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Chapter 1

Introduction

This document describes how to calibrate and image interferometric and single-dish radio astro-
nomical data using the CASA (Common Astronomy Software Application) package. CASA is a
suite of astronomical data reduction tools and tasks that can be run via the IPython interface to
Python. CASA is being developed in order to fulfill the data post-processing requirements of the
ALMA and EVLA projects, but also provides basic and advanced capabilities useful for the analysis
of data from other radio, millimeter, and submillimeter telescopes.

You have in your hands the latest release of CASA. This package is under active development, and
thus there are a number of caveats and limitations for the use of this package. See the release notes
(§ 1.1) below for more information, and pay heed to the numerous ALERTs placed throughout
this reference. You can expect regular updates and patches, as well as increasing functionality.

Inside the Toolkit:
Throughout this user reference, we
will occasionally intersperse boxed-
off pointers to parts of the toolkit
that power users might want to ex-
plore.

This user reference and cookbook is a task-based walk-
through of interferometric data reduction and analysis. In
CASA, tasks represent the more streamlined operations
that a typical user would carry out. The idea for having
tasks is that they are simple to use, provide a more familiar
interface, and are easy to learn for most astronomers who
are familiar with radio interferometric data reduction (and
hopefully for novice users as well). In CASA, the tools pro-
vide the full capability of the package, and are the atomic
functions that form the basis of data reduction. These tools augment the tasks, or fill in gaps left by
tasks that are under development but not yet available. See the CASA Toolkit Manual for more
details on the tools (available from casa.nrao.edu). Note that in most cases, the tasks are Python
interface scripts to the tools, but with specific, limited access to them and a standardized interface
for parameter setting. The tasks and tools can be used together to carry out more advanced data
reduction operations.

For the moment, the audience is assumed to have some basic grasp of the fundamentals of synthesis
imaging, so details of how a radio interferometer or telescope works and why the data needs to
undergo calibration in order to make synthesis images are left to other documentation — a good

28
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place to start might be Synthesis Imaging in Radio Astronomy II (1999, ASP Conference Series
Vol. 180, eds. Taylor, Carilli & Perley).

This reference is broken down by the main phases of data analysis:

• data import, export, and selection (Chapter 2),

• examination and flagging of data (Chapter 3),

• interferometric calibration (Chapter 4),

• interferometric imaging (Chapter 5),

• image analysis (Chapter 6), and

• data and image visualization (Chapter 7).

• single dish data analysis (Chapter 8), and

• simulation (Chapter 9).

These are included for users that will be doing EVLA and ALMA telescope commissioning and
software development.

The general appendices provide more details on what’s happening under the hood of CASA, as
well as supplementary material on tasks, scripts, and relating CASA to other packages. These
appendices include:

• obtaining and installing CASA (Appendix A),

• more details about Python and CASA (Appendix B),

• a list of used models, conventions, and reference frames (Appendix C),

• a description of the CASA region format (Appendix D),

• a discussion of the Hamaker-Bregman-Sault Measurement Equation (Appendix E),

• annotated scripts for typical data reduction cases (Appendix H), and

• CASA dictionaries to AIPS, MIRIAD, and CLIC (Appendix I).

• Writing your own CASA Task (Appendix J).

The CASA User Documentation includes:

• CASA User Reference & Cookbook — this document, a task-based data analysis walk-
through and instructions;

• CASA in-line help — accessed using help in the casapy interface;
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• The CASA Toolkit Reference Manual — details on a specific task or tool does and how
to use it.

• The CASA Task Reference Manual — the information from the inline help and task
documentation, available online in HTML.

The CASA home page can be found at:

http://casa.nrao.edu

From there you can find documentation and assistance for the use of the package, including the
User Documentation. You will also find information on how to obtain the latest release and receive
user support.

There is also a CASAGuides Wiki

http://casaguides.nrao.edu

that contains helpful information on CASA startup, AIPS-to-CASA cheat sheet, example scripts
of processing your data in CASA, along with hints and tricks to best use this package.

1.0.1 Reference for Publications

If you use CASA for any of your data reduction or analysis, you may use the following reference:

McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, Astronomical Data
Analysis Software and Systems XVI (ASP Conf. Ser. 376), ed. R. A. Shaw, F. Hill, & D. J. Bell
(San Francisco, CA: ASP), 127

1.1 About This Release

ALERT
Boxes like this will bring to your
attention some of the features (or
lack thereof) in the current release
of CASA. There are also ALERT
notes in the text.

The 4.5.2 CASA version is a second patch to the 4.5.0
CASA release, which is described below, together with the
CASA 4.5.0 release notes.

We occasionally issue patches and ’monthly’ versions of
CASA. To get notified, please subscribe to the ’casa-users’
mailing list. ’Monthlies’ as well as CASA releases are
available at http://casa.nrao.edu. Releases will be an-
nounced via the ’casa-announce’ mailing list. To sub-
scribe, please visit http://casa.nrao.edu. For feedback, and help please go to the NRAO
helpdesk http://help.nrao.edu; for ALMA questions please use the ALMA helpdesk http:
//help.almascience.org.

http://casa.nrao.edu
http://casaguides.nrao.edu
http://casa.nrao.edu
http://casa.nrao.edu
http://help.nrao.edu
http://help.almascience.org
http://help.almascience.org
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Note that in its current incarnation CASA is designed to support Karl G. Janksy VLA, ALMA,
and older VLA data, as well as single dish data from ALMA as well as Nobeyama. Data from other
telescopes, be it single dish or interferometers can be imported from uvfits, FITS-IDI , or sdfits
formats into Measurements Sets (MS) or scantables in CASA. Given the variety of non-standard
fits formats, we cannot guarantee that CASA will fully support data from all telescopes. However,
efforts are made to support data formats from other facilities.

1.2 Obtaining CASA

CASA is available for the following operating systems:

• Linux

– RedHat 5 and 6 (64-bit)

• Mac OS

– Mac OS 10.9/10.10 (Maverick/Yosemite)

The above OSs are the ones that we use to test the CASA package. Other flavors of Linux may
work, too. We do not support Mac OS 10.9 or 10.10 at this stage.

The latest and previous releases can be downloaded from our CASA home page: http://casa.
nrao.edu, following the ’Obtaining CASA’ link (direct link: http://casa.nrao.edu/casa_obtaining.
shtml.

1.2.1 What’s New in Release 4.5.2

CASA 4.5.2 patch: CASA 4.5.2 is a second patch building upon CASA 4.5.1. The additional
changes are mostly affecting the ALMA pipeline, in particular to accommodate updated observing
strategies. It also fixes a bug in tclean to create a primary beam when using chanchunks, and
addresses some edge cases in plotbandpass.

CASA 4.5.1 patch: As mentioned above, the CASA 4.5.1 patch to the CASA 4.5.0 release incor-
porates a new version of the ALMA data reduction pipeline (see the ALMA pipeline group for
details). We fixed a bug in setjy that caused positional offsets when transforming solar system
ephemeris data from J2000 to ICRS. We also introduced channel chunking and memory manage-
ment improvements to tclean.

The CASA 4.5.0 release emphasized improved stability, robustness, and code refactoring. Many
bugs were fixed and development such as parallelization of the calibration steps are being intro-
duced. tclean will eventually replace clean and has underwent a period of intensive testing and
improvement.

Major feature improvements over the previous version of CASA include:

http://casa.nrao.edu
http://casa.nrao.edu
http://casa.nrao.edu/casa_obtaining.shtml
http://casa.nrao.edu/casa_obtaining.shtml
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• Imaging

– tclean is now being released, which is a first version of a new imaging task, eventually
replacing clean. tclean is still undergoing testing and improvement. It has a new,
more straightforward interface, allows more combinations of algorithms as well as new
options. tclean has also been designed to support parallel computing.

• Data examination/editing/import/export

– importasdm can now create a multi-MS (MMS) used for parallel processing

– Added support for time averaging in clip mode inside flagdata

– Added code to the importasdm task to recalculate the UVW coordinates for all fields
with attached ephemerides

– importfitsidi has a new parameter constobsid to specify if different observation IDs
should be written in separate files, as well as scanreindexgap s to specify the time gap
between scans

– plotms can now be used for read-only files

– flagdata’s summary mode now also shows a spw per field breakdown

– expanded number of methods for the msmd tool for expanded MS metadata capture
(including observation, polarization, source, field data and more)

• Calibration

– The Calibration Library can now be specified in plotms from the command line and the
GUI

– Calibration instructions can also be specified directly in the plotms callib parameter

– Delay, antpos, opac, and gaincurve caltables now work via the Cal Library

– setjy is now using the flux standard ’Perley Butler 2013’ as default

• Simulation

– seeds are now available in ia.addnoise

• Data and Image Manipulation

– mstransform can now average across fields

• Data analysis

– The chans and stokes selection parameters in image analysis tasks are now overruling
any specified selection in the region files

– imval is now also working on position-velocity images

• Single Dish

– new single dish tasks that operate on MSes are available:
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∗ a new task, tsdsmooth, is available for smoothing of spectra. The available smooth-
ing kernel is kernel = ’gaussian’

∗ a new task, tsdfit, is available to get fitting coefficients of spectral lines. The
supported fitting function is fitfunc=’gauss’ (Gaussian fitting)

– enhancements to single dish tasks those operate on MSes

∗ a new mode, maskmode=’auto’, is available in task tsdbaseline. The mode sup-
ports automatic detection of frequency ranges of baseline using a line finder

∗ a new mode, blmode=’apply’, is available in task tsdbaseline for the application
of baseline table generated by blmode=’fit’

∗ new formats, bloutput=’csv’ (comma separated values) and ’text’ (an ascii text), are
available in tsdbaseline to store fitting coefficients for each spectrum. Composite
of available bloutput formats are also supported

– a new parameter, intent, in sdimaging to support data selection by scan intent

• Performance

– Parallelized processing of the pre-imaging calibration steps is now available

• Other

– all GUIs are able to identify their CASA version number

• Experimental tasks

– cvel2 to provide the functionality of cvel based on the mstransform task

– split2 to provide the functionality of split based on the mstransform task

– hanningsmooth2 to provide the functionality of hanningsmooth based on the mstransform
task

For known issues with this release please visit the CASA webpages:
http://casa.nrao.edu/release_ki.shtml

1.3 CASA Basics — Information for First-Time Users

This section assumes that CASA has been installed on your LINUX or OSX system. See Appendix A
for instructions on how to obtain and install CASA.

1.3.1 Before Starting CASA

First, you will most likely be starting CASA running from a working directory that has your data
in it, or at least where you want your output to go. It is easiest to start from there rather than
changing directories inside casapy. ALERT: There is at least one task (plotxy) that fails if the

http://casa.nrao.edu/release_ki.shtml


CHAPTER 1. INTRODUCTION 34

path to your working directory contains spaces in its name, e.g. /users/smyers/MyTest/ is fine,
but /users/smyers/My Test/ is not! Please use our new task plotms whenever possible and we
may work on a better handling of spaces in path names.

If you have done a default installation under Linux using rpms, or on the Mac with the CASA
application, then there should be a sh script called casapy in the /usr/bin area which is in your
path. This shell will set up its environment and run the version of casapy that it points to. If this
is how you set up the system, then you need to nothing further and can run casapy.

For internal NRAO users we keep different version of CASA, the latest “casapy” release, the
“casapy-stable” “Stable” version that is more developed than the Release but without the full
documentation (and no GUI testing). We also offer the “Test” version, “casapy-test”, which is pro-
duced on a roughly weekly basis with all the latest code but it underwent much less rigorous testing.
Instructions how to run the different versions at NRAO can be found on our http://casa.nrao.edu
webpages under the “CASA at NRAO” link for the different NRAO sites.

1.3.1.1 Environment Variables

Before starting up casapy, you should set or reset any environment variables needed, as CASA
will adopt these on startup. For example, the PAGER environment variable determines how help is
displayed in the CASA terminal window (see § 1.3.8.3). The choices are less, more, and cat.

In bash, pick one of

PAGER=less
PAGER=more
PAGER=cat

followed by

export PAGER

In csh or tcsh, pick one of

setenv PAGER less
setenv PAGER more
setenv PAGER cat

The actions of these are as if you were using the equivalent Unix shell command to view the help
material. See § 1.3.8.3 for more information on these choices. We recommend using the cat option
for most users, as this works smoothly both interactively and in scripts.

Some CASA processes will work on a large number of temporary files. The OS, however, may have
a built-in limit on the number of such files. We recommend to increase the limit to > 1024. A
command like

ulimit -n 2048

should give CASA enough accessible files to run successfully.
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1.3.1.2 Where is CASA?

Note that the path to the CASA installation, which contains the scripts and data repository, will
also depend upon the installation. With a default installation under Linux this will probably be in

/usr/lib64/casapy/

If the unpacked tarball is placed somewhere else, one may add the PATH variable to include, e.g.

export PATH=$PATH:/<path>/casapy-<version>/bin

for bash and

set path = ($path /<path>/casapy-<version>/bin)

in csh shell.

In a Mac OSX default install it will likely be an application in the Applications folder.

You can find the location after initialized by looking at the CASAPATH environment variable. You
can find it within casapy by

pathname=os.environ.get(’CASAPATH’).split()[0]
print pathname

1.3.2 Starting CASA

After having run the appropriate casainit script, CASA is started by typing
casapy
on the UNIX command line, e.g.

casapy

After startup information, you should get an IPython
CASA <1>:
command prompt in the xterm window where you started CASA. CASA will take approximately 10
seconds to initialize at startup in a new working directory; subsequent startups are faster. CASA
is active when you get a
CASA <1>
prompt in the command line interface. You will also see a logger GUI appear on your Desktop
(usually near the upper left).

You also have the option of starting CASA with various logger options (see § 1.5.2.1). For example,
if you are running remotely in a terminal window without an X11 connection, or if you just do not
want to see the logger GUI, and want the logger messages to come to your terminal, do

casapy --nologger --log2term

See § 1.5.2 for information on the logger in general.
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1.3.3 Ending CASA

You can exit CASA by typing quit. This will bring up the query

Do you really want to exit ([y]/n)?

to give you a chance in case you did not mean to exit. You can also quit using %exit or CTRL-D.

If you don’t want to see the question "Do you really want to exit [y]/n?", then just type
Exit or exit and CASA will stop right then and there.

1.3.4 What happens if something goes wrong?

ALERT: Please check the CASA Home Page for Release Notes and FAQ information including
a list of known problems. If you think you have encountered an unknown problem, please consult
the CASA HelpDesk (contact information on the CASA Home Page). See also the caveats to this
Release (§ 1.1 for pointers to our policy on User Support.

First, always check that your inputs are correct; use the

help <taskname>

(§ 1.3.8.2) or

help par.<parameter name>

(§ 1.3.8.4) to review the inputs/output.

1.3.5 Aborting CASA execution

If something has gone wrong and you want to stop what is executing, then typing CTRL-C (Control
and C keys simultaneously) will usually cleanly abort the application. This will work if you are
running a task synchronously. If this does not work on your system then try CTRL-Z to put the
task or shell in the background, and then follow up with a kill -9 <PID> where you have found
the relevant casapy process ID (PID) using ps (see § 1.3.6 below).

If the problem causes CASA to crash, see the next sub-section.

See § 1.4.2 for more information on running tasks.

Alert: CTRL-C while a tasks runs can corrupt your input data file, e.g. when a scratch column is
filled while aborting. If in doubt, wait until the task has finished, delete the new files produced,
and start again.
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1.3.6 What happens if CASA crashes?

Usually, restarting casapy is sufficient to get you going again after a crash takes you out of
the Python interface. Note that there may be spawned subprocesses still running, such as the
casaviewer or the logger. These can be dismissed manually in the usual manner. After a crash,
there may also be hidden processes. You can find these by listing processes, e.g. in linux:

ps -elf | grep casa

or on MacOSX (or other BSD Unix):

ps -aux | grep casa

You can then kill these, for example using the Unix kill or killall commands. This may be
necessary if you are running remotely using ssh, as you cannot logout until all your background
processes are terminated. For example,

killall ipcontroller

or

killall Python

will terminate the most common post-crash zombies.

1.3.7 Python Basics for CASA

Within CASA, you use Python to interact with the system. This does not mean an extensive
Python course is necessary - basic interaction with the system (assigning parameters, running
tasks) is straightforward. At the same time, the full potential of Python is at the more experienced
user’s disposal. Some further details about Python, IPython, and the interaction between Python
and CASA can be found in Appendix B.

The following are some examples of helpful hints and tricks on making Python work for you in
CASA.

1.3.7.1 Variables

Python variables are set using the <parameter> = <value> syntax. Python assigns the type
dynamically as you set the value, and thus you can easily give it a nonsensical value, e.g.

vis = ’ngc5921.ms’
vis = 1
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The CASA parameter system will check types when you run a task or tool, or more helpfully when
you set inputs using inp (see below). CASA will check and protect the assignments of the global
parameters in its namespace.

Note that Python variable names are case-sensitive:

CASA <109>: Foo = ’bar’
CASA <110>: foo = ’Bar’
CASA <111>: foo
Out[111]: ’Bar’

CASA <112>: Foo
Out[112]: ’bar’

so be careful.

Also note that misspelling a variable assignment will not be noticed (as long as it is a valid Python
variable name) by the interface. For example, if you wish to set correlation=’RR’ but instead
type correlation=’RR’ you will find correlation unset and a new correlation variable set.
Command completion (see § 1.3.8.1) should help you avoid this.

1.3.7.2 Lists and Ranges

Sometimes, you need to give a task a list of indices. If these are consecutive, you can use the
Python range function to generate this list:

CASA <1>: iflist=range(4,8)
CASA <2>: print iflist
[4, 5, 6, 7]
CASA <3>: iflist=range(4)
CASA <4>: print iflist
[0, 1, 2, 3]

See Appendix B.4 for more information.

1.3.7.3 Indexes

As in C, Python indices are 0-based. For example, the first element in a list antlist would be
antlist[0]:

CASA <113>: antlist=range(5)
CASA <114>: antlist
Out[114]: [0, 1, 2, 3, 4]

CASA <115>: antlist[0]
Out[115]: 0

CASA <116>: antlist[4]
Out[116]: 4
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CASA also uses 0-based indexing internally for elements in the Measurement Set (MS – the basic
construct that contains visibility and/or single dish data; see Chapter 2). Thus, we will often talk
about Field or Antenna “ID”s which will be start at 0. For example, the first field in an MS would
have FIELD ID==0 in the MSselect syntax, and can be addressed as be indexed as field=’0’ in
most tasks, as well as by name field=’0137+331’ (assuming that’s the name of the first field).
You will see these indices in the MS summary from the task listobs.

1.3.7.4 Indentation

Python pays attention to the indentation of lines, as it uses indentation to determine the level
of nesting in loops. Be careful when cutting and pasting: if you get the wrong indentation, then
unpredictable things can happen (usually it just gives an error).

See Appendix B.3 for more information.

1.3.7.5 System shell access

If you want to access system commands from a script, use the os.system command (Appendix B.7.1).

In interactive mode, any input line beginning with a ’!’ character is passed verbatim (minus the
’!’, of course) to the underlying operating system. Also, several common commands (ls, pwd,
less) may be executed with or without the ’!’, although the cp command must use ’!’ and cd
must be executed without the ’!’. For example:

CASA <5>: !rm -r mydata.ms

Note that if you want to access a Unix environment variable, you will need to prefix with a double
$$ instead of a single $ — for example, to print the value of the $PAGER variable, you would use

CASA <6>: !echo $$PAGER

See Appendix B.7 for more information.

1.3.7.6 Executing Python scripts

You can execute Python scripts (ASCII text files containing Python or casapy commands) using
the execfile command. For example, to execute the script contained in the file myscript.py (in
the current directory), you would type

CASA <7>: execfile(’myscript.py’)

or

CASA <8>: execfile ’myscript.py’
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which will invoke the IPython auto-parenthesis feature.

NOTE: in some cases, you can use the IPython run command instead, e.g.

CASA <9>: run myscript.py

In this case, you do not need the quotes around the filename. This is most useful for re-initializing
the task parameters, e.g.

CASA <10>: run clean.last

(see § 1.4.5.8).

See Appendix B.12 for more information.

1.3.8 Getting Help in CASA

1.3.8.1 TAB key

At any time, hitting the <TAB> key will complete any available commands or variable names and
show you a list of the possible completions if there’s no unambiguous result. It will also complete
filenames in the current directory if no CASA or Python names match.

For example, it can be used to list the available functionality using minimum match; once you have
typed enough characters to make the command unique, <TAB> will complete it.

CASA <15>: cle<TAB>
clean clean.last clear clearcal clearplot clearsta

1.3.8.2 help <taskname>

Basic information on an application, including the parameters used and their defaults, can be
obtained by typing pdoc task, help task, help ’task’ or task?. The pdoc task currently
gives the cleanest documentation format with the smallest amount of object-oriented (programmer)
output. This inline help provides a one line description of the task and then lists all parameters,
a brief description of the parameter, the parameter default, an example setting the parameter and
any options if there are limited allowed values for the parameter.

For example:

Imports an arbitrary number of VLA archive-format data sets into
a casa measurement set. If more than one band is present, they
will be put in the same measurement set but in a separate spectral
window. The task will handle old style and new style VLA (after
July 2007) archive data and apply the tsys to the data and to
the weights.
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Keyword arguments:
archivefiles -- Name of input VLA archive file(s)

default: none. Must be supplied
example: archivefiles = ’AP314_A959519.xp1’
example: archivefiles=[’AP314_A950519.xp1’,’AP314_A950519.xp2’]

vis -- Name of output visibility file
default: none. Must be supplied.
example: vis=’NGC7538.ms’
Will not over-write existing ms of same name.
A backup flag-file version ’Original’ will be made in
vis.flagversions. See help flagmanager

bandname -- VLA Frequency band
default: => ’’ = all bands
example: bandname=’K’
Options: ’4’=48-96 MHz,’P’=298-345 MHz,’L’=1.15-1.75 GHz,
’C’=4.2-5.1 GHz,’X’=6.8-9.6 GHz,’U’=13.5-16.3 GHz,
’K’=20.8-25.8 GHz,’Q’=38-51 GHz

frequencytol -- Tolerance in frequency shift in making spectral windows
default: => 150000 (Hz). For Doppler shifted data, <10000 Hz may
may produce too many unnecessary spectral windows.
example: frequencytol = 1500000.0 (units = Hz)

project -- Project name to import from archive files:
default: ’’ => all projects in file
example: project=’AL519’
project = ’al519’ or AL519 will work. Do not include
leading zeros; project = ’AL0519’ will not work.

starttime -- Time after which data will be considered for importing
default: ’’ => all: Date must be included.
syntax: starttime = ’2003/1/31/05:05:23’

stoptime -- Time before which data will be considered for importing
default: ’’ => all: Date must be included.
syntax: stoptime = ’2003/1/31/08:05:23’

applytsys -- Apply data scaling and weight scaling by nominal
sensitivity (~Tsys)
default: True. Strongly recommended

autocorr -- import autocorrelations to ms
default: => False (no autocorrelations)

antnamescheme -- ’old’ or ’new’ antenna names.
default => ’new’ gives antnenna names
’VA04’ or ’EA13 for VLA telescopse 04 and 13 (EVLA)
’old’ gives names ’04’ or ’13’

keepblanks -- Should sources with blank names be filled into the data base
default => false. Do not fill
These scans are tipping scans (as of June 1, 2009) and should not
be filled in the visibility data set.

You can also get the short help for a CASA tool method by typing ’help tool.method’.

CASA <46>: help ia.subimage

Summary
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Create a (sub)image from a region of the image

Description

This function copies all or
part of the image to another on-the-fly Image tool. Both float and complex
valued images are supported.

If {\stfaf outfile} is given, the subimage is written to the specified
disk file. If {\stfaf outfile} is unset, the returned Image ool\ actually
references the input image file (i.e. that associated with the Image

ool\ to which you are applying this function). So if you deleted the
input image disk file, it would render this ool\ useless. When you
destroy this ool\ (with the done function)
the reference connection is broken.

Sometimes it is useful to drop axes of length one (degenerate axes).
Use the {\stfaf dropdeg} argument if you want to do this.

The output mask is the combination (logical OR) of the default input
\pixelmask\ (if any) and the OTF mask. Any other input \pixelmaskswill not be copied. Use function maskhandler if you
need to copy other masks too.

If the mask has fewer dimensions than the image and if the shape
of the dimensions the mask and image have in common are the same,
the mask will automatically have the missing dimensions added so
it conforms to the image.

If stretch is true and if the number of mask dimensions is less than
or equal to the number of image dimensions and some axes in the
mask are degenerate while the corresponding axes in the image are not,
the mask will be stetched in the degenerate dimensions. For example,
if the input image has shape [100, 200, 10] and the input
mask has shape [100, 200, 1] and stretch is true, the mask will be
stretched along the third dimension to shape [100, 200, 10]. However if
the mask is shape [100, 200, 2], stretching is not possible and an
error will result.

Input Parameters:
outfile Output image file name. Default is unset.
region Region of interest. Default is whole image.
mask Mask to use. See help par.mask. Default is none.
dropdeg Drop degenerate axes false
overwrite Overwrite (unprompted) pre-existing output file? false
list List informative messages to the logger true
stretch Stretch the mask if necessary and possible? false
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wantreturn Return an image analysis tool attached to the created subimage true

Example:

’’’
#
print ’ ---- subimage Ex 1 ----’
ia.maketestimage(’myfile’,overwrite=true)
im2 = ia.subimage() # a complete copy
r1 = rg.box([10,10],[30,40],[5,5]) # A strided pixel box region
im3 = ia.subimage(outfile=’/tmp/foo’, region=r1, overwrite=true)

# Explicitly named subimage
im2.done()
im3.done()
ia.close()
#
’’’

For a full list of keywords associated with the various tools, see the CASA User Reference
Manual.

1.3.8.3 help and PAGER

Your PAGER environment variable (§ 1.3.1) determines how help is displayed in the terminal window
where you start CASA. If you set your bash environment variable PAGER=less (setenv PAGER less
in csh) then typing help <taskname> will show you the help but the text will vanish and return
you to the command line when you are done viewing it. Setting PAGER=more (setenv PAGER more)
will scroll the help onto your command window and then return you to your prompt (but leaving
it on display). Setting PAGER=cat (setenv PAGER cat) will give you the more equivalent without
some extra formatting baggage and is the recommended choice.

If you have set PAGER=more or PAGER=less, the help display will be fine, but the display of
’taskname?’ will often have confusing formatting content at the beginning (lots of ESC surrounding
the text). This can be remedied by exiting casapy and doing an ’unset PAGER’ (unsetenv PAGER
in [t]csh) at the Unix command line.

You can see the current value of the PAGER environment variable with CASA by typing:

!echo $$PAGER

(note the double $$). This will show what command paging is pointed to.

1.3.8.4 help par.<parameter>

Typing help par.<parameter> provides a brief description of a given parameter <parameter>.
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CASA <46>: help par.robust
Help on function robust in module parameter_dictionary:

robust()
Brigg’s robustness parameter.

Options: -2.0 (close to uniform) to 2.0 (close to natural)

1.3.8.5 Python help

Typing help at the casapy prompt with no arguments will bring up the native Python help facility,
and give you the help> prompt for further information; hitting <RETURN> at the help prompt
returns you to the CASA prompt.

CASA <39>: help
---------> help()

Welcome to Python 2.7! This is the online help utility.

If this is your first time using Python, you should definitely check out
the tutorial on the Internet at http://docs.python.org/2.7/tutorial/.

Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules. To quit this help utility and
return to the interpreter, just type "quit".

To get a list of available modules, keywords, or topics, type "modules",
"keywords", or "topics". Each module also comes with a one-line summary
of what it does; to list the modules whose summaries contain a given word
such as "spam", type "modules spam".

help>

To exit Python’s help, just hit ENTER. Further help in working within the Python shell is given
in Appendix B.

1.4 Tasks and Tools in CASA

Originally, CASA consisted of a collection of tools, combined in the so-called toolkit. Since the
majority of prospective users is far more familiar with the concept of tasks, an effort is underway
to replace most - if not all - toolkit functionality by tasks.

While running CASA, you will have access to and be interacting with tasks, either indirectly
by providing parameters to a task, or directly by running a task. Each task has a well defined
purpose, and a number of associated parameters, the values of which are to be supplied by the
user. Technically speaking, tasks are built on top of tools - when you are running a task, you are
running tools in the toolkit, though this should be transparent.
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As more tasks are being written, and the functionality of each task is enhanced, there will be less
and less reason to run tools in the toolkit. We are working toward a system in which direct access
to the underlying toolkit is unnecessary for all standard data processing.

1.4.1 What Tasks are Available?

As mentioned in the introduction, tasks in CASA are python interfaces to the more basic toolkit.
Tasks are executed to perform a single job, such as loading, plotting, flagging, calibrating, and
imaging the data.

Basic information on tasks, including the parameters used and their defaults, can be obtained by
typing help <taskname> or <taskname>? at the CASA prompt, where <taskname> is the name
of a given task. As described above in § 1.3.8.2, help <taskname> provides a description of the
task and then lists all parameters, a brief description of the parameter, the parameter default, an
example setting the parameter and any options if there are limited allowed values for the parameter.

To see what tasks are available in CASA, use tasklist, e.g.

CASA <40>: tasklist
---------> tasklist()
Available tasks, organized by category (experimental tasks in parenthesis ()
deprecated tasks in curly brackets {}).

Import/export Information Editing Manipulation
------------------ ------------------ ------------------ ------------------
exportasdm imhead fixplanets concat
exportfits imreframe fixvis conjugatevis
exportuvfits imstat flagcmd cvel
importasdm imval flagdata fixvis
importfits listcal flagmanager hanningsmooth
importfitsidi listfits msview imhead
importmiriad listhistory plotms msmoments
importuvfits listobs mstransform
importvla listpartition partition
(importevla) listvis plotms
(importgmrt) plotms split

plotuv testconcat
vishead uvcontsub
visstat virtualconcat
(asdmsummary) vishead
(listsdm) (cvel2)
(makemask) (hanningsmooth2)

(split2)
(statwt)
(uvcontsub3)

Calibration Modeling Imaging Analysis
------------------ ------------------ ------------------ ------------------
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accum predictcomp clean imcollapse
applycal setjy deconvolve imcontsub
bandpass uvcontsub feather imfit
blcal uvmodelfit ft imhead
calstat uvsub imcontsub immath
clearcal (uvcontsub3) (boxit) immoments
delmod (csvclean) impbcor
fixplanets (tclean) impv
fluxscale (widebandpbcor) imrebin
ft {mosaic} imreframe
gaincal {widefield} imregrid
gencal imsmooth
initweights imstat
listcal imsubimage
plotants imtrans
plotbandpass imval
plotcal listvis
polcal rmfit
predictcomp slsearch
setjy specsmooth
smoothcal splattotable
uvmodelfit (specfit)
uvsub (spxfit)
wvrgcal

Visualization Simulation Single dish Utility
------------------ ------------------ ------------------ ------------------
clearplot simanalyze asap_init browsetable
imview simobserve sdaverage caltabconvert
msview (simalma) sdbaseline clearplot
plotants sdbaseline2 clearstat
plotbandpass sdcal concat
plotcal sdcal2 conjugatevis
plotms sdcoadd find
plotuv sdfit help par.parameter
viewer sdflag help taskname
(plotweather) sdflagmanager imview

sdgrid msview
sdimaging plotms
sdimprocess rmtables
sdlist startup
sdmath taskhelp
sdplot tasklist
sdreduce testconcat
sdsave toolhelp
sdscale virtualconcat
sdstat
sdtpimaging
(tsdbaseline)
(tsdcal)
(tsdfit)
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(tsdsmooth)

User defined tasks
------------------

The tasks with name in parentheses are experimental, those in curly brackets are deprecated and
will be removed in future releases. The functionality of deprecated tasks is usually available in
some other task (e.g., instead of mosaic one should use clean). In the above case, the user has
not defined any task him/herself.

Typing taskhelp provides a one line description of all available tasks.

CASA <41>: taskhelp
---------> taskhelp()
Available tasks:

accum : Accumulate incremental calibration solutions into a calibration table
applycal : Apply calibrations solutions(s) to data
asdmsummary : Summarized description of an ASDM dataset.
autoclean : CLEAN an image with automatically-chosen clean regions.
bandpass : Calculates a bandpass calibration solution
blcal : Calculate a baseline-based calibration solution (gain or bandpass)
boxit : Box regions in image above given threshold value.
browsetable : Browse a table (MS, calibration table, image)
calstat : Displays statistical information on a calibration table
caltabconvert : Convert old-style caltables into new-style caltables.
clean : Invert and deconvolve images with selected algorithm
clearcal : Re-initializes the calibration for a visibility data set
clearplot : Clear the matplotlib plotter and all layers
clearstat : Clear all autolock locks
concat : Concatenate several visibility data sets.
conjugatevis : Change the sign of the phases in all visibility columns.
csvclean : This task does an invert of the visibilities and
deconvolve
in the image plane.
cvel : regrid an MS to a new spectral window / channel structure or frame
cvel2 : Regrid an MS or MMS to a new spectral window, channel structure or frame
deconvolve : Image based deconvolver
delmod : Deletes model representations in the MS
exportasdm : Convert a CASA visibility file (MS) into an ALMA or EVLA Science Data Model
exportfits : Convert a CASA image to a FITS file
exportuvfits : Convert a CASA visibility data set to a UVFITS file:
feather : Combine two images using their Fourier transforms
find : Find string in tasks, task names, parameter names:
fixplanets : Changes FIELD and SOURCE table entries based on
user-provided
direction or POINTING table, optionally fixes the UVW coordinates
fixvis : Recalculates (u, v, w) and/or changes Phase Center
flagcmd : Flagging task based on batches of flag-commands
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flagdata : All-purpose flagging task based on data-selections
and flagging
modes/algorithms.
flagmanager : Enable list, save, restore, delete and rename flag version files.
fluxscale : Bootstrap the flux density scale from standard calibrators
ft : Insert a source model a visibility set:
gaincal : Determine temporal gains from calibrator observations
gencal : Specify Calibration Values of Various Types
hanningsmooth : Hanning smooth frequency channel data to remove Gibbs ringing
hanningsmooth2 : Hanning smooth frequency channel data to remove Gibbs ringing
imcollapse : Collapse image along one axis, aggregating pixel values along that axis.
imcontsub : Estimates and subtracts continuum emission from an image cube
imfit : Fit one or more elliptical Gaussian components on an image region(s)
imhead : List, get and put image header parameters
immath : Perform math operations on images
immoments : Compute moments from an image
impbcor : Construct a primary beam corrected image from an
image and
a primary beam pattern.
importasdm : Convert an ALMA Science Data Model observation into a
CASA visibility
file (MS) or single-dish data format (Scantable)
importevla : Convert an Science Data Model observation into a CASA Measurement Set
importfits : Convert an image FITS file into a CASA image
importfitsidi : Convert a FITS-IDI file to a CASA visibility data set
importgmrt : Convert a UVFITS file to a CASA visibility data set
importmiriad : Convert a Miriad visibility file into a CASA MeasurementSet
importuvfits : Convert a UVFITS file to a CASA visibility data set
importvla : Import VLA archive file(s) to a measurement set
impv : Construct a position-velocity image by choosing two
points
in the direction plane.
imrebin : Rebin an image by the specified integer factors
imreframe : Change the frame in which the image reports its spectral values
imregrid : regrid an image onto a template image
imsmooth : Smooth an image or portion of an image
imstat : Displays statistical information from an image or image region
imsubimage : Create a (sub)image from a region of the image
imtrans : Reorder image axes
imval : Get the data value(s) and/or mask value in an image.
imview : View an image
initweights : Initializes weight information in the MS
listcal : List antenna gain solutions
listfits : List the HDU and typical data rows of a fits file:
listhistory : List the processing history of a dataset:
listobs : List the summary of a data set in the logger or in a file
listpartition : List the summary of a multi-MS data set in the logger or in a file
listsdm : Lists observation information present in an SDM directory.
listvis : List measurement set visibilities.
makemask : Makes and manipulates image masks
mosaic : Create a multi-field deconvolved image with selected algorithm
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msmoments : Compute moments from an MS
mstransform : Split the MS, combine/separate/regrid spws and do
channel
and time averaging
msuvbin : grid the visibility data onto a defined uniform grid
(in the form of an ms);
multiple MS’s can be done onto the same grid
msview : View a visibility data set
partition : Task to produce Multi-MSs using parallelism
pclean : Invert and deconvolve images with parallel engines
plotants : Plot the antenna distribution in the local reference frame:
plotbandpass : Makes detailed plots of Tsys and bandpass solutions.
plotcal : An all-purpose plotter for calibration results
plotms : A plotter/interactive flagger for visibility data.
plotuv : Plot the baseline distribution
plotweather : Plot elements of the weather table; estimate opacity.
polcal : Determine instrumental polarization calibrations
predictcomp : Make a component list for a known calibrator
rmfit : Calculate rotation measure.
rmtables : Remove tables cleanly, use this instead of rm -rf
sdaverage : ASAP SD task: averaging and smoothing of spectra
sdbaseline : Fit/subtract a spectral baseline
sdbaseline2 : Fit/subtract a spectral baseline
sdcal : ASAP SD calibration task
sdcal2 : ASAP SD calibration task
sdcoadd : Coadd multiple scantables into one
sdfit : Fit a spectral line
sdflag : ASAP SD spectral spectral/row flagging task
sdflagmanager : ASAP SD task to manipulate flag version files
sdgrid : SD gridding task
sdimaging : SD task: imaging for total power and spectral data
sdimprocess : Task for single-dish image processing
sdlist : list summary of single dish data
sdmath : ASAP SD task for simple arithmetic of spectra
sdplot : ASAP SD plotting task
sdreduce : ASAP SD task: do sdcal, sdaverage, and sdbaseline in one task
sdsave : Save the sd spectra in various format
sdscale : Scale the sd spectra
sdstat : list statistics of spectral
sdtpimaging : SD task: do a simple calibration (baseline
subtraction) and
imaging for total power data
setjy : Fills the model column with the visibilities of a calibrator
simalma : Simulation task for ALMA
simanalyze : image and analyze measurement sets created with simobserve
simobserve : visibility simulation task
slsearch : Search a spectral line table.
smoothcal : Smooth calibration solution(s) derived from one or more sources:
specfit : Fit 1-dimensional gaussians and/or polynomial models
to an image or
image region
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specsmooth : Smooth an image region in one dimension
splattotable : Convert a downloaded Splatalogue spectral line list to a casa table.
split : Create a visibility subset from an existing visibility set
split2 : Create a visibility subset from an existing visibility set
spxfit : Fit a 1-dimensional model(s) to an image(s) or region
for
determination of spectral index.
ssoflux : Fills the model column with the visibilities of a calibrator
statwt : Reweight visibilities according to their scatter (Experimental)
tclean : Radio Interferometric Image Reconstruction
testconcat : Concatenate the subtables of several visibility data
sets,
not the MAIN bulk data.
tsdbaseline : Fit/subtract a spectral baseline
tsdcal : MS SD calibration task
tsdfit : Fit a spectral line
tsdsmooth : Smooth spectral data
uvcontsub : Continuum fitting and subtraction in the uv plane
uvcontsub3 : An experimental clone of uvcontsub
uvmodelfit : Fit a single component source model to the uv data
uvsub : Subtract/add model from/to the corrected visibility data.
viewer : View an image or visibility data set
virtualconcat : Concatenate several visibility data sets into a multi-MS
vishead : List, summary, get, and put metadata in a measurement set
visstat : Displays statistical information from a Measurement
Set,
or from a Multi-MS
widebandpbcor : Wideband PB-correction on the output of the MS-MFS algorithm
widefield : Wide-field imaging and deconvolution with selected algorithm
wvrgcal : Generate a gain table based on Water Vapour Radiometer data

Typing startup will provide the startup page displayed when entering CASA. The startup screen
lists the various options to obtain help within CASA.

CASA <26>: startup
---------> startup()
___________________________________________________________________

For help use the following commands:
tasklist - Task list organized by category
taskhelp - One line summary of available tasks
help taskname - Full help for task
toolhelp - One line summary of available tools
help par.parametername - Full help for parameter name

___________________________________________________________________
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1.4.2 Running Tasks and Tools

Tools are functions linked to the Python interface which must be called by name with arguments.
Tasks have higher-level capabilities than tools. Tasks require input parameters which maybe be
specified when you call the task as a function, or be set as parameters in the interface. A task, like
a tool, is a function under Python and may be written in Python, C, or C++ (the CASA toolkit
is made up of C++ functions).

There are two distinct ways to run tasks. You can either set the global CASA parameters relevant
to the task and tell the task to “go”, or you can call the task as a function with one or more
arguments specified. These two invocation methods differ in whether the global parameter values
are used or not.

For example,

default(’plotxy’)
vis=’ngc5921.ms’
xaxis=’channel’
yaxis=’amp’
datacolumn=’data’
go

will execute plotxy with the set values for the parameters (see § 1.4.5). Instead of using go
command (§ 1.4.5.3) to invoke the task, you can also call the task with no arguments, e.g.

default(’plotxy’)
vis=’ngc5921.ms’
xaxis=’channel’
yaxis=’amp’
datacolumn=’data’
plotxy()

which will also use the global parameter values.

Second, one may call tasks and tools by name with parameters set on the same line. Parameters
may be set either as explicit <parameter>=<value> arguments, or as a series of comma delimited
<value>s in the correct order for that task or tool. Note that missing parameters will use the
default values for that task. For example, the following are equivalent:

# Specify parameter names for each keyword input:
plotxy(vis=’ngc5921.ms’,xaxis=’channel’,yaxis=’amp’,datacolumn=’data’)

# when specifying the parameter name, order doesn’t matter, e.g.:
plotxy(xaxis=’channel’,vis=’ngc5921.ms’,datacolumn=’data’,yaxis=’amp’)

# use parameter order for invoking tasks
plotxy(’ngc5921.ms’,’channel’,’amp’,’data’)

This non-use of globals when calling as a function is so that robust scripts can be written. One
need only cut-and-paste the calls and need not worry about the state of the global variables or
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what has been run previously. It is also more like the standard behavior of function calls in Python
and other languages.

Tools can only be called in this second manner by name, with arguments (§ 1.4.6). Tools never use
the global parameters and the related mechanisms of inp and go.

1.4.2.1 Aborting Synchronous Tasks

If you are running CASA tasks synchronously, then you can usually use CTRL-C to abort execution
of the task. If this does not work, try CTRL-Z followed by a kill. See § 1.3.5 for more on these
methods to abort CASA execution.

You may have to quit and restart CASA after an abort, as the internal state can get mixed up.

1.4.3 Getting Return Values

Some tasks and tools return a record (usually a Python dictionary) to the interface. For example,
the imstat task (§ 6.9) returns a dictionary with the image statistics in it. To catch these return
values into a Python variable, you MUST assign that variable to the task call, e.g.

xstat = imstat(’ngc5921.clean.image’)

or

default(’imstat’)
imagename = ’ngc5921.clean.image’
xstat = imstat()

Note that tools that return values work in the same way (§ 1.4.6).

You can print or use the return value in Python for controlling scripts. For example,

CASA <1>: xstat = imstat(’ngc5921.clean.image’)
CASA <2>: xstat
Out[2]:

{’blc’: array([0, 0, 0, 0]),
’blcf’: ’15:24:08.404, +04.31.59.181, I, 1.41281e+09Hz’,
’flux’: array([ 4.15292207]),
’max’: array([ 0.05240594]),
’maxpos’: array([134, 134, 0, 38]),
’maxposf’: ’15:21:53.976, +05.05.29.998, I, 1.41374e+09Hz’,
’mean’: array([ 1.62978083e-05]),
’medabsdevmed’: array([ 0.00127287]),
’median’: array([ -1.10467618e-05]),
’min’: array([-0.0105249]),
’minpos’: array([160, 1, 0, 30]),
’minposf’: ’15:21:27.899, +04.32.14.923, I, 1.41354e+09Hz’,
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’npts’: array([ 3014656.]),
’quartile’: array([ 0.00254587]),
’rms’: array([ 0.00201818]),
’sigma’: array([ 0.00201811]),
’sum’: array([ 49.1322855]),
’sumsq’: array([ 12.27880404]),
’trc’: array([255, 255, 0, 45]),
’trcf’: ’15:19:52.390, +05.35.44.246, I, 1.41391e+09Hz’}
CASA <3>: myrms = xstat[’rms’][0]
CASA <4>: print 10.0*myrms
0.0201817648485

If you do not catch the return variable, it will be lost

imstat(’ngc5921.clean.image’)

or

default(’imstat’)
imagename = ’ngc5921.clean.image’
imstat()

and spewed to terminal. Note that go will trap and lose the return value, e.g.

default(’imstat’)
imagename = ’ngc5921.clean.image’
go

will not dump the return to the terminal either.

1.4.4 Running Tasks Asynchronously

By default, most tasks run synchronously in the foreground. Many tasks, particularly those that
can take a long time to execute, have the async parameter. This allows the user to send the task
to the background for execution.

1.4.5 Setting Parameters and Invoking Tasks

Inside the Toolkit:
In the current version of CASA,
you cannot use the task parameter
setting features, such as the inp,
default, or go commands, for the
tools.

One can set parameters for tasks (but not for tools) by
performing the assignment within the CASA shell and then
inspecting them using the inp command:

CASA <30>: default(bandpass)
CASA <31>: vis = ’ngc5921.demo.ms’
CASA <32>: caltable = ’ngc5921.demo.bcal’
CASA <33>: field = ’0’
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CASA <34>: refant = ’15’
CASA <35>: inp(’bandpass’)
# bandpass :: Calculates a bandpass calibration solution
vis = ’ngc5921.demo.ms’ # Name of input visibility file
caltable = ’ngc5921.demo.bcal’ # Name of output gain calibration

# table
field = ’0’ # Select field using field id(s) or

# field name(s)
spw = ’’ # Select spectral window/channels
intent = ’’ # Select observing intent
selectdata = True # Other data selection parameters

timerange = ’’ # Select data based on time range
uvrange = ’’ # Select data within uvrange (default

# units meters)
antenna = ’’ # Select data based on antenna/baseline
scan = ’’ # Scan number range
observation = ’’ # Select by observation ID(s)
msselect = ’’ # Optional complex data selection

# (ignore for now)

solint = ’inf’ # Solution interval in time[,freq]
combine = ’scan’ # Data axes which to combine for solve

# (obs, scan, spw, and/or field)
refant = ’15’ # Reference antenna name(s)
minblperant = 4 # Minimum baselines _per antenna_

# required for solve
minsnr = 3.0 # Reject solutions below this SNR (only

# applies for bandtype = B)
solnorm = False # Normalize average solution amplitudes

# to 1.0
bandtype = ’B’ # Type of bandpass solution (B or

# BPOLY)
fillgaps = 0 # Fill flagged solution channels by

# interpolation

smodel = [] # Point source Stokes parameters for
# source model.

append = False # Append solutions to the (existing)
# table

docallib = False # Use callib or traditional cal apply
# parameters

gaintable = [] # Gain calibration table(s) to apply on
# the fly

gainfield = [] # Select a subset of calibrators from
# gaintable(s)

interp = [] # Interpolation mode (in time) to use
# for each gaintable

spwmap = [] # Spectral windows combinations to form
# for gaintables(s)

parang = False # Apply parallactic angle correction
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See § 1.4.5.4 below for more details on the use of the inputs
command.

All task parameters have global scope within CASA: the
parameter values are common to all tasks and also at the
CASA command line. This allows the convenience of not
changing parameters that are shared between tasks but does require care when chaining together
sequences of task invocations (to ensure proper values are provided).

If you want to reset the input keywords for a single task, use the default command (§ 1.4.5.2).
For example, to set the defaults for the bandpass task, type:

CASA <30>: default(’bandpass’)

as we did above.

To inspect a single parameter value just type it at the command line. Continuing the above example:

CASA <36>: combine
Out[14]: ’scan’

CASA parameters are just Python variables.

Parameters for a given task can be saved by using the saveinputs command (see § 1.4.5.5) and
restored using the execfile ’<filename>’ command. Note that if the task is successfully exe-
cuted, then a <taskname>.last file is created in the working directory containing the parameter
values (see § 1.4.5.8).

We now describe the individual CASA task parameter interface commands and features in more
detail.

1.4.5.1 The scope of parameters in CASA

Advanced Tip
By default, the scope of CASA
parameters is global, as stated
here. However, if you call a
task as a function with one or
more arguments specified, e.g.
task(arg1=val1,...), then
non-specified parameters will be
defaulted and no globals used.
This makes scripting more robust.
Tasks DO NOT change the value of
globals.

All task parameters have global scope within CASA: the
parameter values are common to all tasks and also at the
CASA command line. This allows the convenience of not
changing parameters that are shared between tasks but
does require care when chaining together sequences of task
invocations (to ensure proper values are provided). Tasks
DO NOT change the values of the global parameters, nor
does the invocation of tasks using the functional call with
arguments change the globals.

This does mean that unless you do an explicit default
of the task (§ 1.4.5.2), previously set values may be unex-
pectedly used if you do not inspect the inp carefully. For
example, good practice is:
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default(’imhead’)
imagename = ’ngc5921.demo.cleanimg.image’
mode = ’list’
imhead()

If you supply the task call with arguments, then these will
be used for the values of those parameters (see above). However, if some but not all arguments
are supplied, then those parameters not given as arguments will default and NOT use the current
global values. Thus,

imhead(’ngc5921.demo.cleanimg.image’,mode=’list’)

will reproduce the above.

1.4.5.2 The default Command

Each task has a special set of default parameters defined for its parameters. You can use the
default command to reset the parameters for a specified task (or the current task as defined by
the taskname variable) to their default.

Important Note: The default command resets the values of the task parameters to a set of
“defaults” as specified in the task code. Some defaults are blank strings ’’ or empty lists [],
others are specific numerical values, strings, or lists. It is important to understand that just setting
a string parameter to an empty string ’’ is not setting it to its default! Some parameters do not
have a blank as an allowed value. See the help for a particular task to find out its default. If ’’
is the default or an allowed value, it will say so explicitly.

For example, suppose we have been running CASA on a particular dataset, e.g.

CASA <40>: inp clean
---------> inp(’clean’)
# clean :: Deconvolve an image with selected algorithm
vis = ’ngc5921.demo.src.split.ms.contsub’ # name of input visibility file
imagename = ’ngc5921.demo.cleanimg’ # Pre-name of output images
field = ’0’ # Field Name
spw = ’’ # Spectral windows:channels: ’’ is all
selectdata = False # Other data selection parameters
mode = ’channel’ # Type of selection (mfs, channel, velocity, frequency)

nchan = 46 # Number of channels (planes) in output image
start = 5 # first input channel to use
width = 1 # Number of input channels to average
interpolation = ’nearest’ # Spectral interpolation (nearest, linear, cubic)

niter = 6000 # Maximum number of iterations
...

and now we wish to switch to a different one. We can reset the parameter values using default:
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CASA <41>: default
---------> default()

CASA <42>: inp
---------> inp()
# clean :: Deconvolve an image with selected algorithm
vis = ’’ # name of input visibility file
imagename = ’’ # Pre-name of output images
field = ’’ # Field Name
spw = ’’ # Spectral windows:channels: ’’ is all
selectdata = False # Other data selection parameters
mode = ’mfs’ # Type of selection (mfs, channel, velocity, frequency)
niter = 500 # Maximum number of iterations
...

It is good practice to use default before running a task if you are unsure what state the CASA
global variables are in.

ALERT: You currently can only reset ALL of the parameters for a given task to their defaults. In
an upcoming update we will allow the default command to take a second argument with a specific
parameter to default its value.

1.4.5.3 The go Command

You can execute a task using the go command, either explicitly

CASA <44>: go listobs
---------> go(listobs)
Executing: listobs()
...

or implicitly if taskname is defined (e.g. by previous use of default or inp)

CASA <45>: taskname = ’clean’
CASA <46>: go
---------> go()
Executing: clean()
...

You can also execute a task simply by typing the taskname.

CASA <46>: clean
---------> clean()
Executing: clean()
...

The go command can also be used to launch a different task without changing the current taskname,
without disrupting the inp process on the current task you are working on. For example
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default ’gaincal’ # set current task to gaincal and default
vis = ’n5921.ms’ # set the working ms
... # set some more parameters
go listobs # launch listobs w/o changing current task
inp # see the inputs for gaincal (not listobs!)

ALERT: Doing go listobs(vis=’foo.ms’) will currently change the taskname, and will change
vis, which might not be what is desired.

1.4.5.4 The inp Command

You can set the values for the parameters for tasks (but currently not for tools) by performing the as-
signment within the CASA shell and then inspecting them using the inp command. This command
can be invoked in any of three ways: via function call inp(’<taskname>’) or inp(<taskname>),
without parentheses inp ’<taskname>’ or inp <taskname>, or using the current taskname vari-
able setting with inp. For example,

CASA <1>: inp(’clean’)
...
CASA <2>: inp ’clean’
----------> inp(’clean’)
...
CASA <3>: inp(clean)
...
CASA <4>: inp clean
----------> inp(clean)
...
CASA <5>: taskname = ’clean’
CASA <6>: inp
----------> inp()

all do the same thing.

When you invoke the task inputs via inp, you see a list of the parameters, their current values, and
a short description of what that parameters does. For example, starting from the default values,

CASA <18>: inp(’clean’)
# clean :: Deconvolve an image with selected algorithm
vis = ’’ # name of input visibility file
imagename = ’’ # Pre-name of output images
field = ’’ # Field Name
spw = ’’ # Spectral windows:channels: ’’ is all
selectdata = False # Other data selection parameters
mode = ’mfs’ # Type of selection (mfs, channel, velocity, frequency)
niter = 500 # Maximum number of iterations
gain = 0.1 # Loop gain for cleaning
threshold = ’0.0mJy’ # Flux level to stop cleaning. Must include units
psfmode = ’clark’ # method of PSF calculation to use during minor cycles
imagermode = ’’ # Use csclean or mosaic. If ’’, use psfmode
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multiscale = [] # multi-scale deconvolution scales (pixels)
interactive = False # use interactive clean (with GUI viewer)
mask = [] # cleanbox(es), mask image(s), and/or region(s)
imsize = [256, 256] # x and y image size in pixels
cell = [’1.0arcsec’, ’1.0arcsec’] # x and y cell size. default unit arcsec
phasecenter = ’’ # Image phase center: position or field index
restfreq = ’’ # rest frequency to assign to image (see help)
stokes = ’I’ # Stokes params to image (eg I,IV, QU,IQUV)
weighting = ’natural’ # Weighting of uv (natural, uniform, briggs, ...)
uvtaper = False # Apply additional uv tapering of visibilities.
modelimage = ’’ # Name of model image(s) to initialize cleaning
restoringbeam = [’’] # Output Gaussian restoring beam for CLEAN image
pbcor = False # Output primary beam-corrected image
minpb = 0.1 # Minimum PB level to use

Figure 1.1 shows how this will look to you on your terminal. Note that some parameters are in
boldface with a gray background. This means that some values for this parameter will cause it to
expand, revealing new sub-parameters to be set.

Figure 1.1: Screen shot of the default CASA inputs for task clean.

CASA uses color and font to indicate different properties of parameters and their values:

Parameter and Values in CASA inp
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Text Font Text Color Highlight Indentation Meaning
Parameters:

plain black none none standard parameter
bold black grey none expandable parameter
plain green none yes sub-parameter

Values:
plain black none none default value
plain blue none none non-default value
plain red none none invalid value

Figure 1.2 shows what happens when you set some of the clean parameters to non-default values.
Some have opened up sub-parameters, which can now be seen and set. Figure 1.3 shows what
happens when you set a parameter, in this case vis and mode, to an invalid value. Its value
now appears in red. Reasons for invalidation include incorrect type, an invalid menu choice, or a
filename that does not exist. For example, since vis expects a filename, it will be invalidated (red)
if it is set to a non-string value, or a string that is not the name of a file that can be found. The
mode=’happy’ is invalid because it’s not a supported choice (’mfs’, ’channel’, ’velocity’, or
’frequency’).

Figure 1.2: The clean inputs after setting values away from their defaults (blue text). Note that
some of the boldface ones have opened up new dependent sub-parameters (indented and green).
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Figure 1.3: The clean inputs where one parameter has been set to an invalid value. This is drawn
in red to draw attention to the problem. This hapless user probably confused the ’hogbom’ clean
algorithm with Harry Potter.

1.4.5.5 The saveinputs Command

The saveinputs command will save the current values of a given task parameters to a Python
(plain ascii) file. It can take up to two arguments, e.g.

saveinputs(taskname, outfile)

The first is the usual taskname parameter. The second is the name for the output Python file. If
there is no second argument, for example,

saveinputs(’clean’)

a file with name <taskname>.saved (in this case ’clean.saved’ will be created or overwritten if
extant. If invoked with no arguments, e.g.

saveinputs

it will use the current values of the taskname variable (as set using inp <taskname> or default
<taskname>). You can also use the taskname global parameter explicitly,

saveinputs(taskname, taskname+’_1.save’)
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For example, starting from default values

CASA <1>: default(’listobs’)
CASA <2>: vis=’ngc5921.demo.ms’
CASA <3>: saveinputs
CASA <4>: !more ’listobs.saved’
taskname = "listobs"
vis = "ngc5921.demo.ms"
selectdata = True
spw = ""
field = ""
antenna = ""
uvrange = ""
timerange = ""
correlation = ""
scan = ""
intent = ""
feed = ""
array = ""
observation = ""
verbose = True
listfile = ""
#listobs(vis="ngc5921.demo.ms",selectdata=True,spw="",field="",
antenna="",uvrange="",timerange="",correlation="",scan="",intent="",
feed="",array="",observation="",verbose=True,listfile="")

To read these back in, use the Python execfile command. For example,

CASA <5>: execfile(’listobs.saved’)

and we are back.

An example save to a custom named file:

CASA <6>: saveinputs(’listobs’,’ngc5921_listobs.par’)

You can also use the CASA tget command (see § 1.4.5.6 below) instead of the Python execfile
to restore your inputs.

1.4.5.6 The tget Command

The tget command will recover saved values of the inputs of tasks. This is a convenient alternative
to using the Python execfile command (see above).

Typing tget without a taskname will recover the saved values of the inputs for the current task as
given in the current value of the taskname parameter.
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Adding a task name, e.g. tget <taskname> will recover values for the specified task. This is done
by searching for 1) a <taskname>.last file (see § 1.4.5.8 below), then for 2) a <taskname>.saved
file (see § 1.4.5.5 above), and then executing the Python in these files.

For example,

default(’gaincal’) # set current task to gaincal and default
tget # read saved inputs from gaincal.last (or gaincal.saved)
inp # see these inputs!
tget bandpass # now get from bandpass.last (or bandpass.saved)
inp # task is now bandpass, with recovered inputs

1.4.5.7 The tput Command

The tput command will save the current parameter values of a task to its <taskname>.last file.
This is a shorthand to saveinputs and is a counterpart to tget.

Typing tput without a taskname will save the values of the inputs for the current task as given in
the current value of the taskname parameter.

Adding a task name, e.g. tget <taskname> will save the values for the specified task.

For example,

default(’gaincal’) # set current task to gaincal and default
tget # read saved inputs from gaincal.last (or gaincal.saved)
inp # see these inputs!
vis = ’new.ms’ # change the vis parameter
tput # save back to the gaincal.last file for later use

1.4.5.8 The .last file

Whenever you successfully execute a CASA task, a Python script file called <taskname>.last will
be written (or over-written) into the current working directory. For example, if you ran the listobs
task as detailed above, then

CASA <14>: vis = ’ngc5921.ms’

CASA <15>: verbose = True

CASA <16>: listobs()

CASA <17>: !more ’listobs.last’
IPython system call: more listobs.last
taskname = "listobs"
vis = "ngc5921.ms"
verbose = True
listfile = ""
#listobs(vis="ngc5921.ms",verbose=False,listfile="")
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You can restore the parameter values from the save file using

CASA <18>: execfile(’listobs.last’)

or

CASA <19>: run listobs.last

Note that the .last file in generally not created until the task actually finished (successfully), so
it is often best to manually create a save file beforehand using the saveinputs command if you are
running a critical task that you strongly desire to have the inputs saved for.

1.4.6 Tools in CASA

The CASA toolkit is the foundation of the functionality in the package, and consists of a suite of
functions that are callable from Python. The tools are used by the tasks, and can be used by
advanced users to perform operations that are not available through the tasks.

It is beyond the scope of this reference to describe the toolkit in detail. Occasionally, examples will
be given that utilize the tools (e.g. § 6.25). In short, tools are always called as functions, with any
parameters that are not to be defaulted given as arguments. For example:

ia.open(’ngc5921.chan21.clean.cleanbox.mask’)
ia.calcmask(’"ngc5921.chan21.clean.cleanbox.mask">0.5’,’mymask’)
ia.summary()
ia.close()

uses the image tool (ia) to turn a clean mask image into an image mask. Tools never use the
CASA global parameters.

To find what tools are available, use the toolhelp command:

CASA <4>: toolhelp
--------> toolhelp()

Available tools:

af : Agent flagger utilities
at : Juan Pardo ATM library
ca : Calibration analysis utilities
cb : Calibration utilities
cl : Component list utilities
cp : Cal solution plotting utilities
cs : Coordinate system utilities
cu : Class utilities
dc : Deconvolver utilities
fi : Fitting utilities
fn : Functional utilities
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ia : Image analysis utilities
im : Imaging utilities
lm : linear mosaic
me : Measures utilities
ms : MeasurementSet (MS) utilities
msmd : MS metadata accessors
mt : MS transformer utilities
qa : Quanta utilities
pm : PlotMS utilities
po : Imagepol utilities
rg : Region manipulation utilities
sl : Spectral line import and search
sm : Simulation utilities
tb : Table utilities (selection, extraction, etc)
tp : Table plotting utilities
vp : Voltage pattern/primary beam utilities
---
pl : pylab functions (e.g., pl.title, etc)
sd : Single dish utilities
---

You can find much more information about the toolkit in the CASA User Reference Manual:

http://casa.nrao.edu/docs/casaref/CasaRef.html

1.5 Getting the most out of CASA

There are some other general things you should know about using CASA in order to make things
go smoothly during your data reduction.

1.5.1 Your command line history

Your command line history is automatically maintained and stored as ipython.log in your local di-
rectory . This file can be edited and re-executed as appropriate using the execfile ’<filename>’
feature.

You can also use the “up-arrow” and “down-arrow” keys for command line recall in the casapy
interface. If you start typing text, and then use “up-arrow”, you will navigate back through
commands matching what you typed.

1.5.2 Logging your session

The output from CASA commands is sent to the file casapy-YYYYMMDD-HHMMSS.log in your local
directory, where YYYYMMDD-HHMMSS are the UT date and time when CASA was started up.
New starts of CASA create new log files.

http://casa.nrao.edu/docs/casaref/CasaRef.html
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Figure 1.4: The CASA Logger GUI window under Linux. Note that under MacOSX a stripped
down logger will instead appear as a Console.

The output contained in casapy-YYYYMMDD-HHMMSS.log is also displayed in a separate window
using the casalogger. Generally, the logger window will be brought up when casapy is started. If
you do not want the logger GUI to appear, then start casapy using the --nologger option,

casapy --nologger

which will run CASA in the terminal window. See § 1.5.2.1 for more startup options.

ALERT: Due to problems with Qt under MacOSX, we had to replace the GUI qtcasalogger with
a special stripped down one that uses the Mac Console. This still has the important capabilities
such as showing the messages and cut/paste. The following description is for the Linux version
and thus should mostly be disregarded on OSX. On the Mac, you treat this as just another console
window and use the usual mouse and hot-key actions to do what is needed.

The CASA logger window for Linux is shown in Figure 1.4. The main feature is the display area
for the log text, which is divided into columns. The columns are:

• Time — the time that the message was generated. Note that this will be in local computer
time (usually UT) for casapy generated messages, and may be different for user generated
messages;

• Priority — the Priority Level (see below) of the message;

• Origin — where within CASA the message came from. This is in the format Task::Tool::Method
(one or more of the fields may be missing depending upon the message);

• Message — the actual text.

The casalogger GUI has a range of features, which include:
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Figure 1.5: Using the Search facility in the casalogger. Here we have specified the string ’apply’
and it has highlighted all instances in green.

• Search — search messages by entering text in the Search window and clicking the search
icon. The search currently just matches the exact text you type anywhere in the message.
See Figure 1.5 for an example.

• Filter — a filter to sort by message priority, time, task/tool of origin, and message contents.
Enter text in the Filter window and click the filter icon to the right of the window. Use the
pull-down at the left of the Filter window to choose what to filter. The matching is for the
exact text currently (no regular expressions). See Figure 1.6 for an example.

• View — show and hide columns (Time, Priority, Origin, Message) by checking boxes under
the View menu pull-down. You can also change the font here.

• Insert Message — insert additional comments as “notes” in the log. Enter the text into
the “Insert Message” box at the bottom of the logger, and click on the Add (+) button, or
choose to enter a longer message. The entered message will appear with a priority of “NOTE”
with the Origin as your username. See Figure 1.7 for an example. ALERT: This message
currently will not be inserted into the correct (or user controllable) order into the log.

• Copy — left-click on a row, or click-drag a range of rows, or click at the start and shift click at
the end to select. Use the Copy button or Edit menu Copy to put the selected rows into the
clipboard. You can then (usually) paste this where you wish. ALERT: this does not work
routinely in the current version. You are best off going to the casapy-YYYYMMDD-HHMMSS.log
file if you want to grab text.

• Open — There is an Open function in the File menu, and an Open button, that will allow
you to load old casalogger files.

Other operations are also possible from the menu or buttons. Mouse “flyover” will reveal the
operation of buttons, for example.
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Figure 1.6: Using the casalogger Filter facility. The log output can be sorted by Priority, Time,
Origin, and Message. In this example we are filtering by Origin using ’clean’, and it now shows
all the log output from the clean task.

It is possible to change the file that the logging is directed to. Per default it is ’casapy-YYYYMMDD-
HHMMSS.log’. But starting CASA with the option --logfile

casapy --logfile otherfile.log

will redirect the output of the logger to the file ’otherfile.log’ (see also Sect. 1.5.2.1). The log file
can also be changed during a CASA session. Type

CASA <15>: casalog.setlogfile(’otherfile.log’)

and you will redirect the output to the ’otherfile.log’ file. However, the logger GUI will still be
monitoring the previous ’casapy-YYYYMMDD-HHMMSS.log’ file. To change it to the new file, go
on File - Open and select the new log file, in our case ’otherfile.log’.

1.5.2.1 Startup options for the logger

One can specify logger options at the startup of casapy on the command line:

casapy <logger option>

The options are described in Appendix A.3. For example, to not bring up a GUI but send the
message to your terminal, do

casapy --nologger --log2term
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Figure 1.7: CASA Logger - Insert facility: The log output can be augmented by adding notes or
comments during the reduction. The file should then be saved to disk to retain these changes.

while

casapy --logfile mynewlogfile.log

will start casapy with logger messages going to the file mynewlogfile.log.

1.5.2.2 Setting priority levels in the logger

Logger messages are assigned a Priority Level when generated within CASA. The current levels of
Priority are:

1. SEVERE — errors;

2. WARN — warnings;

3. INFO — basic information every user should be aware of or has requested;

4. INFO1 — information possibly helpful to the user;

5. INFO2 — details the power user might want to see;

6. INFO3 — even more details;

7. INFO4 — lowest level of non-debugging information;

8. DEBUGGING — most “important” debugging messages;

9. DEBUG1 — more details;
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10. DEBUG2 — lowest level of debugging messages.

The “debugging” levels are intended for the developers use.

Inside the Toolkit:
The casalog tool can be used to con-
trol the logging. In particular, the
casalog.filter method sets the
priority threshold. This tool can also
be used to change the output log file,
and to post messages into the logger.

There is a threshold for which these messages are writ-
ten to the casapy-YYYYMMDD-HHMMSS.log file and are thus
visible in the logger. By default, only messages at level
INFO and above are logged. The user can change the
threshold using the casalog.filter method. This takes
a single string argument of the level for the threshold.
The level sets the lowest priority that will be generated,
and all messages of this level or higher will go into the
casapy-YYYYMMDD-HHMMSS.log file.

Some examples:

casalog.filter(’INFO’) # the default
casalog.filter(’INFO2’) # should satisfy even advanced users
casalog.filter(’INFO4’) # all INFOx messages
casalog.filter(’DEBUG2’) # all messages including debugging

WARNING: Setting the threshold to DEBUG2 will put lots of messages in the log!

1.5.3 Where are my data in CASA?

Interferometric data are filled into a so-called Measurement Set (or MS). In its logical structure,
the MS looks like a generalized description of data from any interferometric or single dish telescope.
Physically, the MS consists of several tables in a directory on disk.

Tables in CASA are actually directories containing files that are the sub-tables. For example, when
you create a MS called AM675.ms, then the name of the directory where all the tables are stored will
be called AM675.ms/. See Chapter 2 for more information on Measurement Set and Data Handling
in CASA.

The data that you originally get from a telescope can be put in any directory that is convenient to
you. Once you ”fill” the data into a Measurement Set that can be accessed by CASA, it is generally
best to keep that MS in the same directory where you started CASA so you can get access to it
easily (rather than constantly having to specify a full path name).

When you generate calibration solutions or images (again these are in table format), these will also
be written to disk. It is a good idea to keep them in the directory in which you started CASA.

1.5.3.1 How do I get rid of my data in CASA?

Note that when you delete a Measurement Set, calibration table, or image, which are in fact
directories, you must delete this and all underlying directories and files. If you are not running
casapy, this is most simply done by using the file delete method of the operating system you
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started CASA from. For example, when running CASA on a Linux system, in order to delete the
Measurement Set named AM675.ms type:

CASA <5>: !rm -r AM675.ms

from within CASA. The ! tells CASA that a system command follows (see § 1.3.7.5), and the -r
makes sure that all subdirectories are deleted recursively.

It is convenient to prefix all MS, calibration tables, and output files produced in a run with a
common string. For example, one might prefix all files from VLA project AM675 with AM675, e.g.
AM675.ms, AM675.cal, AM675.clean. Then,

CASA <6>: !rm -r AM675*

will clean up all of these.

In scripts, the ! escape to the OS will not work. Instead, use the os.system() function (Ap-
pendix B.7.1) to do the same thing:

os.system(’rm -r AM675*’)

If you are within casapy, then the CASA system is keeping a cache of tables that you have been
using and using the OS to delete them will confuse things. For example, running a script that
contains rm commands multiple times will often not run or crash the second time as the cache gets
confused. The clean way of removing CASA tables (MS, caltables, images) inside casapy is to use
the rmtables task:

rmtables(’AM675.ms’)

and this can also be wildcarded

rmtables(’AM675*’)

(though you may get warnings if it tries to delete files or directories that fit the name wildcard that
are not CASA tables).

ALERT: Some CASA processes lock the file and forget to give it up when they are done (plotxy
is usually the culprit). You will get WARNING messages from rmtables and your script will
probably crash second time around as the file isn’t removed. The safest thing is still to exit casapy
and start a new session for multiple runs.

1.5.4 What’s in my data?

The actual data is in a large MAIN table that is organized in such a way that you can access
different parts of the data easily. This table contains a number of “rows”, which are effectively a
single timestamp for a single spectral window (like an IF from the VLA) and a single baseline (for
an interferometer).
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There are a number of “columns” in the MS, the most important of which for our purposes is
the DATA column — this contains the original visibility data from when the MS was created or
filled. There are other helpful “scratch” columns which hold useful versions of the data or weights
for further processing: the CORRECTED DATA column, which is used to hold calibrated data and an
optional MODEL DATA column, which may hold the Fourier inversion of a particular model image.
The creation and use of the scratch columns is generally done behind the scenes, but you should
be aware that they are there (and when they are used). We will occasionally refer to the rows and
columns in the MS.

More on the contents of the MS can be found in § 2.1.

1.5.5 Data Selection in CASA

We have tried to make the CASA task interface as uniform as possible. If a given parameter appears
in multiple tasks, it should, as far as is possible, mean the same thing and be used in the same way
in each. There are groups of parameters that appear in a number of tasks to do the same thing,
such as for data selection.

The parameters field, spw, and selectdata (which if True expands to a number of sub-parameters)
are commonly used in tasks to select data on which to work. These common data selection param-
eters are described in § 2.3.

1.6 From Loading Data to Images

The subsections below provide a brief overview of the steps you will need to load data into CASA
and obtain a final, calibrated image. Each subject is covered in more detail in Chapters 2 through
6.

An end-to-end workflow diagram for CASA data reduction for interferometry data is shown in
Figure 1.8. This might help you chart your course through the package. In the following sub-
sections, we will chart a rough course through this process, with the later chapters filling in the
individual boxes.

Note that single-dish data reduction (for example with the ALMA single-dish system) follows a
similar course. This is detailed in Chapter 8.

1.6.1 Loading Data into CASA

The key data and image import tasks are:

• importuvfits — import visibility data in UVFITS format (§ 2.2.5);

• importvla — import data from VLA that is in export format (§ 2.2.3);

• importasdm — import ALMA data in ASDM format (§ 2.2.1);
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Figure 1.8: Flow chart of the data processing operations that a general user will carry out in an
end-to-end CASA reduction session.

• importevla — import JVLA/EVLA data in SDM format (§ 2.2.2);

• importfits — import a FITS image into a CASA image format table (§ 6.24).

These are used to bring in your interferometer data, to be stored as a CASA Measurement Set
(MS), and any previously made images or models (to be stored as CASA image tables).

The data import tasks will create a MS with a path and name specified by the vis parameter. See
§ 1.5.3 for more information on MS in CASA. The Measurement Set is the internal data format
used by CASA, and conversion from any other native format is necessary for most of the data
reduction tasks.

Once data is imported, there are other operations you can use to manipulate the datasets:
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• concat — concatenate multiple MSs into a given or a new MS (§ 2.2.12)

Data import, export, concatenation, and selection detailed in Chapter 2.

1.6.1.1 VLA: Filling data from VLA archive format

VLA data in “archive” format are read into CASA from disk using the importvla task (see § 2.2.3).
This filler supports the new naming conventions of EVLA antennas when incorporated into the old
VLA system.

Note that future data from the EVLA in ASDM format will use a different filler. This will be made
available in a later release.

1.6.1.2 Filling data from UVFITS format

For UVFITS format, use the importuvfits task. A subset of popular flavors of UVFITS (in
particular UVFITS as written by AIPS) is supported by the CASA filler. See § 2.2.5 for details.

1.6.1.3 Loading FITS images

For FITS format images, such as those to be used as calibration models, use the importfits task.
Most, though not all, types of FITS images written by astronomical software packages can be read
in.

See § 6.24 for more information.

1.6.1.4 Concatenation of multiple MS

Once you have loaded data into Measurement Sets on disk, you can use the tasks concat or
virtualconcat to combine them.

