.
- The flare \rightarrow "pulse" of additional ionization at the IF increasing n_e and thus l_0 . This happens around periastron passage.
- Time-dependently $ightarrow rac{dn_e}{dt} = -n_e^2 eta + \Gamma(t) n_{H^0}$
- Flare: $n_e^2 \beta \ll \Gamma(t) n_{H^0}$.
- Decay: $n_e^2\beta >> \Gamma(t)n_{H^0}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

CWB hypothesis

- Periodicity \rightarrow Binary period
- CW produce hot shocked gas.
- Orbital motion modulates the ionizing photon flux.
- presence of HII region (Hofner et al 1996)
- ionizing photons cause additional ionization at IF
- Maser projection "sees" this change.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Original proposal (van der Walt 2011) assumed adiabatically cooling shocked gas, ie. $L \propto D^{-1}$, where D is the separation distance between the two stars.
- With this assumption a highly eccentric orbit was chosen in order to obtain sufficient changes at the IF.
- As $L_{bol} >> L_{wind} >> L_{shock}$, is the CWB model energetically feasible?
- Here we attempt to answer this question.

向下 イヨト イヨト

CWB Model

To put the CWB hypothesis into a complete model, the following models were used:

- Inner part:
 - 1) Colliding Wind Binary
 - Kepler's laws: Calculates the binary orbit
 - HD model (ARWEN): Simulates the shocked gas of the colliding winds

2) Plasma model: Calculates the emission from the shocked gas

• Outer part:

3) Photo-ionization code (*Cloudy*): It does the radiative transfer through the HII region.

4) Use the *Cloudy* results to construct a quasi time-dependent change of the IF.

5) Solves electron density (n_e) time-dependently with maser projected on the IF.

- computationally expensive
- 0.1 AU intervals
- From Kepler 1 and 3:

• Kepler 1:
$$a = \frac{r(1-\epsilon\theta)}{(1-\epsilon^2)}$$

• Kepler 3:
$$a^3 = \frac{G(m_1+m_2)P^2}{4\pi^2}$$

 $P = \sqrt{\left(\frac{4\pi^2 r_p^3}{G(m_1+m_2)}\right) (1-\epsilon)^{\frac{-3}{2}}}$

A B K A B K

A ₽

CWB Model - Hydrodynamical model

- 2D Cylindrical symmetric
- momentum balance: $\eta = \left(\frac{\dot{M}_1 v_1}{\dot{M}_2 v_2}\right)^{\frac{1}{2}} = \frac{d_1}{d_2}$
- includes radiative cooling
- $\chi = \frac{t_{cool}}{t_{esc}} \simeq \frac{v_w^4 d_{12}}{\dot{M}_{-7}}$ (Stevens et al 1992)
- $\chi >> 1$ (adiabatic), $\chi \leq 1$ (radiative)

・日・ ・ ヨ・ ・ ヨ・

3

CWB Model - Plasma emission model

- DATA:
- Generate emissivity data, 101 T bins (10⁴⁻⁹ K), 300 E bins 0.01-10 keV (*MeKal*), for a given chemical abundance set.
- cooling processes (recombination, collisional (excitation, ionization), free-free emission)
- MODEL:
- 2D Cylindrical symmetry ightarrow 3D cartesian
- Volume \rightarrow annulus
- $T = \frac{P\mu}{\rho k}$
- $L = n^2 \Lambda(T, E) V$
- Adiabatic $\rightarrow L \simeq \dot{M^2} v^{-3} D^{-1}$
- Radiative $\rightarrow f \dot{M} v^2$

イロン 不同と 不同と 不同と

э

CWB Model - Photo-ionization code

- Cloudy
- $\bullet \; \mathsf{Star} \to \mathsf{Black} \; \mathsf{body}$
- T_{eff}, S_{*} (Sternbergetal2003)
- $S_{\star} = \frac{4}{3}\pi R_S^3 n^2 \beta(T)$
- $R_S = (\frac{3S_{\star}}{4\pi n^2 \beta(T)})^{\frac{1}{3}}$
- Addition of SED from shocked gas.

Combined SED

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- construct quasi time-dependent position of IF from static equilibrium solutions.
- determine quasi time-dependent ionization rate with maser projection

伺 とう きょう とう とう

CWB Model - Maser projection

SP van den Heever Periodic methanol masers: from a CWB perspective

- Solve *n_e* time-dependently using the quasi time-dependent ionization rate.
- use the derived $n_{e,max}$ and $n_{e,min}$ to choose the "best" fit CWB model to compare with the time series.
- Additionally, with the CWB model we will be able to test our hypothesis directly. This can be done with the Chandra X-ray space telescope. Will we be able to see it?

・ 同 ト ・ ヨ ト ・ ヨ ト

Variables (units)	CWB 1	CWB 2	CWB 3
$\dot{M_1}~({ m M}_\odot~{ m yr}^{-1})$	$1 imes10^{-6}$	$9 imes10^{-7}$	$8 imes 10^{-7}$
$\dot{M}_2~({ m M}_\odot~{ m yr}^{-1})$	$8 imes 10^{-7}$	$6 imes 10^{-7}$	$6 imes10^{-7}$
$v_{1,\infty}(ext{cm s}^{-1})$	$1.6 imes 10^8$	$1.6 imes 10^8$	$1.6 imes10^{8}$
$v_{2,\infty}(\text{cm s}^{-1})$	1.2×10^8	1.2×10^8	1.2×10^8
Stellar type	T_{eff} (K)	ho ($ imes$ 10 ⁶ cm ⁻³)	$\log(Q(H)) \mathrm{s}^{-1})$
B0	33340	4-7	48.02
O9.5	34900	4-7	48.29
O9	35900	4-7	48.47
O8.5	36840	4-7	48.61
08	37170	4-7	48.75

Table: Top panel: Stellar parameters for the Hydrodynamical model ARWEN. Bottom panel: Stellar parameters for the Photo-ionization code *Cloudy*.

- 4 回 2 - 4 □ 2 - 4 □

Specific orbits

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

Results - ARWEN

• The simulated shocked gas (adiabatic).

* 臣

문 문 문

Results - ARWEN

• The simulated shocked gas (radiative).

3

Results - Plasma emission

SEDs

SP van den Heever Periodic methanol masers: from a CWB perspective

Luminosity

< ∃⇒

- Photoionization calculations of the HII region.
- Small changes

 adiabatically cooling
- Considerable changes – radiative cooling

Ionization front position

Results - quasi time-dependent ionization rate

- Density
- Periastron distances
- Projections
- Several stellar types

▲ 御 ▶ → ミ ▶

→ 三→

Normalized $n_e^2(t)$ solution

・ロン ・回と ・ヨン・

G9.62+0.20E

・ロン ・団 と ・ 国 と ・ 国 と

G9.62+0.20E

G22.357+0.066

・ロト ・回ト ・ヨト ・ヨト

Э

G37.55+0.20

◆□ > ◆□ > ◆臣 > ◆臣 > ○

G45.473+0.134

Э

G9.62+0.20E

・ロト ・四ト ・ヨト ・ヨトー

3

- The time-dependent change in electron density seems to explain the periodic methanol masers remarkably well.
- This suggests that the masers sees the time-dependent change in the free-free emission from the background HII region.
- The derived electron densities correspond with characteristic values for UCHII region, suggesting a very early stage of star formation.
- We can test for the presence of a colliding wind binary system with X-ray observations.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thanks for listening hank Vn

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >