

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

Faculty of Engineering, Built Environment and Information Technology

Fakulteit Ingenieurswese, Bou-omgewing en Inligtingtegnologie / Lefapha la Boetšenere, Tikologo ya Kago le Theknolotši ya Tshedimošo

Water Vapour Radiometry

An Introduction

Tinus Stander

AVN Training School, HartRAO, 17 May 2019

Agenda

- **FR** Principles of radiometry
	- **The atmosphere**
	- **Emission and absorption by atmospheric gasses**
	- **Black bodies, Planck's Law, Rayleigh-Jeans Approximation**
- **Tropospheric water vapour**
	- **Specific emission / absorption spectrum**
	- **IMPORTANCE TO TABLE 10 IMPORT AT A LIM IMPORT**
	- **Data products**
- **Radiometers**
	- **•** Principle of operation
	- **Performance Metrics**
	- **Architectures**
- Some WVR details and examples
	- **Calibration**
	- **System Integration**
- **Development Opportunities**

Principles of radiometry

The atmosphere

- O_2 , N₂, CO₂, H₂0
- **Troposphere lowest 10km**
	- \blacksquare 75% total mass, 99% H₂0
- **Nost distributions uniform and** stable
	- \blacksquare Not H₂0!

scied.ucar.edu

Emission and absorption

- **Gas molecules have finite energy** states
- **Transition between states**
	- **Absorption: collect a photon**
	- **Emission: release a photon**
- **Photon energy** \rightarrow **frequency**
	- \blacksquare $F = hf$
- **Emission / absorption spikes**
	- Known transitions *SM Walker, TUT, 2019.*

Black body radiation

- **Absorb and emit with 100%** efficiency
	- **I** Idealised, but handy
- **Emission determined by**
	- **EXA** Temperature
	- **Frequency**
- **Planck's law:**
	- **Radiance, temperature and** wavelength
- **Rayleigh-Jeans approximation**
	- **Linear at microwave** frequencies

SM Walker, TUT, 2019.

Wikimedia commons

Tropospheric water vapour

Emission spectrum

- Lines at 22.24, 183.31, 325.5 GHz
- **Pressure broadening**
	- **Estimate concentration from total** power OR spectrum shape
- **Liquid water continuum**
	- **Offset to water vapour emission**

http://propagation.ece.gatech.edu http://cfa.aquila.infn.it/wiki.eg-climet.org/index.php5/MWR_Fundamentals

The problem with water vapour and VLBI

- **•** Delay and attenuation not uniform at all sites
- **Need to measure water vapour**
	- Path delay correction
	- **Site management**
		- **Monitoring, scheduling**
	- **Site surveying**

SM Walker, TUT, 2019.

Non-astronomical applications

- **Remote-sensing, Meteorology,** Atmospheric studies
- **Space Geodesy, Satellite** tracking, Gravity wave experiments
- **5G cellular service, GPS** corrections, Smart city optimisation

Aluigi et al, IEEE TCAS 64(12)

Data products (1)

- Opacity / optical depth τ
	- **Function of atmospheric** conditions and T_B
		- \blacksquare T_{mr}: f(T, P, RH) with radiosondes OR
		- **Tipping curve**

Ferrusca et al, Proc. SPIE v9147

$$
\tau_{\nu} = \ln \left[\frac{T_{mr} - 2.7K}{T_{mr} - T_B} \right]
$$

$$
V_{out}(z) = G\big(T_{sys} + \big(1 - e^{-\tau_0 \sec z}\big) \cdot T_{atm}\big)
$$

Data products (2)

- \blacksquare Integrated liquid water (ILW), in mm or g/m²
	- **Also: Liquid Water Path (LWP)**
	- **Example 2** Liquid water produces continuum radiation, but not significant path delay!
	- Requires multi-band observation
		- Separate into "dry" and "wet" opacity
	- **Requires**
		- Atmospheric model
		- **Solution of radiative transfer equations**
		- Data estimates (T, P, RH)
- \blacksquare Integrated Water Vapour (IWV), in mm or g/m²
	- **Also, precipitable water vapour (PWV)**
	- **Similar process**
- **Altitude / vertical profiles**
	- **Needs a spectrum, not singular discrete measurements**
	- **Forward model fitting based on radiosonde, RADAR or** LIDAR data
	- **Temperature can be remote sensed @ O₂ lines.**

Straub et al, Atmos Meas Tech 3-1-15.

Radiometer Theory

Principles of operation

- $P = kTR$
	- **Power related to brightness** temperature
- Relate noise power to voltage
	- **Square law detector**
- Problem: How distinguish T_{ant} from T_{sys} ?

The basic radiometer

- Antenna
- Gain
- **Downconversion**
- **Detection**
- **Integration**
- **Recording**

Performance metrics

- **Accuracy**
	- **How reliable is my average** voltage?
	- **IMPROVED by calibration, low** drift
- **Resolution**
	- **How reliable is my** instantaneous measurement?
	- **IMPROVED by lower Tsys,** increased integration time

The total power radiometer

- **Superheterodyne**
- Can be calibrated with front-end switch and noise source
- Sensitive to drift
	- **Allen time**

The direct detection radiometer

- No downconversion
- **High frequency detector**
- **Still sensitive to drift, 1/f**
- No band tuning

Dicke radiometer

- **Synchronous demodulation of sky** and load
- **EXECOMPERATE:** Compensate for drift
	- **EXECOMMON mode variation**
- **Requires longer integration times**
	- Only looking at sky $\frac{1}{2}$ of time

$$
\Delta T_{DR} = \sqrt{\frac{(T I_{A} + T_{REC})^2}{B \cdot \tau / 2} + \frac{(T_{REF} + T_{REC})^2}{B \cdot \tau / 2} + (T I_{A} - T_{REF})^2 \cdot (\frac{\Delta G}{G})^2}.
$$

■ Seems to work better when load = sky... can we enforce that?

Noise injection radiometer

- **Feedback control to** equalize sky and load
	- **Cancel out drift** completely
- **Reading now the noise** injection control, not the reading
	- Reading constant

$$
\Delta T_{NIR} = \sqrt{\frac{2 (T'_{A} + T_{REC})^2 + 2 (T_{REF} + T_{REC})^2}{\sqrt{B \cdot \tau}}}
$$

UNIVERSI

Noise adding radiometer

- **Switches are inconvenient**
	- **Loss!**
- **Gradual increasing injection** of noise
- Same effect
- \blacksquare Use Y-factor to measure T_{ant}

$$
\Delta T_{NAR\,(theoratical)} = \left(\frac{2\ T_{SYS}}{\sqrt{B\cdot\tau}}\right) \cdot \left(1 + \frac{T_{SYS}}{T_{inj(on)}}\right)
$$

Some practical notes

Calibration

- **Built-in noise source**
	- **Stability**
- **Liquid nitrogen load calibration**
	- **Periodic**
- **Tip curve calibration**
	- Solve unknowns T_{sky} , T_{sys}
	- Assume T_{sky} increase by known factor, T_{sys} constant
	- Need regression of many data points
	- Assumes parallel atmosphere

Hiriart et al, Revista Mexicana de Astronomia y Astrofisica 33.

Allan Variance

- **Long-term stability measure**
- **1/f noise, drift**
- **Can't integrate forever!**

$$
\sigma_y^2(\tau) = \frac{1}{2} \langle (\bar y_{n+1} - \bar y_n)^2 \rangle = \frac{1}{2\tau^2} \langle (x_{n+2} - 2x_{n+1} + x_n)^2 \rangle,
$$

Gill et al, EVLA memo #203 Pazmany, IEEE Trans. GeoSci Remote Sensing 45(7)

Integration and construction

- **Tipping radiometer**
	- **Rotating mirror**
- **Internal: waveguide and** coax
- **Other weather station instruments**
	- \blacksquare T, P, RH

Straub et al, Atmos. Meas. Tech., 3, 1–15 Indermuehle et al, PASA, v. 30, e035, 2013

UNIVERSI

Spectrum & digitization

- **Single band, integrated**
	- **Deacity**
- **Two bands, integrated**
	- Distinguish between wet and dry path
- **Multiple bands, diodes**
	- **Spectrum**
	- **•** Vertical profiling
	- **Lots of duplication**
		- **Filters!**
- **Spectrometer**
	- **Fine resolution**
	- **•** Vertical profiling
	- **High speed ADC and** DSP!

Square law Detector Integrator

Cho, Bonn University, 2012.

Gill et al, EVLA memo #203

Straub et al, Atmos. Meas. Tech., 3, 1–15

MMIC integration

- **Single-chip**
	- **DDR** or TPR
- **Typically for space, passive** imaging

Gunnarsson et al, RWS2018 Aluigi et al, IEEE Trans CAS 64(12)

27

New developments

Development opportunities

- **RF PCB integration?**
	- **Common for SatCom, RADAR**
- **Phased array scanning?**
	- Again, common for RADAR

Peng et al, IEEE Trans MTT 66(11) Kursu et al, EURASIP J. Wireless Comms Netw. 2018:201

Rx array

PILCHARD

- Planar Integrated Low-Cost H₂O Atmospheric Radiometric Detector
	- In keeping with Hyrax, CBASS, MeerKAT...

Reflector antenna design

- **Stellenbosch University**
	- William Cerfonteyn, Dirk de Villiers
- **Reflector with multiple** feeds
	- Constant monitoring at all elevation angles
	- 2-beam concept

Phased array antenna design

- **University of Pretoria**
	- **Peter Prince, Tinus Stander**
- **Similar patterns at 22 & 31 GHz**
	- Array feed \checkmark
		- Dispersive phase shifters!
	- **Array placement?**
		- Optimization?

https://en.wikipedia.org/wiki/Phased_array

Systems modelling (1)

- **University of Pretoria, TUT**
	- **Shaunel Walker, Tinus** Stander, A. C. de Villiers
- **Use RF system simulator**
	- **Single UI, environment**
	- **Easy component checking**
	- \blacksquare DR, BW, NF, $\mathscr L$
	- **Integration time**
- \blacksquare Model T_{amb} variation
- **Different topologies**
	- **DDR, TPR, Dicke,** noise adding

Systems modelling (2)

- \blacksquare T_{amb} variation
- **DDR** is viable!
- \blacksquare Low *L* has minimal effect
- \bullet < USD 1,500 !!!!

Retrieval simulation (UP, UNAM)

- **Atmospheric model**
- **Nariable antennal** beamwidth
- **variable elevation** measurements
- *Fewest tip curve measurements?*
- *Widest beamwidth?*

Acknowledgements

- **Shaunel Walker**
	- **Presentation draws significantly on his M.Eng thesis**
- National Research Foundation (NRF)
	- CPT grant UID105297
	- SA-Mexico Bilateral Grant UID114676
- SARAO, SKA SA
	- **Bursary for Shaunel Walker**

Tinus Stander

Senior Lecturer Carl and Emily Fuchs Institute for Microelectronics Dept. EEC Engineering University of Pretoria Pretoria, 0002 South Africa

+27 12 420 6704 tinus.stander@up.ac.za

www.up.ac.za/eece