See § 2.2.12 for details.

1.6.2 Data Examination, Editing, and Flagging

The main data examination and flagging tasks are:

• listobs — summarize the contents of a MS (§ 2.2.7);

• flagmanager — save and manage versions of the flagging entries in the Measurement Set
(§ 3.2);

• plotms — interactive X-Y plotting and flagging of visibility data (§ 3.3.1);
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• (plotxy — interactive X-Y plotting and flagging of visibility data (§ 3.3.2), note: plotxy is
slower than plotms and will eventually be phased out, plotxy is still useful to create scripted
hardcopy output, this functionality will likely be available in plotms in the next release);

• flagdata — flagging (and unflagging) of specified data (§ 3.4);

• viewer — the CASA viewer can display (as a raster image) MS data, with some editing
capabilities (§ 7);

These tasks allow you to list, plot, and/or flag data in a CASA MS.

There will eventually be tasks for “automatic” flagging to data based upon statistical criteria. Stay
tuned.

Examination and editing of synthesis data is described in Chapter 3.

Visualization and editing of an MS using the casaviewer is described in Chapter 7.

1.6.2.1 Interactive X-Y Plotting and Flagging

The principal tool for making X-Y plots of visibility data is plotms (see § 3.3.1). Amplitudes and
phases (among other things) can be plotted against several x-axis options.

Interactive flagging (i.e., “see it – flag it”) is possible on the plotms X-Y displays of the data
(§ 3.3.1.6). Since flags are inserted into the Measurement Set, it is useful to backup (or make a
copy) of the current flags before further flagging is done, using flagmanager (§ 3.2). Copies of the
flag table can also be restored to the MS in this way.

1.6.2.2 Flag the Data Non-interactively

The flagdata task (§ 3.4) will flag the visibility data set based on the specified data selections. The
listobs task (§ 2.2.7) may be run (e.g. with verbose=True) to provide some of the information
needed to specify the flagging scope. flagdata also contains autoflagging routines.

1.6.2.3 Viewing and Flagging the MS

The CASA viewer can be used to display the data in the MS as a (grayscale or color) raster image.
The MS can also be edited. Use of the viewer on an MS is detailed in § 7.5.

1.6.3 Calibration

The major calibration tasks are:

• setjy — Computes the model visibilities for a specified source given a flux density or model
image, knows about standard calibrator sources (§ 4.3.5);
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• initweights — if necessary, supports (re-)initialization of the data weights, including an
option for enabling spectral weight accounting (§ 4.3.1)

• gencal — Creates a calibration table for known delay and antenna position offsets (§ 4.3.6);

• bandpass — Solves for frequency-dependent (bandpass) complex gains (§ 4.4.2);

• gaincal — Solves for time-dependent (frequency-independent) complex gains (§ 4.4.3);

• fluxscale — Bootstraps the flux density scale from standard calibrators (§ 4.4.4);

• polcal — polarization calibration (§ 4.4.5);

• applycal — Applies calculated calibration solutions (§ 4.6.1);

• clearcal — Re-initializes calibrated visibility data in a given Measurement Set (§ 4.6.3);

• listcal — Lists calibration solutions (§ 4.5.2);

• plotcal — Plots (and optionally flags) calibration solutions (§ 4.5.1);

• uvcontsub — carry out uv-plane continuum subtraction for spectral-line data (§ 4.7.6);

• split — write out a new (calibrated) MS for specified sources (§ 4.7.1);

• cvel — Regrid a spectral MS onto a new frequency channel system (§ 4.7.7).

During the course of calibration, the user will specify a set of calibrations to pre-apply before
solving for a particular type of effect, for example gain or bandpass or polarization. The solutions
are stored in a calibration table (subdirectory) which is specified by the user, not by the task: care
must be taken in naming the table for future use. The user then has the option, as the calibration
process proceeds, to accumulate the current state of calibration in a new cumulative table. Finally,
the calibration can be applied to the dataset.

Synthesis data calibration is described in detail in Chapter 4.

1.6.3.1 Prior Calibration

The setjy task calculates absolute fluxes for Measurement Set base on known calibrator sources.
This can then be used in later calibration tasks. Currently, setjy knows the flux density as a
function of frequency for several standard EVLA flux calibrators and solar system objects, and
the value of the flux density can be manually inserted for any other source. If the source is not
well-modeled as a point source, then a model image of that source structure can be used (with the
total flux density scaled by the values given or calculated above for the flux density). Models are
provided for the standard VLA calibrators.

Antenna gain-elevation curves (e.g. for the EVLA antennas) and atmospheric optical depth cor-
rections (applied as an elevation-dependent function) may be pre-applied before solving for the
bandpass and gains. CASA v4.1 was the last version where these specialized calibration were sup-
ported by explicit parameters in the calibration tasks (gaincurve and opacity). As of v4.2, these
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parameters have been removed, and gain curves and opacity are supported via gencal, which will
generate standard calibration tables describing these effects, much as other a priori effects (Tsys,
switched power, etc.) are supported.

See § 4.3 for more details.

1.6.3.2 Bandpass Calibration

The bandpass task calculates a bandpass calibration solution: that is, it solves for gain variations
in frequency as well as in time. Since the bandpass (relative gain as a function of frequency)
generally varies much more slowly than the changes in overall (mean) gain solved for by gaincal,
one generally uses a long time scale when solving for the bandpass. The default ’B’ solution mode
solves for the gains in frequency slots consisting of channels or averages of channels.

A polynomial fit for the solution (solution type ’BPOLY’) may be carried out instead of the default
frequency-slot based ’B’ solutions. This single solution will span (combine) multiple spectral
windows.

Bandpass calibration is discussed in detail in § 4.4.2.

If the gains of the system are changing over the time that the bandpass calibrator is observed, then
you may need to do an initial gain calibration (see next step).

1.6.3.3 Gain Calibration

The gaincal task determines solutions for the time-based complex antenna gains, for each spectral
window, from the specified calibration sources. A solution interval may be specified. The default
’G’ solution mode solves for antenna-based gains in each polarization in specified time solution
intervals. The ’T’ solution mode is the same as ’G’ except that it solves for a single solution
shared by both polarizations.

A spline fit for the solution (solution type ’GSPLINE’) may be carried out instead of the default
time-slot based ’G’ solutions.

See § 4.4.3 for more on gain calibration.

1.6.3.4 Polarization Calibration

The polcal task will solve for any unknown polarization leakage and cross-hand phase terms (’D’
and ’X’ solutions). The ’D’ leakage solutions will work on sources with no polarization and
sources with known (and supplied, e.g., using smodel) polarization. For sources with unknown
polarization tracked through a range in parallactic angle on the sky, using poltype ’D+QU’, which
will first estimate the calibrator polarization for you.

The solution for the unknown cross-hand polarization phase difference ’X’ term requires a polarized
source with known linear polarization (Q,U).
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Frequency-dependent (i.e., per channel) versions of all of these modes are also supported (poltypes
’Df’, ’Df+QU’, and ’Xf’.

See § 4.4.5 for more on polarization calibration.

1.6.3.5 Examining Calibration Solutions

The plotcal task (§ 4.5.1) will plot the solutions in a calibration table. The xaxis choices include
time (for gaincal solutions) and channel (e.g. for bandpass calibration). The plotcal interface
and plotting surface is similar to that in plotxy. Eventually, plotcal will allow you to flag and
unflag calibration solutions in the same way that data can be edited in plotxy.

The listcal task (§ 4.5.2) will print out the calibration solutions in a specified table.

1.6.3.6 Bootstrapping Flux Calibration

The fluxscale task bootstraps the flux density scale from “primary” standard calibrators to
the “secondary” calibration sources. Note that the flux density scale must have been previously
established on the “primary” calibrator(s), typically using setjy, and of course a calibration table
containing valid solutions for all calibrators must be available.

See § 4.4.4 for more.

1.6.3.7 Correcting the Data

The final step in the calibration process, applycal may be used to apply several calibration tables
(e.g., from gaincal or bandpass, along with prior calibration tables). The corrections are applied
to the DATA column of the visibility, writing the CORRECTED DATA column which can then be plotted
(e.g. in plotxy), split out as the DATA column of a new MS, or imaged (e.g. using clean). Any
existing corrected data are overwritten.

See § 4.6.1 for details.

1.6.3.8 Splitting the Data

After a suitable calibration is achieved, it may be desirable to create one or more new Measurement
Sets containing the data for selected sources. This can be done using the split task (§ 4.7.1).

Further imaging and calibration (e.g. self-calibration) can be carried out on these split Measurement
Sets.
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1.6.3.9 UV Continuum subtraction

For spectral line data, continuum subtraction can be performed in the image domain (imcontsub)
or in the uv domain. For the latter, there are two tasks available: uvcontsub subtracts polynomial
of desired order from each baseline, defined by line-free channels.

1.6.3.10 Transforming the Data to a new frame

If you want to transform your dataset to a different frequency and velocity frame than the one it
was observed in, then you can use the cvel task (§ 4.7.7). Alternatively, you can do the regridding
during the imaging process in clean without running cvel before.

1.6.4 Synthesis Imaging

The key synthesis imaging tasks are:

• clean — Calculates a deconvolved image based on the visibility data, using one of several
clean algorithms (§ 5.3);

• feather — Combines a single dish and synthesis image in the Fourier plane (§ 5.6).

Most of these tasks are used to take calibrated interferometer data, with the possible addition of a
single-dish image, and reconstruct a model image of the sky. Alert: The clean task is now even
more powerful and incorporates the functionality of previous specialized tasks such as mosaic and
widefield.

See Chapter 5 for more on synthesis imaging.

1.6.4.1 Cleaning a single-field image or a mosaic

The CLEAN algorithm is the most popular and widely-studied method for reconstructing a model
image based on interferometer data. It iteratively removes at each step a fraction of the flux in the
brightest pixel in a defined region of the current “dirty” image, and places this in the model image.
The clean task implements the CLEAN algorithm for single-field data. The user can choose from
a number of options for the particular flavor of CLEAN to use.

Often, the first step in imaging is to make a simple gridded Fourier inversion of the calibrated data
to make a “dirty” image. This can then be examined to look for the presence of noticeable emission
above the noise, and to assess the quality of the calibration by searching for artifacts in the image.
This is done using clean with niter=0.

The clean task can jointly deconvolve mosaics as well as single fields, and also has options to do
wide-field and wide-band multi-frequency synthesis imaging.

See § 5.3 for an in-depth discussion of the clean task.
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1.6.4.2 Feathering in a Single-Dish image

If you have a single-dish image of the large-scale emission in the field, this can be “feathered” in
to the image obtained from the interferometer data. This is carried out using the feather tasks
as the weighted sum in the uv-plane of the gridded transforms of these two images. While not as
accurate as a true joint reconstruction of an image from the synthesis and single-dish data together,
it is sufficient for most purposes.

See § 5.6 for details on the use of the feather task.

1.6.5 Self Calibration

Once a calibrated dataset is obtained, and a first deconvolved model image is computed, a “self-
calibration” loop can be performed. Effectively, the model (not restored) image is passed back to
another calibration process (on the target data). This refines the calibration of the target source,
which up to this point has had (usually) only external calibration applied. This process follows the
regular calibration procedure outlined above.

Any number of self-calibration loops can be performed. As long as the images are improving, it is
usually prudent to continue the self-calibration iterations.

This process is described in § 5.10.

1.6.6 Data and Image Analysis

The key data and image analysis tasks are:

• imhead — summarize and manipulate the “header” information in a CASA image (§ 6.2);

• imcontsub — perform continuum subtraction on a spectral-line image cube (§ 6.4);

• immath — perform mathematical operations on or between images (§ 6.6);

• immoments — compute the moments of an image cube (§ 6.7);

• imstat — calculate statistics on an image or part of an image (§ 6.9);

• imval — extract values of one or more pixels, as a spectrum for cubes, from an image (§ 6.10);

• imfit — simple 2D Gaussian fitting of single components to a region of an image (§ 6.5);

• imregrid — regrid an image onto the coordinate system of another image (§ 6.13);

• viewer — there are useful region statistics and image cube plotting capabilities in the viewer
(§ 7).
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1.6.6.1 What’s in an image?

The imhead task will print out a summary of image “header” keywords and values. This task can
also be used to retrieve and change the header values.

See § 6.2 for more.

1.6.6.2 Image statistics

The imstat task will print image statistics. There are options to restrict this to a box region,
and to specified channels and Stokes of the cube. This task will return the statistics in a Python
dictionary return variable.

See § 6.9 for more.

1.6.6.3 Image values

The imval task will values from an image. There are options to restrict this to a box region, and to
return specified channels and Stokes of the cube as a spectrum. This task will return these values
in a Python dictionary return variable which can then be operated on in the casapy environment.

See § 6.9 for more.

1.6.6.4 Moments of an image cube

The immoments task will compute a “moments” image of an input image cube. A number of options
are available, from the traditional true moments (zero, first, second) and variations thereof, to other
images such as median, minimum, or maximum along the moment axis.

See § 6.7 for details.

1.6.6.5 Image math

The immath task will allow you to form a new image by mathematical combinations of other images
(or parts of images). This is a powerful, but tricky, task to use.

See § 6.6 for more.

1.6.6.6 Regridding an Image

It is occasionally necessary to regrid an image onto a new coordinate system. The imregrid task
can be used to regrid an input image onto the coordinate system of an existing template image,
creating a new output image.

See § 6.13 for a description of this task.
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1.6.6.7 Displaying Images

To display an image use the viewer task. The viewer will display images in raster, contour, or
vector form. Blinking and movies are available for spectral-line image cubes. To start the viewer,
type:

viewer

Executing the viewer task will bring up two windows: a viewer screen showing the data or image,
and a file catalog list. Click on an image or ms from the file catalog list, choose the proper display,
and the image should pop up on the screen. Clicking on the wrench tool (second from left on upper
left) will obtain the data display options. Most functions are self-documenting.

The viewer can be run outside of casapy by typing casaviewer.

See § 7 for more on viewing images.

1.6.7 Getting data and images out of CASA

The key data and image export tasks are:

• exportuvfits — export a CASA MS in UVFITS format (§ 2.2.5);

• exportfits — export a CASA image table as FITS (§ 6.24).

These tasks can be used to export a CASA MS or image to UVFITS or FITS respectively. See the
individual sections referred to above for more on each.
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Visibility Data Import, Export, and
Selection

To use CASA to process your data, you first will need to get it into a form that is understood
by the package. These are “Measurement Sets” for synthesis (and single dish) data, and “image
tables” for images.

There are a number of tasks used to fill telescope-specific data, to import/export standard formats,
to list data contents, and to concatenate multiple datasets. These are:

• asdmsummary — list the contents of a archive file in ASDM format (§ 2.2.1)

• importasdm — import of ALMA data in ASDM format (§ 2.2.1)

• importevla — import of Jansky VLA data and flags in ASDM format (§ 2.2.2)

• importuvfits — import visibility data in UVFITS format (§ 2.2.5.1)

• importfitsidi — import visibility data in the FITS-IDI format (§ 2.2.5.2)

• importvla — import data from VLA that is in export format (§ 2.2.3)

• importmiriad — import data from MIRIAD visibilities (§ 2.2.4)

• exportuvfits — export a CASA MS in UVFITS format (§ 2.2.5.3)

• listobs — summarize the contents of a MS (§ 2.2.7)

• listpartition – List the summary of a Multi-MS data set in the logger or in a file (§ 2.2.8)

• listvis — list the data in a MS (§ 2.2.9)

• vishead — list and change the metadata contents of a MS (§ 2.2.10)

• visstat — statistics on data in a MS (§ 2.2.11)

83
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• concat — concatenate two or more MS into a new MS (§ 2.2.12)

• virtualconcat — concatenate two or more MS or multi-MS into a new multi-MS (§ 2.2.12
and chapter 10)

In CASA, there is a standard syntax for selection of data that is employed by multiple tasks. This
is described in § 2.3.

There are also tasks for the import and export of image data using FITS:

• listfits — show the header content of any FITS file (§ 2.1)

• importfits — import a FITS image into a CASA image format table (§ 6.24)

• exportfits — export a CASA image table as FITS (§ 6.24)

2.1 CASA Measurement Sets

Data is handled in CASA via the table system. In particular, visibility data are stored in a CASA
table known as a Measurement Set (MS). Details of the physical and logical MS structure are given
below, but for our purposes here an MS is just a construct that contains the data. An MS can also
store single dish data (essentially a set of auto-correlations of a 1-element interferometer), though
there are also data formats more suitable for single-dish spectra (see § 8).

A full description of the Measurement Set can be found at http://casa.nrao.edu/Memos/229.
html.

Inside the Toolkit:
Measurement sets are handled in
the ms tool. Import and export
methods include ms.fromfits and
ms.tofits.

Note that images are handled through special image tables,
although standard FITS I/O is also supported. Images and
image data are described in a separate chapter.

The headers of any FITS files can be displayed in the logger
with the listfits task:

# listfits :: List the HDU and typical data rows of a fits file:
fitsfile = ’’ # Name of input fits file

Unless your data was previously processed by CASA or
software based upon its predecessor aips++, you will need to import it into CASA as an MS.
Supported formats include some “standard” flavors of UVFITS, the VLA “Export” archive format,
and most recently, the ALMA Science Data Model (ASDM) format. These are described below in
§ 2.2.

Once in Measurement Set form, your data can be accessed through various tools and tasks with a
common interface. The most important of these is the data selection interface (§ 2.3) which allows
you to specify the subset of the data on which the tasks and tools will operate.

2.1.1 Under the Hood: Structure of the Measurement Set

http://casa.nrao.edu/Memos/229.html
http://casa.nrao.edu/Memos/229.html
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Inside the Toolkit:
Generic CASA tables are handled in
the tb tool. You have direct access
to keywords, rows and columns of the
tables with the methods of this tool.

It is not necessary that a casual CASA user know the spe-
cific details on how the data in the MS is stored and the
contents of all the sub-tables. However, we will occasion-
ally refer to specific “columns” of the MS when describing
the actions of various tasks, and thus we provide the fol-
lowing synopsis to familiarize the user with the necessary
nomenclature. You may skip ahead to subsequent sections
if you like!

All CASA data files, including Measurement Sets, are written into the current working directory by
default, with each CASA table represented as a separate sub-directory. MS names therefore need
only comply with UNIX file or directory naming conventions, and can be referred to from within
CASA directly, or via full path names.

An MS consists of a MAIN table containing the visibility data. and associated sub-tables containing
auxiliary or secondary information. The tables are logical constructs, with contents located in the
physical table.* files on disk. The MAIN table consists of the table.* files in the main directory of
the ms-file itself, and the other tables are in the respective subdirectories. The various MS tables
and sub-tables can be seen by listing the contents of the MS directory itself (e.g. using Unix ls),
or via the browsetable task (§ 3.6).

