

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

Faculty of Engineering, Built Environment and Information Technology

Fakulteit Ingenieurswese, Bou-omgewing en Inligtingtegnologie / Lefapha la Boetšenere, Tikologo ya Kago le Theknolotši ya Tshedimošo

Water Vapour Radiometry

An Introduction

Tinus Stander

AVN Training School, HartRAO, 17 May 2019

Agenda

- Principles of radiometry
 - The atmosphere
 - Emission and absorption by atmospheric gasses
 - Black bodies, Planck's Law, Rayleigh-Jeans Approximation
- Tropospheric water vapour
 - Specific emission / absorption spectrum
 - Importance to radio astronomy
 - Data products
- Radiometers
 - Principle of operation
 - Performance Metrics
 - Architectures
- Some WVR details and examples
 - Calibration
 - System Integration
- Development Opportunities

Principles of radiometry

The atmosphere

- O₂, N₂, CO₂, H₂0
- Troposphere lowest 10km
 - 75% total mass, 99% H₂0
- Most distributions uniform and stable
 - Not H₂0!

scied.ucar.edu

Emission and absorption

- Gas molecules have finite energy states
- Transition between states
 - Absorption: collect a photon
 - Emission: release a photon
- Photon energy \rightarrow frequency
 - E = hf
- Emission / absorption spikes
 - Known transitions

SM Walker, TUT, 2019.

Black body radiation

- Absorb and emit with 100% efficiency
 - Idealised, but handy
- Emission determined by
 - Temperature
 - Frequency
- Planck's law:
 - Radiance, temperature and wavelength
- Rayleigh-Jeans approximation
 - Linear at microwave frequencies

SM Walker, TUT, 2019.

Tropospheric water vapour

Emission spectrum

- Lines at 22.24, 183.31, 325.5 GHz
- Pressure broadening
 - Estimate concentration from total power OR spectrum shape
- Liquid water continuum
 - Offset to water vapour emission

http://propagation.ece.gatech.edu http://cfa.aquila.infn.it/wiki.eg-climet.org/index.php5/MWR_Fundamentals

8

The problem with water vapour and VLBI

- Delay and attenuation not uniform at all sites
- Need to measure water vapour
 - Path delay correction
 - Site management
 - Monitoring, scheduling
 - Site surveying

SM Walker, TUT, 2019.

Non-astronomical applications

- Remote-sensing, Meteorology, Atmospheric studies
- Space Geodesy, Satellite tracking, Gravity wave experiments
- 5G cellular service, GPS corrections, Smart city optimisation

Aluigi et al, IEEE TCAS 64(12)

Data products (1)

- Opacity / optical depth τ
 - Function of atmospheric conditions and T_B
 - T_{mr}: f(T, P, RH) with radiosondes OR
 - Tipping curve

Ferrusca et al, Proc. SPIE v9147

$$\tau_{v} = \ln \left[\frac{T_{mr} - 2.7K}{T_{mr} - T_{B}} \right]$$

$$V_{out}(z) = G\left(T_{sys} + \left(1 - e^{-\tau_0 \sec z}\right) \cdot T_{atm}\right)$$

Data products (2)

- Integrated liquid water (ILW), in mm or g/m²
 - Also: Liquid Water Path (LWP)
 - Liquid water produces continuum radiation, but not significant path delay!
 - Requires multi-band observation
 - Separate into "dry" and "wet" opacity
 - Requires
 - Atmospheric model
 - Solution of radiative transfer equations
 - Data estimates (T, P, RH)
- Integrated Water Vapour (IWV), in mm or g/m²
 - Also, precipitable water vapour (PWV)
 - Similar process
- Altitude / vertical profiles
 - Needs a spectrum, not singular discrete measurements
 - Forward model fitting based on radiosonde, RADAR or LIDAR data
 - Temperature can be remote sensed @ O₂ lines.

Straub et al, Atmos Meas Tech 3-1-15.

Radiometer Theory

Principles of operation

- P = kTB
 - Power related to brightness temperature
- Relate noise power to voltage
 - Square law detector
- Problem: How distinguish T_{ant} from T_{sys}?

The basic radiometer

- Antenna
- Gain
- Downconversion
- Detection
- Integration
- Recording

Performance metrics

- Accuracy
 - How reliable is my average voltage?
 - Improved by calibration, low drift
- Resolution
 - How reliable is my instantaneous measurement?
 - Improved by lower Tsys, increased integration time

The total power radiometer

- Superheterodyne
- Can be calibrated with front-end switch and noise source
- Sensitive to drift
 - Allen time

The direct detection radiometer

- No downconversion
- High frequency detector
- Still sensitive to drift, 1/f
- No band tuning

Dicke radiometer

- Synchronous demodulation of sky and load
- Compensate for drift
 - Common mode variation
- Requires longer integration times
 - Only looking at sky ½ of time

$$\Delta T_{DR} = \sqrt{\frac{(T'_A + T_{REC})^2}{B \cdot \tau / 2}} + \frac{(T_{REF} + T_{REC})^2}{B \cdot \tau / 2} + (T'_A - T_{REF})^2 \cdot \left(\frac{\Delta G}{G}\right)^2.$$

Seems to work better when load = sky... can we enforce that?

Noise injection radiometer

- Feedback control to equalize sky and load
 - Cancel out drift completely
- Reading now the noise injection control, not the reading
 - Reading constant

$$\Delta T_{NIR} = \sqrt{\frac{2 (T'_A + T_{REC})^2 + 2 (T_{REF} + T_{REC})^2}{\sqrt{B \cdot \tau}}}$$

Noise adding radiometer

- Switches are inconvenient
 - Loss!
- Gradual increasing injection of noise
- Same effect
- Use Y-factor to measure T_{ant}

$$\Delta T_{NAR \ (theoratical)} = \left(\frac{2 \ T_{SYS}}{\sqrt{B \cdot \tau}}\right) \cdot \left(1 + \frac{T_{SYS}}{T_{inj(on)}}\right)$$

Some practical notes

Calibration

- Built-in noise source
 - Stability
- Liquid nitrogen load calibration
 - Periodic
- Tip curve calibration
 - Solve unknowns T_{sky}, T_{sys}
 - Assume T_{sky} increase by known factor, T_{sys} constant
 - Need regression of many data points
 - Assumes parallel atmosphere

Hiriart et al, Revista Mexicana de Astronomia y Astrofisica 33.

Allan Variance

- Long-term stability measure
- 1/f noise, drift
- Can't integrate forever!

$$\sigma_y^2(au) = rac{1}{2} \langle (ar y_{n+1} - ar y_n)^2
angle = rac{1}{2 au^2} \langle (x_{n+2} - 2x_{n+1} + x_n)^2
angle,$$

Gill et al, EVLA memo #203 Pazmany, IEEE Trans. GeoSci Remote Sensing 45(7)

Integration and construction

- Tipping radiometer
 - Rotating mirror
- Internal: waveguide and coax
- Other weather station instruments
 - T, P, RH

Straub et al, Atmos. Meas. Tech., 3, 1–15 Indermuehle et al, PASA, v. 30, e035, 2013

Spectrum & digitization

- Single band, integrated
 - Opacity
- Two bands, integrated
 - Distinguish between wet and dry path
- Multiple bands, diodes
 - Spectrum
 - Vertical profiling
 - Lots of duplication
 - Filters!
- Spectrometer
 - Fine resolution
 - Vertical profiling
 - High speed ADC and DSP!

Square law Detector Integrator

Cho, Bonn University, 2012.

Gill et al, EVLA memo #203

26

MMIC integration

- Single-chip
 - DDR or TPR
- Typically for space, passive imaging

Gunnarsson et al, RWS2018 Aluigi et al, IEEE Trans CAS 64(12)

New developments

Development opportunities

- RF PCB integration?
 - Common for SatCom, RADAR
- Phased array scanning?
 - Again, common for RADAR

Peng et al, IEEE Trans MTT 66(11) Kursu et al, EURASIP J. Wireless Comms Netw. 2018:201

Rx array

29

PILCHARD

- Planar Integrated Low-Cost H₂O Atmospheric Radiometric Detector
 - In keeping with Hyrax, CBASS, MeerKAT...

Reflector antenna design

- Stellenbosch University
 - William Cerfonteyn, Dirk de Villiers
- Reflector with multiple feeds
 - Constant monitoring at all elevation angles
 - 2-beam concept

Phased array antenna design

- University of Pretoria
 - Peter Prince, Tinus Stander
- Similar patterns at 22 & 31 GHz
 - Array feed
 - Dispersive phase shifters!
 - Array placement ?
 - Optimization?

https://en.wikipedia.org/wiki/Phased_array

Systems modelling (1)

- University of Pretoria, TUT
 - Shaunel Walker, Tinus Stander, A. C. de Villiers
- Use RF system simulator
 - Single UI, environment
 - Easy component checking
 - DR, BW, NF, *L*
 - Integration time
- Model T_{amb} variation
- Different topologies
 - DDR, TPR, Dicke, noise adding

Systems modelling (2)

- T_{amb} variation
- DDR is viable!
- Low \mathcal{L} has minimal effect
- USD 1,500 !!!!

Retrieval simulation (UP, UNAM)

- Atmospheric model
- Variable antenna beamwidth
- Variable elevation measurements
- Fewest tip curve measurements?
- Widest beamwidth?

Acknowledgements

- Shaunel Walker
 - Presentation draws significantly on his M.Eng thesis
- National Research Foundation (NRF)
 - CPT grant UID105297
 - SA-Mexico Bilateral Grant UID114676
- SARAO, SKA SA
 - Bursary for Shaunel Walker

Tinus Stander

Senior Lecturer Carl and Emily Fuchs Institute for Microelectronics Dept. EEC Engineering University of Pretoria Pretoria, 0002 South Africa

+27 12 420 6704 tinus.stander@up.ac.za

www.up.ac.za/eece