See Fig 2.1 for an example of the contents of a MS directory. Or, from the casapy prompt,

CASA <1>: ls ngc5921.ms
IPython system call: ls -F ngc5921.ms
ANTENNA POLARIZATION table.f1 table.f3_TSM1 table.f8
DATA_DESCRIPTION PROCESSOR table.f10 table.f4 table.f8_TSM1
FEED SORTED_TABLE table.f10_TSM1 table.f5 table.f9
FIELD SOURCE table.f11 table.f5_TSM1 table.f9_TSM1
FLAG_CMD SPECTRAL_WINDOW table.f11_TSM1 table.f6 table.info
HISTORY STATE table.f2 table.f6_TSM0 table.lock
OBSERVATION table.dat table.f2_TSM1 table.f7
POINTING table.f0 table.f3 table.f7_TSM1

Note that the MAIN table information is contained in the table.* files in this directory. Each of
the sub-table sub-directories contain their own table.dat and other files, e.g.

CASA <2>: ls ngc5921.ms/SOURCE
IPython system call: ls -F ngc5921.ms/SOURCE
table.dat table.f0 table.f0i table.info table.lock

Each “row” in a table contains entries for a number of specified “columns”. For example, in the
MAIN table of the MS, the original visibility data is contained in the DATA column — each “cell”
contains a matrix of observed complex visibilities for that row at a single time stamp, for a single
baseline in a single spectral window. The shape of the data matrix is given by the number of
channels and the number of correlations (voltage-products) formed by the correlator for an array.

Table 2.1 lists the non-data columns of the MAIN table that are most important during a typical
data reduction session. Table 2.2 lists the key data columns of the MAIN table of an interferome-
ter MS. The MS produced by fillers for specific instruments may insert special columns, such as
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Figure 2.1: The contents of a Measurement Set. These tables compose a Measurement Set named
ngc5921.demo.ms on disk. This display is obtained by using the File:Open menu in browsetable
and left double-clicking on the ngc5921.demo.ms directory.

ALMA PHASE CORR, ALMA NO PHAS CORR and ALMA PHAS CORR FLAG ROW for ALMA data filled using
the importasdm filler (§ 2.2.1). These columns are visible in browsetable and are accessible from
the toolkit in the ms tool (e.g. the ms.getdata method) and from the tb “table” tool (e.g. using
tb.getcol).

Note that when you examine table entries for IDs such as FIELD ID or DATA DESC ID, you will see
0-based numbers.

The MS can contain a number of “scratch” columns, which are used to hold useful versions of other
columns such as the data or weights for further processing. The most common scratch columns
are:

• CORRECTED DATA — used to hold calibrated data for imaging or display;

• MODEL DATA — holds the Fourier inversion of a particular model image for calibration or
imaging. This column is optional.
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Table 2.1: Common columns in the MAIN table of the MS.

Parameter Contents
ANTENNA1 First antenna in baseline
ANTENNA2 Second antenna in baseline
FIELD ID Field (source no.) identification
DATA DESC ID Spectral window number, polarization identifier pair (IF no.)
ARRAY ID Subarray number
OBSERVATION ID Observation identification
POLARIZATION ID Polarization identification
SCAN NUMBER Scan number
TIME Integration midpoint time
UVW UVW coordinates

The creation and use of the scratch columns is generally done behind the scenes, but you should
be aware that they are there (and when they are used).

Table 2.2: Commonly accessed MAIN Table data-related columns. Note that the columns
ALMA PHASE CORR, ALMA NO PHAS CORR and ALMA PHAS CORR FLAG ROW are specific to ALMA data
filled using the importasdm filler.

Column Format Contents
DATA Complex(Nc, Nf ) complex visibility data matrix (=

ALMA PHASE CORR by default)
FLAG Bool(Nc, Nf ) cumulative data flags
WEIGHT Float(Nc) weight for a row
WEIGHT SPECTRUM Float(Nc, Nf ) individual weights for a data matrix
ALMA PHASE CORR Complex(Nc, Nf ) on-line phase corrected data (Not in

VLA data)
ALMA NO PHAS CORR Bool(Nc, Nf ) data that has not been phase corrected

(Not in VLA data)
ALMA PHAS CORR FLAG ROW Bool(Nc, Nf ) flag to use phase-corrected data or not

(not in VLA data)
MODEL DATA Complex(Nc, Nf ) Scratch: created by calibrater or im-

ager tools
CORRECTED DATA Complex(Nc, Nf ) Scratch: created by calibrater or im-

ager tools

Data flags can be set in the MS, too. Whenever a flag is set, the data will be ignored in all
processing steps but not physically deleted from the MS. The flags are channel-based and stored in
the MS FLAG subtable. Backups can be stored in the ’MS.flagversions’ file that can be accessed
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via the flagmanager (§ 3.2).

The most recent specification for the MS is Aips++ Measurement Set definition version 2.0
(http://casa.nrao.edu/Memos/229.html).

2.2 Data Import and Export

There are a number of tasks available to bring data in various forms into CASA as a Measurement
Set:

• ALMA Science Data Model format data can be imported into CASA (importasdm)

• JVLA Science Data Model format data, including online flags, can imported into CASA
(importevla)

• VLA Archive format data can be imported into CASA (importvla)

• UVFITS format can be imported into and exported from CASA (importuvfits, importfitsidi,
and exportuvfits)

2.2.1 ALMA: Filling of Science Data Model (ASDM) data

Under the Hood:
The importasdm task is just an inter-
face to the stand-alone asdm2MS ap-
plication. To find out the command-
line arguments to this application,
do asdm2MS --help .

The ALMA and JVLA projects have agreed upon a com-
mon archival science data model (ASDM) format, and have
jointly developed the software to fill this data into CASA.
In the ASDM format, the bulk of the data is contained in
large binary data format (BDF) tables, with the meta-data
and ancillary information in XML tables. This is struc-
tured as a directory, like the MS, and was designed to be
similar to the MS to facilitate conversion.

The content of an ASDM can be listed with the task
asdmsummary:

# asdmsummary :: Summarized description of an ASDM dataset.
asdm = ’’ # Name of input ASDM directory

with an output that contains the list and positions of the antennas, followed by the parameters of
each scan like observation time, source name, frequency and polarization setup:

Input ASDM dataset : TDEM0008.sb3373760.eb3580330.55661.22790537037

========================================================================================

ASDM dataset :TDEM0008.sb3373760.eb3580330.55661.22790537037

========================================================================================

http://casa.nrao.edu/Memos/229.html
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Exec Block : ExecBlock_0

Telescope : JVLA

Configuration name : B

Observer name : Dr. Juergen Ott

The exec block started on 2011-04-10T05:28:13.200000000 and ended on 2011-04-10T10:27:12.300000256

27 antennas have been used in this exec block.

Id Name Make Station Diameter X Y Z

Antenna_0 ea01 UNDEFINED W36 25 -1606841.96 -5042279.689 3551913.017

Antenna_1 ea02 UNDEFINED E20 25 -1599340.8 -5043150.965 3554065.219

Antenna_2 ea03 UNDEFINED E36 25 -1596127.728 -5045193.751 3552652.421

Antenna_3 ea04 UNDEFINED W28 25 -1604865.649 -5042190.04 3552962.365

Antenna_4 ea05 UNDEFINED W08 25 -1601614.091 -5042001.653 3554652.509

Antenna_5 ea06 UNDEFINED N24 25 -1600930.06 -5040316.397 3557330.397

Antenna_6 ea07 UNDEFINED E32 25 -1597053.116 -5044604.687 3553058.987

Antenna_7 ea08 UNDEFINED N28 25 -1600863.684 -5039885.318 3557965.319

Antenna_8 ea09 UNDEFINED E24 25 -1598663.09 -5043581.392 3553767.029

Antenna_9 ea10 UNDEFINED N32 25 -1600781.039 -5039347.456 3558761.542

Antenna_10 ea11 UNDEFINED E04 25 -1601068.79 -5042051.91 3554824.835

Antenna_11 ea12 UNDEFINED E08 25 -1600801.926 -5042219.366 3554706.448

Antenna_12 ea14 UNDEFINED W12 25 -1602044.903 -5042025.824 3554427.832

Antenna_13 ea15 UNDEFINED W24 25 -1604008.742 -5042135.828 3553403.707

Antenna_14 ea16 UNDEFINED N12 25 -1601110.052 -5041488.079 3555597.439

Antenna_15 ea17 UNDEFINED W32 25 -1605808.656 -5042230.082 3552459.202

Antenna_16 ea18 UNDEFINED N16 25 -1601061.961 -5041175.88 3556058.022

Antenna_17 ea19 UNDEFINED W04 25 -1601315.893 -5041985.32 3554808.305

Antenna_18 ea20 UNDEFINED N36 25 -1600690.606 -5038758.734 3559632.061

Antenna_19 ea21 UNDEFINED E12 25 -1600416.51 -5042462.45 3554536.041

Antenna_20 ea22 UNDEFINED N04 25 -1601173.979 -5041902.658 3554987.518

Antenna_21 ea23 UNDEFINED E16 25 -1599926.104 -5042772.967 3554319.789

Antenna_22 ea24 UNDEFINED W16 25 -1602592.854 -5042054.997 3554140.7

Antenna_23 ea25 UNDEFINED N20 25 -1601004.709 -5040802.809 3556610.133

Antenna_24 ea26 UNDEFINED W20 25 -1603249.685 -5042091.404 3553797.803

Antenna_25 ea27 UNDEFINED E28 25 -1597899.903 -5044068.676 3553432.445

Antenna_26 ea28 UNDEFINED N08 25 -1601147.94 -5041733.837 3555235.956

Number of scans in this exec Block : 234

scan #1 from 2011-04-10T05:28:13.200000000 to 2011-04-10T05:33:35.500000256

Intents : OBSERVE_TARGET

Sources : 1331+305=3C286

Subscan #1 from 2011-04-10T05:28:13.200000000 to 2011-04-10T05:33:35.500000256

Intent : UNSPECIFIED

Number of integrations : 322

Binary data in uid:///evla/bdf/1302413292901

Number of integrations : 322

Time sampling : INTEGRATION

Correlation Mode : CROSS_AND_AUTO

Spectral resolution type : FULL_RESOLUTION

Atmospheric phase correction : AP_UNCORRECTED

SpectralWindow_0 : numChan = 256, frame = TOPO,

firstChan = 8484000000, chandWidth = 125000 x Polarization_0 : corr = RR,LL

scan #2 from 2011-04-10T05:33:35.500000256 to 2011-04-10T05:35:35.200000000



CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 90

Intents : OBSERVE_TARGET

Sources : 1331+305=3C286

Subscan #1 from 2011-04-10T05:33:35.500000256 to 2011-04-10T05:35:35.200000000

Intent : UNSPECIFIED

Number of integrations : 119

Binary data in uid:///evla/bdf/1302413293280

Number of integrations : 119

Time sampling : INTEGRATION

Correlation Mode : CROSS_AND_AUTO

Spectral resolution type : FULL_RESOLUTION

Atmospheric phase correction : AP_UNCORRECTED

SpectralWindow_0 : numChan = 256, frame = TOPO,

firstChan = 8484000000, chandWidth = 125000 x Polarization_0 : corr = RR,LL

scan #3 from 2011-04-10T05:35:35.200000000 to 2011-04-10T05:36:34.999999488

Intents : OBSERVE_TARGET

Sources : 1331+305=3C286

Subscan #1 from 2011-04-10T05:35:35.200000000 to 2011-04-10T05:36:34.999999488

...

The importasdm task will fill SDM1.2 and SDM1.3 format data into a CASA visibility data set
(MS). ALMA data was recorded in SDM1.2 format from October 2009 until May 2011. Since May
2011, ALMA is using the SDM 1.3 format. In particular all science data from cycle 0 will be in
SDM1.3. The JVLA also started using SDM1.2 in October 2009 and continues to use this format as
of October 2011. importasdm can read all of the above formats. The parameter useversion can
be used to enable the options process syspower, process caldevice, and process pointing.

The default inputs of importasdm are:

# importasdm :: Convert an ALMA Science Data Model observation into a
CASA visibility file (MS) or single-dish data format (Scantable)
asdm = ’’ # Name of input asdm directory (on

# disk)
vis = ’’ # Root name of the ms to be created.

# Note the .ms is NOT added
createmms = False # Create a multi-MS output
singledish = False # Set true to output single-dish data

# format
corr_mode = ’all’ # specifies the correlation mode to be

# considered on input. A quoted string
# containing a sequence of ao, co,
# ac,or all separated by whitespaces
# is expected

srt = ’all’ # specifies the spectral resolution
# type to be considered on input. A
# quoted string containing a sequence
# of fr, ca, bw, or all separated by
# whitespaces is expected

time_sampling = ’all’ # specifies the time sampling
# (INTEGRATION and/or SUBINTEGRATION)
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# to be considered on input. A quoted
# string containing a sequence of i,
# si, or all separated by whitespaces
# is expected

ocorr_mode = ’ca’ # output data for correlation mode
# AUTO_ONLY (ao) or CROSS_ONLY (co) or
# CROSS_AND_AUTO (ca)

compression = False # Flag for turning on data compression
lazy = False # Make the MS DATA column read the ASDM

# Binary data directly (faster import,
# smaller MS)

asis = ’’ # Creates verbatim copies of the
# ASDMtables in the ouput measurement
# set. Value given must be a string
# of table names separated by spaces;
# A * wildcard is allowed.

wvr_corrected_data = ’no’ # Specifies which values are considerd
# in the SDM binary data to fill the
# DATA column in the MAIN table of the
# MS. Expected values for this option
# are: no, for uncorrected data
# (default), yes, for the corrected
# data, and both, for for corrected
# and uncorrected data. Note if both
# is selected two measurement sets are
# created, one with uncorrected data
# and the other with corrected data.

scans = ’’ # processes only the specified scans.
# This value is a semicolon separated
# list of scan specifications. A scan
# specification consists in an exec
# bock index followed by the :
# character; followed by a comma
# separated list of scan indexes or
# scan index ranges. A scan index is
# relative to the exec block it
# belongs to. Scan indexes are 1-based
# while exec blocks are 0-based. "0:1"
# or "2:2~6" or
# "0:1,1:2~6,8;2:,3:24~30" "1,2" are
# valid values for the option. "3:"
# alone will be interpreted as, all
# the scans of the exec block#3. An
# scan index or a scan index range not
# preceded by an exec block index will
# be interpreted as, all the scans
# with such indexes in all the exec
# blocks. By default all the scans
# are considered.

ignore_time = False # All the rows of the tables Feed,
# History, Pointing, Source, SysCal,
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# CalDevice, SysPower, and Weather are
# processed independently of the time
# range of the selected exec block /
# scan.

process_syspower = True # The SysPower table is processed if
# and only if this parameter is set to
# true.

process_caldevice = True # The CalDevice table is processed if
# and only if this parameter is set to
# true.

process_pointing = True # The Pointing table is processed if
# and only if this parameter is set to
# true. If set to False, the POINTING
# table is empty in the resulting MS

process_flags = True # Create online flags in the FLAG_CMD
# sub-table.

tbuff = 0.0 # Time padding buffer (seconds)
applyflags = False # Apply the flags to the MS.
savecmds = False # Save flag commands to an ASCII file
outfile = ’’ # Name of ASCII file to save flag

# commands

flagbackup = True # Back up flag column before applying
# flags.

verbose = False # Output lots of information while the
# filler is working

overwrite = False # Over write an existing MS(s)
showversion = False # Report the version of asdm2MS being

# used
useversion = ’v3’ # Version of asdm2MS to be used (’v3’

# (default, should work for all data))
bdfflags = False # Set the MS FLAG column according to

# the ASDM _binary_ flags
with_pointing_correction = False # add (ASDM::Pointing::encoder -

# ASDM::Pointing::pointingDirection)
# to the value to be written in
# MS::Pointing::direction

remove_ref_undef = False # if set to True then apply
# fixspwbackport on the resulting
# MS(es).

convert_ephem2geo = True # if True, convert any attached
# ephemerides to the GEO reference
# frame (time-spacing not changed)

If scans is set, then importasdm processes only the scans specified in the option’s value. This value
is a semicolon separated list of scan specifications. A scan specification consists in an exec bock
index followed by the character ’:’ followed by a comma separated list of scan indexes or scan
index ranges. A scan index is relative to the exec block it belongs to. Scan indexes are 1-based
while exec blocks are 0-based. The expressions



CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 93

"0:1"
"2:2~6"
"0:1,1:2~6,8;2:,3:24~30"
"1,2"
"3:"

are all valid values for the selection. The "3:" selector will be interpreted as ’all the scans of the
exec block 3’. An scan index or a scan index range not preceded by an exec block index will be
interpreted as ’all the scans with such indexes in all the exec blocks’. By default all the scans are
considered.

When process flags=True the task will create online flags based on the Flag.xml, Antenna.xml
and SpectralWindow.xml files and copy them to the FLAG CMD sub-table of the MS. The flags will
NOT be applied unless the parameter applyflags is set to True. Optionally, the flags can also be
saved to an external ASCII file if savecmds is set to True.

When bdfflags=True the task will apply online flags contained in the ASDM BDF data by calling
the executable bdflags2MS which the user can also do from the OS prompt. This is recommended
for ALMA data.

If singledish=True, output data format is scantable (single-dish data format, see 8) instead of MS.
In that case, you must specify name or id of the antenna that you want to obtain data. This can be
done by using antenna parameter that is defined as a subparameter of singledish. For single-dish
mode, only auto-correlation data are filled, i.e. ocorr mode is forcibly set to ’ao’.

The option createmms prepares the output file for parallel processing and creates a multi-MS (see
Sect. 10, and 10.2).

2.2.1.1 Import of ASDM data with option lazy=True

With release 4.3, the parameter ’lazy’ (default = False) is fully tested and operational. If the
default value False is chosen, importasdm will (as in previous versions) fill the visibilities into a
newly created DATA column of the MS converting them from their binary format in the ASDM to
the CASA Table format.

If, however, lazy is set to True, the task will create the DATA column with an ALMA data-specific
storage manager, the (asdmstman), which enables CASA to directly read the binary data from the
ASDM with on-the-fly conversion. No redundant copy of the raw data is created.

This procedure has the advantage that it saves more than 60% disk space and at least in some cases
makes the access to the DATA column ≥ 10% faster because the data I/O volume is decreased.
For the same reason, it also accelerates the import itself by ca. a factor 2. The acceleration is
particularly large in the applycal task and here particularly on standard SATA disks.

E.g., if your ASDM has a size of 36 GB, the import with default parameters will turn this into an
MS of 73 GB size (total disk space consumption = 36 GB + 73 GB = 109 GB). With lazy=True,
the imported MS has a size of only 2 GB (total disk space consumption = 36 GB + 2 GB = 38 GB).
I.e. your total disk space savings are ca. 65%. Even when you compare to the case where you
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delete the ASDM after normal import, the solution with lazy import and keeping the ASDM will
save you ca. 48% disk space (in the example above 38 GB compared to 73 GB).

The only caveats are the following:

1. You must not delete your ASDM. You can, however, move it but you have to update the
reference stored in the MS. Symbolic links will work. See below on how to use the tool
method ms.asdmref() to manipulate the ASDM reference.

2. The lazily imported DATA column is read-only. But in any normal data reduction, the DATA
column (as opposed to CORRECTED DATA) is treated as read-only anyway.

The lazily imported MS is numerically identical with the traditionally imported MS and so are all
results derived from the MSs. The setting lazy=True might be made the default setting in future
CASA releases.

An important additional tool to manipulate lazily imported MSs is the new method ms.asdmref()
in the ms tool. If the MS is imported from an ASDM with option lazy=True, the DATA column
of the MS is virtual and directly reads the visibilities from the ASDM. A reference to the original
ASDM is stored with the MS. If the ASDM needs to be moved to a different path, the reference to
it in the MS needs to be updated. This can be achieved with ms.asdmref().

The method takes one argument: abspath. When called with abspath equal to an empty string
(default), the method just reports the currently set ASDM path or an empty string if the ASDM
path was not set, i.e. the MS was not lazily imported.

If you want to move the referenced ASDM to a different path, you can set the new absolute path
by providing it as the value of abspath to the method.

ms.open(’uid___A12345_X678_X910.ms’,False)
ms.asdmref(’/home/alma/myanalysis/uid___A12345_X678_X910’)
ms.close()

will set the new location of the referenced ASDM to /home/alma/myanalysis/uid___A12345_X678_X910.

Note that the lazily imported MS can be moved without any restrictions independently from the
referenced ASDM as long as the absolute path to the ASDM remains accessible, even across file
systems.

2.2.2 Janksy VLA: Filling of Science Data Model (ASDM) data

Under the Hood:
The importevla task is a modi-
fied version of the importasdm task,
that includes import of online flags
from the Flag.xml table into the
FLAG CMD MS table, and a stream-
lined set of parameters.

The importevla task will fill SDM data from the Jansky
VLA (or ALMA) into a MS, along with online flagging
data contained in the Flag.xml SDM table. Otherwise, it
behaves as importasdm but with a streamlined parameter
set.

The default inputs are:
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# importevla :: Convert an Science Data Model observation into a CASA Measurement Set
asdm = ’’ # Name of input asdm directory (on disk)
vis = ’’ # Root name of the ms to be created. Note the .ms

# is NOT added
ocorr_mode = ’co’ # Fill correlation mode AUTO_ONLY (ao),

# CROSS_ONLY (co) or CROSS_AND_AUTO (ca)
compression = False # Flag for turning on data compression
asis = ’’ # Create verbatim copies of these SDM tables in

# the MS.
scans = ’’ # List of scans to fill (default is all scans).
verbose = False # Output lots of information while the filler is

# working
overwrite = False # Over write an existing MS
online = True # Create online flags

tbuff = 0.0 # Time padding buffer (in seconds)

flagzero = True # Create flag commands for zero points
flagpol = True # Create flag commands for cross-hand

# correlations

shadow = True # Create flag commands for shadowed data
tolerance = 0.0 # Amount of shadow allowed (in meters)
addantenna = ’’ # File name or dictionary with additional antenna

# names, positions and diameters

applyflags = False # Apply flag commands to MS
savecmds = False # Save flag commands to an ASCII file
flagbackup = True # Back up flag column before applying flags

ALERT: If you want to use your JVLA online flags then you must use importevla rather than
importasdm. The flagcmd task will process these flags. Also, if you have run importevla in CASA
3.3 or earlier, the flag syntax will be processed by the task oldflagcmd.

The default action of importevla is to construct the FLAG CMD MS table based on the settings of
online, flagzero, and shadow (and sub-parameters). If applyflags=True then these flags will be
applied after filling. We recommend you use the flagcmd task after filling to examine these flags
and then apply.

See importasdm (§ 2.2.1) for a description of the common parameters. Some differences:

Note that importevla automatically loads in VLA switched power information (unlike in previous
versions).

The online parameter controls creation of online flags from the Flag.xml SDM table. The tbuff
parameter adds a time “buffer” padding for these flags in both directions to deal with timing mis-
matches. ALERT: For JVLA data taken before April 2011, you should set tbuff to a value (in
seconds) equal to 1.5× the integration time.

The flagzero parameter controls creation of clipping commands to flag visibilities with amplitudes
that are exact zeros. If flagpol=True then it will flag the cross-hands (e.g. RL and LR) as well,
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which might result in low but correct values of these correlations being thrown out (but can catch
erroneous zeros also). ALERT: This facility is provided as the JVLA correlator, particularly in
2010, occasionally produces visibilities with zero or very small values that need to get flagged out.

The shadow parameter turns on creation of flag commands to remove antenna time ranges where
they are shadowed by other antennas in the array. By default it will flag based on the an-
tenna diameter, but if you want more lenient or conservative flagging then set the tolerance
sub-parameter, where the shadowed antennas are flagged for all baselines that are shorter than
radius1 + radius2 − tolerance (the radii are those for the antennas as listed in the ANTENNA sub-
table). addantenna can be a file that defines the positions of antennas that are on the ground but
do not appear in the MS. They can still shadow antennas in the array.

savecmds will save all flagging commands in the flagdata and flagcmd syntax (§ 3.4 and 3.5) to
a file to be applied later or for bookkeeping.

A flag backup can be performed using the flagbackup parameter. It saves all current flags to the
’*.flagversions’ file of the MS, before all new flags are applied.

2.2.3 VLA: Filling data from archive format (importvla)

VLA data in archive format (i.e., as downloaded from the VLA data archive) are read into CASA
from disk using the importvla task. The inputs are:

# importvla :: import VLA archive file(s) to a measurement set:

archivefiles = ’’ # Name of input VLA archive file(s)
vis = ’’ # Name of output visibility file
bandname = ’’ # VLA frequency band name:’’=>obtain all bands in archive files
frequencytol = 150000.0 # Frequency shift to define a unique spectral window (Hz)
project = ’’ # Project name: ’’ => all projects in file
starttime = ’’ # start time to search for data
stoptime = ’’ # end time to search for data
applytsys = True # apply nominal sensitivity scaling to data & weights
autocorr = False # import autocorrelations to ms, if set to True
antnamescheme = ’new’ # ’old’ or ’new’; ’VA04’ or ’4’ for ant 4
keepblanks = False # Fill scans with empty source names (e.g. tipping scans)?
evlabands = False # Use updated eVLA frequencies and bandwidths

The main parameters are archivefiles to specify the input VLA Archive format file names, and
vis to specify the output MS name.

ALERT: The scaling of VLA data both before and after the June 2007 Modcomp-turnoff is fully
supported, based on the value of applytsys.

The NRAO Archive is located at:

• https://archive.nrao.edu

https://archive.nrao.edu
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Note that archivefiles takes a string or list of strings, as there are often multiple files for a
project in the archive.

For example:

archivefiles = [’AP314_A950519.xp1’,’AP314_A950519.xp2’]
vis = ’NGC7538.ms’

The importvla task allows selection on the frequency band. Suppose that you have 1.3 cm line
observations in K-band and you have copied the archive data files AP314 A95019.xp* to your
working directory and started casapy. Then,

default(’importvla’)
archivefiles = [’AP314_A950519.xp1’,’AP314_A950519.xp2’,’AP314_A950519.xp3’]
vis = ’ngc7538.ms’
bandname = ’K’
frequencytol = 10e6
importvla()

If the data is located in a different directory on disk, then use the full path name to specify each
archive file, e.g.:

archivefiles=[’/home/rohir2/jmcmulli/ALMATST1/Data/N7538/AP314_A950519.xp1’,\
’/home/rohir2/jmcmulli/ALMATST1/Data/N7538/AP314_A950519.xp2’,\
’/home/rohir2/jmcmulli/ALMATST1/Data/N7538/AP314_A950519.xp3’]

Important Note: importvla will import the on-line flags (from the VLA system) along with the
data. Shadowed antennas will also be flagged. The flags will be put in the MAIN table and thus
available to subsequent tasks and tools. If you wish to revert to unflagged data, use flagmanager
(§ 3.2) to save the flags (if you wish), and then use flagdata (§ 3.4) with mode=’manualflag’ and
unflag=True to toggle off the flags.

The other parameters are:

2.2.3.1 Parameter applytsys

The applytsys parameter controls whether the nominal sensitivity scaling (based on the measured
TSYS, with the weights scaled accordingly using the integration time) is applied to the visibility
amplitudes or not. If True, then it will be scaled so as to be the same as AIPS FILLM (i.e.
approximately in deciJanskys). Note that post-Modcomp data is in raw correlation coefficient and
will be scaled using the TSYS values, while Modcomp-era data had this applied online. In all cases
importvla will do the correct thing to data and weights based on an internal flag in the VLA
Archive file, either scaling it or unscaling based on your choice for applytsys.

If applytsys=True and you see strange behavior in data amplitudes, it may be due to erroneous
TSYS values from the online system. You might want to then fill with applytsys=False and look
at the correlation coefficients to see if the behavior is as expected.
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2.2.3.2 Parameter bandname

The bandname indicates the VLA Frequency band(s) to load, using the traditional bandname codes.
These are:

• ’4’ = 48-96 MHz

• ’P’ = 298-345 MHz

• ’L’ = 1.15-1.75 GHz

• ’C’ = 4.2-5.1 GHz

• ’X’ = 6.8-9.6 GHz

• ’U’ = 13.5-16.3 GHz

• ’K’ = 20.8-25.8 GHz

• ’Q’ = 38-51 GHz

• ’’ = all bands (default)

Note that as the transition from the VLA to JVLA progresses, the actual frequency ranges covered
by the bands will expand, and additional bands will be added (namely ’S’ from 1-2 GHz and ’A’
from 26.4-40 GHz).

2.2.3.3 Parameter frequencytol

The frequencytol parameter specifies the frequency separation tolerated when assigning data to
spectral windows. The default is frequencytol=150000 (Hz). For Doppler tracked data, where the
sky frequency changes with time, a frequencytol < 10000 Hz may produce too many unnecessary
spectral windows.

2.2.3.4 Parameter project

You can specify a specific project name to import from archive files. The default ’’ will import
data from all projects in file(s) archivefiles.

For example for VLA Project AL519:

project = ’AL519’ # this will work
project = ’al519’ # this will also work

while project=’AL0519’ will NOT work (even though that is what queries to the VLA Archive
will print it as - sorry!).
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2.2.3.5 Parameters starttime and stoptime

You can specify start and stop times for the data, e.g.:

starttime = ’1970/1/31/00:00:00’
stoptime = ’2199/1/31/23:59:59’

Note that the blank defaults will load all data fitting other criteria.

2.2.3.6 Parameter autocorr

Note that autocorrelations are filled into the data set if autocorr=True. Generally for the VLA,
autocorrelation data is not useful, and furthermore the imaging routine will try to image the
autocorrelation data (it assumes it is single dish data) which will swamp any real signal. Thus, if
you do fill the autocorrelations, you will have to flag them before imaging.

2.2.3.7 Parameter antnamescheme

The antnamescheme parameter controls whether importvla will try to use a naming scheme where
JVLA antennas are prefixed with EA (e.g. ’EA16’) and old VLA antennas have names prefixed
with VA (e.g. ’VA11’). Our method to detect whether an antenna is JVLA is not yet perfected,
and thus unless you require this feature, simply use antnamescheme=’old’.

2.2.3.8 Parameter evlabands

The evlabands=True option is provided to allow users to access JVLA frequencies outside the
standard VLA tunings (e.g. the extended C-band above 6 GHz). ALERT: use of this option for
standard VLA data will cause unexpected associations, such as X-band data below 8 GHz being
extracted to C-band (as the JVLA C-band is 4–8 GHz). Use with care.

2.2.4 Import MIRIAD visibilities (importmiriad)

The task importmiriad allows one to import visibilities in the MIRIAD data format to be converted
to a MS. The task has mainly be tested on data from the ATCA and CARMA telescopes and the
imputs are:

# importmiriad :: Convert a Miriad visibility file into a CASA MeasurementSet
mirfile = ’’ # Name of input Miriad visibility file
vis = ’’ # Name of output MeasurementSet
tsys = False # Use the Tsys to set the visibility weights
spw = ’all’ # Select spectral windows
vel = ’’ # Select velocity reference (TOPO,LSRK,LSRD)
linecal = False # (CARMA) Apply line calibration
wide = ’all’ # (CARMA) Select wide window averages
debug = 0 # Display increasingly verbose debug messages
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For details, please contact ATCA or CARMA staff.

2.2.5 UVFITS Import and Export

The UVFITS format is not exactly a standard, but is a popular archive and transport format
nonetheless. CASA supports UVFITS files written by the AIPS FITTP task, and others.

UVFITS is supported for both import and export.

2.2.5.1 Import using importuvfits

To import UVFITS format data into CASA, use the importuvfits task:

CASA <1>: inp(importuvfits)
fitsfile = ’’ # Name of input UVFITS file
vis = ’’ # Name of output visibility file (MS)
antnamescheme = ’old’ # For VLA only; ’new’ or ’old’; ’VA04’ or ’04’ for VLA ant 4

This is straightforward, since all it does is read in a UVFITS file and convert it as best it can into
a MS.

For example:

importuvfits(fitsfile=’NGC5921.fits’,vis=’ngc5921.ms’)

ALERT: CARMA data can be loaded into CASA. However,

tb.open("c0104I/ANTENNA",nomodify=False)
namelist=tb.getcol("NAME").tolist()
for i in range(len(namelist)):
name = ’CA’+namelist[i]
print ’ Changing ’+namelist[i]+’ to ’+name
namelist[i]=name

tb.putcol("NAME",namelist)
tb.close()

2.2.5.2 Import using importfitsidi

Some uvfits data is written in the FITS-IDI standard. Those files can be imported into CASA with
the importfitsidi task:
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# importfitsidi :: Convert a FITS-IDI file to a CASA visibility data set
fitsidifile = [’’] # Name(s) of input FITS-IDI file(s)
vis = ’ngc5921.demo.ms’ # Name of output visibility file (MS)
constobsid = False # If True, give constant obs ID==0 to

# the data from all input fitsidi
# files (False = separate obs id for
# each file)

scanreindexgap_s = 0.0 # min time gap (seconds) between
# integrations to start a new scan

The constobs parameter can be used to give all visibilities the same observation id of 0. scanrein-
dexgap s controls the gap that defines different scans.

Example:

importuvfits(fitsidifile=’NGC1300.fits’,vis=’NGC1300.ms’)

2.2.5.3 Export using exportuvfits

The exportuvfits task will take a MS and write it out in UVFITS format. The defaults are:

# exportuvfits :: Convert a CASA visibility data set (MS) to a UVFITS file

vis = ’’ # Name of input visibility file
fitsfile = ’’ # Name of output UVFITS file)
datacolumn = ’corrected’ # which data to write (data, corrected, model)
field = ’’ # Field name list
spw = ’’ # Spectral window and channel selection
antenna = ’’ # antenna list to select
time = ’’ # time range selection
nchan = -1 # Number of channels to select
start = 0 # Start channel
width = 1 # Channel averaging width (value>1 indicates averaging)
writesyscal = False # Write GC and TY tables
multisource = True # Write in multi-source format
combinespw = True # Combine spectral windows (True for AIPS)
writestation = True # Write station name instead of antenna name

For example:

exportuvfits(vis=’ngc5921.split.ms’,
fitsfile=’NGC5921.split.fits’,
multisource=False)

The MS selection parameters field, spw, antenna, and timerange follow the standard selection
syntax described in § 2.3.

ALERT: The nchan, start, and width parameters will be superseded by channel selection in spw.
Currently, there is a time parameter rather than timerange.
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The datacolumn parameter chooses which data-containing column of the MS (see § 2.1.1) is to be
written out to the UV FITS file. Choices are: ’data’, ’corrected’, and ’model’.

There are a number of special parameters that control what is written out. These are mostly here
for compatibility with AIPS.

The writesyscal parameter toggles whether GC and TY extension tables are written. These are
important for VLBA data, and for JVLA data. ALERT: Not yet available.

The multisource parameter determines whether the UV FITS file is a multi-source file or a single-
source file, if you have a single-source MS or choose only a single source. Note: the difference
between a single-source and multi-source UVFITS file here is whether it has a source (SU) table
and the source ID in the random parameters. Some programs (i.e. difmap) only accept single-
source files. If you select more than one source in fields, then the multisource parameter will be
overridden to be True regardless.

The combinespw parameter allows, if some conditions are met, exporting all of spectral windows
(SpW) as a set of ”IF”s in a single ”FREQID” setup instead of giving each SpW its own FREQID in
the FITS file. In this context an IF (Intermediate Frequency) is a specialization of an SpW, where
each IF in a UV FITS file must have the same number of channels and polarizations, each channel
must have the same width, and each IF must be present (even if flagged) throughout the entire
observation. If these conditions are not met the data must be exported using multiple FREQIDs,
the UV FITS equivalent of a general SpW. This matters since many (sub)programs will work with
multiple IFs, but not multiple FREQIDs. For example, a UV FITS file with multiple FREQIDs can
be read by AIPS, but you may find that you have to separate the FREQIDs with SPLIT before you
can do very much with them. Therefore combinespw=True should be True if possible. Typically
MSes where each band was observed simultaneously can be exported with combinespw=True. MSes
where the tuning changed with time, e.g. 10 minutes at 4.8 GHz followed by 15 minutes at 8.4 GHz,
should be exported to multiple UV FITS files using spw to select one tuning (set of simultaneous
SpWs) per file.

The multisource parameter determines whether the UV FITS file is a multi-source file or a single-
source file, if you have a single-source MS or choose only a single source. Note: the difference
between a single-source and multi-source UVFITS file here is whether it has a source (SU) table
and the source ID in the random parameters. If you select more than one source in fields, then
the multisource parameter will be overridden to be True regardless.

The combinespw parameter allows combination of all spectral windows at one time. If True, then
all spectral windows must have the same shape. For AIPS to read an exported file, then set
combinespw=True.

The writestation parameter toggles the writing of the station name instead of antenna name.

2.2.6 Handling Measurement Set metadata and data

There are tasks provided for basic listing and manipulation of Measurement Set data and metadata.
These include:
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• listobs — summarize the contents of a MS (§ 2.2.7)

• vishead — list and change the metadata contents of a MS (§ 2.2.10)

• visstat — statistics on data in a MS (§ 2.2.11)

• concat — concatenate two or more MS into a new MS (§ 2.2.12)

2.2.7 Summarizing your MS (listobs)

Once you import your data into a CASA Measurement Set, you can get a summary of the MS
contents with the listobs task.

The inputs are:

# listobs :: List the summary of a data set in the logger or in a file
vis = ’day2_TDEM0003_10s_norx’ # Name of input visibility file (MS)
selectdata = True # Data selection parameters

field = ’’ # Field names or field index
# numbers: ’’ ==>all, field=’0~2,3C286’

spw = ’’ # spectral-window/frequency/channel
antenna = ’’ # antenna/baselines: ’’==>all, antenna =’3,VA04’
timerange = ’’ # time range: ’’==>all,timerange=’09:14:0~09:54:0’
correlation = ’’ # Select data based on correlation
scan = ’’ # scan numbers: ’’==>all
intent = ’’ # Select data based on observation intent: ’’==>all
feed = ’’ # multi-feed numbers: Not yet implemented
array = ’’ # (sub)array numbers: ’’==>all
uvrange = ’’ # uv range: ’’==>all; uvrange

# =’0~100klambda’, default units=meters
observation = ’’ # Select data based on observation ID: ’’==>all

verbose = True
listfile = ’’ # Name of disk file to write output: ’’==>to terminal
listunfl = False # List unflagged row counts?

# If true, it can have significant negative performance impact.

The summary (of the selected data) will be written to the logger, to the casapy-YYYYMMDD-HHMMSS.log
file, and optionally to a file specified in the listfile parameter. For example,

listobs(’n5921.ms’)

results in the logger messages:

listobs(vis="day2_TDEM0003_10s_norx",selectdata=True,spw="",field="",

antenna="",uvrange="",timerange="",correlation="",scan="",

intent="",feed="",array="",observation="",verbose=True,
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listfile="",listunfl=False)

================================================================================

MeasurementSet Name: /Users/jott/casa/casatest/casa4.0/irc/day2_TDEM0003_10s_norx MS Version 2

================================================================================

Observer: Mark J. Mark Claussen Project: T.B.D.

Observation: EVLA

Data records: 290218 Total integration time = 10016 seconds

Observed from 26-Apr-2010/03:21:56.0 to 26-Apr-2010/06:08:52.0 (UTC)

ObservationID = 0 ArrayID = 0

Date Timerange (UTC) Scan FldId FieldName nRows SpwIds Average Interval(s) ScanIntent

26-Apr-2010/03:21:51.0 - 03:23:21.0 5 2 J0954+1743 2720 [0, 1] [10, 10]

03:23:39.0 - 03:28:25.0 6 3 IRC+10216 9918 [0, 1] [10, 10]

03:28:38.0 - 03:29:54.0 7 2 J0954+1743 2700 [0, 1] [10, 10]

03:30:08.0 - 03:34:53.5 8 3 IRC+10216 9918 [0, 1] [10, 10]

...

(nRows = Total number of rows per scan)

Fields: 4

ID Code Name RA Decl Epoch SrcId nRows

2 D J0954+1743 09:54:56.823626 +17.43.31.22243 J2000 2 65326

3 NONE IRC+10216 09:47:57.382000 +13.16.40.65999 J2000 3 208242

5 F J1229+0203 12:29:06.699729 +02.03.08.59820 J2000 5 10836

7 E J1331+3030 13:31:08.287984 +30.30.32.95886 J2000 7 5814

Spectral Windows: (2 unique spectral windows and 1 unique polarization setups)

SpwID Name #Chans Frame Ch1(MHz) ChanWid(kHz) TotBW(kHz) Corrs

0 Subband:0 64 TOPO 36387.229 125.000 8000.0 RR RL LR LL

1 Subband:0 64 TOPO 36304.542 125.000 8000.0 RR RL LR LL

Sources: 10

ID Name SpwId RestFreq(MHz) SysVel(km/s)

0 J1008+0730 0 0.03639232 -0.026

0 J1008+0730 1 0.03639232 -0.026

2 J0954+1743 0 0.03639232 -0.026

2 J0954+1743 1 0.03639232 -0.026

3 IRC+10216 0 0.03639232 -0.026

3 IRC+10216 1 0.03639232 -0.026

5 J1229+0203 0 0.03639232 -0.026

5 J1229+0203 1 0.03639232 -0.026

7 J1331+3030 0 0.03639232 -0.026

7 J1331+3030 1 0.03639232 -0.026

Antennas: 19:

ID Name Station Diam. Long. Lat. Offset from array center (m) ITRF Geocentric coordinates (m)

East North Elevation x y z

0 ea01 W09 25.0 m -107.37.25.2 +33.53.51.0 -521.9407 -332.7782 -1.1977 -1601710.017000 -5042006.928200 3554602.355600

1 ea02 E02 25.0 m -107.37.04.4 +33.54.01.1 9.8247 -20.4292 -2.7808 -1601150.059500 -5042000.619800 3554860.729400

2 ea03 E09 25.0 m -107.36.45.1 +33.53.53.6 506.0591 -251.8666 -3.5832 -1600715.948000 -5042273.187000 3554668.184500

3 ea04 W01 25.0 m -107.37.05.9 +33.54.00.5 -27.3562 -41.3030 -2.7418 -1601189.030140 -5042000.493300 3554843.425700

4 ea05 W08 25.0 m -107.37.21.6 +33.53.53.0 -432.1158 -272.1493 -1.5032 -1601614.091000 -5042001.655700 3554652.509300

5 ea07 N06 25.0 m -107.37.06.9 +33.54.10.3 -54.0667 263.8720 -4.2292 -1601162.593200 -5041829.000000 3555095.890500

6 ea08 N01 25.0 m -107.37.06.0 +33.54.01.8 -30.8810 -1.4664 -2.8597 -1601185.634945 -5041978.156586 3554876.424700

7 ea09 E06 25.0 m -107.36.55.6 +33.53.57.7 236.9058 -126.3369 -2.4443 -1600951.588000 -5042125.911000 3554773.012300

8 ea12 E08 25.0 m -107.36.48.9 +33.53.55.1 407.8394 -206.0057 -3.2252 -1600801.916000 -5042219.371000 3554706.449900

9 ea15 W06 25.0 m -107.37.15.6 +33.53.56.4 -275.8288 -166.7451 -2.0590 -1601447.198000 -5041992.502500 3554739.687600

10 ea19 W04 25.0 m -107.37.10.8 +33.53.59.1 -152.8599 -83.8054 -2.4614 -1601315.893000 -5041985.320170 3554808.304600

11 ea20 N05 25.0 m -107.37.06.7 +33.54.08.0 -47.8454 192.6015 -3.8723 -1601168.786100 -5041869.054000 3555036.936000

12 ea21 E01 25.0 m -107.37.05.7 +33.53.59.2 -23.8638 -81.1510 -2.5851 -1601192.467800 -5042022.856800 3554810.438800
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13 ea22 N04 25.0 m -107.37.06.5 +33.54.06.1 -42.5986 132.8623 -3.5431 -1601173.953700 -5041902.660400 3554987.536500

14 ea23 E07 25.0 m -107.36.52.4 +33.53.56.5 318.0523 -164.1848 -2.6960 -1600880.570000 -5042170.388000 3554741.457400

15 ea24 W05 25.0 m -107.37.13.0 +33.53.57.8 -210.0944 -122.3885 -2.2581 -1601377.008000 -5041988.665500 3554776.393400

16 ea25 N02 25.0 m -107.37.06.2 +33.54.03.5 -35.6245 53.1806 -3.1345 -1601180.861480 -5041947.453400 3554921.628700

17 ea27 E03 25.0 m -107.37.02.8 +33.54.00.5 50.6647 -39.4832 -2.7249 -1601114.365500 -5042023.153700 3554844.945600

18 ea28 N08 25.0 m -107.37.07.5 +33.54.15.8 -68.9057 433.1889 -5.0602 -1601147.940400 -5041733.837000 3555235.956000

using the (default) verbose=True option. The most useful extra information that verbose=True
gives is the list of the scans in the dataset.

2.2.8 MMS summary (listpartition)

Similar to listobs, listpartition shows the summary of a Multi-Measurement Set (MMS).

The inputs are:

# listpartition :: List the summary of a multi-MS data set in the logger or in a file
vis = ’’ # Name of multi-MS or normal MS.
createdict = False # Create and return a dictionary with

# sub-MS information
listfile = ’’ # Name of ASCII file to save output:

# ’’==>to terminal

For example,

listpartition(’n5921.mms’)

results in the logger messages:

This is a multi-MS with separation axis = scan,spw

Sub-MS Scan Spw Nchan Nrows Size

ngc5921.mms.0000.ms 2 [0] [63] 1890 27M

4 [0] [63] 756

5 [0] [63] 1134

6 [0] [63] 6804

ngc5921.mms.0001.ms 1 [0] [63] 4509 28M

3 [0] [63] 6048

7 [0] [63] 1512

2.2.9 Listing MS data (listvis)

The listvis task will print to the terminal (or file) listing of the data in your MS. The inputs are:



CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 106

# listvis :: List measurement set visibilities.
vis = ’’ # Name of input visibility file
options = ’ap’ # List options: ap only
datacolumn = ’data’ # Column to list: data, float_data, corrected, model,

# residual
field = ’’ # Field names or index to be listed: ’’==>all
spw = ’*’ # Spectral window:channels: ’\*’==>all, spw=’1:5~57’
selectdata = False # Other data selection parameters
observation = ’’ # Select by observation ID(s)
average = ’’ # Averaging mode: ==>none (Not yet implemented)
showflags = False # Show flagged data (Not yet implemented)
pagerows = 50 # Rows per page
listfile = ’’ # Output file

For example:

Units of columns are: Date/Time(YYMMDD/HH:MM:SS UT), UVDist(wavelength), Phase(deg), UVW(m)

WEIGHT: 7

FIELD: 2

SPW: 0

Date/Time: RR: RL: LR: LL:

2010/04/26/ Intrf UVDist Chn Amp Phs Wt F Amp Phs Wt F Amp Phs Wt F Amp Phs Wt F U V W

------------|---------|------|----|--------------------|-------------------|-------------------|-------------------|---------|---------|---------|

03:21:56.0 ea01-ea02 72363 0: 0.005 -124.5 7 0.005 25.7 7 0.001 104.6 7 0.000 23.4 7 -501.93 -321.75 157.78

03:21:56.0 ea01-ea02 72363 1: 0.001 -4.7 7 0.001 -135.1 7 0.004 -14.6 7 0.001 19.9 7 -501.93 -321.75 157.78

03:21:56.0 ea01-ea02 72363 2: 0.002 17.8 7 0.002 34.3 7 0.005 -114.3 7 0.005 -149.7 7 -501.93 -321.75 157.78

03:21:56.0 ea01-ea02 72363 3: 0.004 -19.4 7 0.003 -79.2 7 0.002 -89.0 7 0.004 31.3 7 -501.93 -321.75 157.78

03:21:56.0 ea01-ea02 72363 4: 0.001 -16.8 7 0.004 -141.5 7 0.005 114.9 7 0.006 105.2 7 -501.93 -321.75 157.78

03:21:56.0 ea01-ea02 72363 5: 0.001 -29.8 7 0.009 -96.4 7 0.002 -125.0 7 0.002 -64.5 7 -501.93 -321.75 157.78

...

Type Q to quit, A to toggle long/short list, or RETURN to continue [continue]:

ALERT: We are working on improving the format of the listvis output.

2.2.10 Listing and manipulating MS metadata (vishead)

The vishead task is provided to access keyword information in the Measurement Set. The default
inputs are:

# vishead :: List, get, and put metadata in a measurement set
vis = ’’ # Name of input visibility file
mode = ’list’ # options: list, summary, get, put

listitems = [] # items to list ([] for all)

The mode = ’summary’ option just gives the same output as listobs.

For mode = ’list’ the options are: ’telescope’, ’observer’, ’project’, ’field’, ’freq group name’,
’spw name’, ’schedule’, ’schedule type’, ’release date’.
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CASA <29>: vishead(’ngc5921.demo.ms’,mode=’list’,listitems=[])
Out[29]:

{’cal_grp’: (array([-1, -1, -1], dtype=int32), {}),
’field’: (array([’1331+30500002_0’, ’1445+09900002_0’, ’N5921_2’],

dtype=’|S16’),
{}),

’fld_code’: (array([’C’, ’A’, ’’],
dtype=’|S2’), {}),

’freq_group_name’: (array([’none’],
dtype=’|S5’), {}),

’log’: ({’r1’: False}, {}),
’observer’: (array([’TEST’],

dtype=’|S5’), {}),
’project’: (array([’’],

dtype=’|S1’), {}),
’ptcs’: ({’r1’: array([[[-2.74392758]],

[[ 0.53248521]]]),
’r2’: array([[[-2.42044692]],

[[ 0.17412604]]]),
’r3’: array([[[-2.26020138]],

[[ 0.08843002]]])},
{’MEASINFO’: {’Ref’: ’J2000’, ’type’: ’direction’},
’QuantumUnits’: array([’rad’, ’rad’],

dtype=’|S4’)}),
’release_date’: (array([ 4.30444800e+09]),

{’MEASINFO’: {’Ref’: ’TAI’, ’type’: ’epoch’},
’QuantumUnits’: array([’s’],

dtype=’|S2’)}),
’schedule’: ({’r1’: False}, {}),
’schedule_type’: (array([’’],

dtype=’|S1’), {}),
’source_name’: (array([’1331+30500002_0’, ’1445+09900002_0’, ’N5921_2’],

dtype=’|S16’),
{}),

’spw_name’: (array([’none’],
dtype=’|S5’), {}),

’telescope’: (array([’VLA’],
dtype=’|S4’), {})}

You can use mode=’get’ to retrieve the values of specific keywords, and likewise mode=’put’ to
change them. The inputs are:

mode = ’get’ # options: list, summary, get, put
hdkey = ’’ # keyword to get/put
hdindex = ’’ # keyword index to get/put, counting from zero. ==>all

and
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# vishead :: List, summary, get, and put metadata in a measurement set
mode = ’put’ # options: list, summary, get, put

hdkey = ’’ # keyword to get/put
hdindex = ’’ # keyword index to get/put, counting from zero. ==>all
hdvalue = ’’ # value of hdkey

For example, a common operation is to change the Telescope name (e.g. if it is unrecognized), e.g.

CASA <36>: vishead(’ngc5921.demo.ms’,mode=’get’,hdkey=’telescope’)
Out[36]:

(array([’VLA’],
dtype=’|S4’), {})

CASA <37>: vishead(’ngc5921.demo.ms’,mode=’put’,hdkey=’telescope’,hdvalue=’JVLA’)

CASA <38>: vishead(’ngc5921.demo.ms’,mode=’get’,hdkey=’telescope’)
Out[38]:

(array([’JVLA’],
dtype=’|S5’), {})

2.2.11 MS statistics (visstat)

ALERT: This is still a prototype task.

The visstat task is provided to obtain simple statistics for a Measurement Set, useful in regression
tests.

The inputs are:

# visstat :: Displays statistical information from a measurement set
vis = ’’ # Name of input visibility file
axis = ’amp’ # Which values to use

datacolumn = ’data’ # Which data column to use (data, corrected, model)

useflags = True # Take flagging into account?
spw = ’’ # spectral-window/frequency/channel
field = ’’ # Field names or field index numbers: ’’==>all, field=’0~2,3C286’
selectdata = True # More data selection parameters (antenna, timerange etc)

antenna = ’’ # antenna/baselines: ’’==>all, antenna = ’3,VA04’
timerange = ’’ # time range: ’’==>all, timerange=’09:14:0~09:54:0’
correlation = ’’ # Select data based on correlation
scan = ’’ # scan numbers: ’’==>all
array = ’’ # (sub)array numbers: ’’==>all
uvrange = ’’ # uv range: ’’==>all; uvrange = ’0~100klambda’, default units=meters

Running this task returns a record (Python dictionary) with the statistics, which can be captured
in a Python variable. For example,
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CASA <42>: mystat = visstat(’ngc5921.demo.ms’,axis=’amp’,datacolumn=’corrected’,field=’0’)

CASA <43>: mystat
Out[43]:

{’CORRECTED’: {’max’: 51.938671112060547,
’mean’: 14.796444141750133,
’medabsdevmed’: 0.28020858764648438,
’median’: 14.764373779296875,
’min’: 0.81362706422805786,
’npts’: 514916.0,
’quartile’: 0.56053066253662109,
’rms’: 14.829294204711914,
’stddev’: 0.98650836609147285,
’sum’: 7618925.8316934109,
’sumsq’: 113234125.12642419,
’var’: 0.97319875636846753}}

CASA <44>: print mystat[’CORRECTED’][’stddev’]
0.986508366091

The options for axis are:

axis=’amplitude’ # or (’amp’)
axis=’phase’
axis=’imag’
axis=’scan_number’
axis=’flag’

The phase of a complex number is in radians with range (−π, π).

2.2.12 Concatenating multiple datasets (concat)

Once you have your data in the form of CASA Measurement Sets, you can go ahead and process
your data using the editing, calibration, and imaging tasks. In some cases, you will most efficiently
operate on single MS for a particular session (such as calibration). Other tasks will (eventually)
take multiple Measurement Sets as input. For others, it is easiest to combine your multiple data
files into one.

If you need to combine multiple datasets, you can use the concat task. The default inputs are:

# concat :: Concatenate several visibility data sets.
vis = ’’ # Name of input visibility files to be

# concatenated
concatvis = ’’ # Name of output visibility file
freqtol = ’’ # Frequency shift tolerance for considering data

# as the same spwid
dirtol = ’’ # Direction shift tolerance for considering data

# as the same field
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respectname = False # If true, fields with a different name are not
# merged even if their direction agrees

timesort = False # If true, sort by TIME in ascending order
copypointing = True # Copy all rows of the POINTING table.
visweightscale = [] # List of the weight scaling factors to be

# applied to the individual MSs

The vis parameter will take a list of one or more MS. Usually, this will contain all the MS to
combine. concat will presort the visibilities in time.

With visweightscale, a list of weights can be manually specified for the respective input data
sets. They will be applied at the time of the combination. To determine the appropriate weights for
this procedure, one can inspect the weights (Wt and WtSp axis parameters) of the input datasets
in plotms.

The concatvis parameter contains the name of the output MS. If this points to an existing file
on disk, then the MS in vis will appended to it, otherwise a new MS file is created to contain the
concatenated data. Be careful here!

The timesort parameter can be used to make sure the output MS is in time order (e.g. if your input
MS have concurrent times). This can possibly speed up some subsequent calibration operations.

Furthermore, the parameter copypointing can be used to control whether the POINTING table
will be carried along in the concatenation process or if the output MS should not contain a POINT-
ING table. This table is quite large for some data (e.g. ALMA) and is mainly needed for mosaic
imaging. If you are certain that you will not need it, you can save time and diskspace by setting
copypointing to False. Also, as stated in the ephemeris handling section 4.7.11.3, concat will
correctly merge fields which use the same ephemeris.

The parameters freqtol and dirtol control how close together in frequency and angle on the sky
spectral windows or field locations need to be before calling them the same.

ALERT: Note that if multiple frequencies or pointings are combined using freqtol or dirtol,
then the data are not changed (i.e. not rephased to the single phase center). Use of these parameters
is intended to be tolerant of small offsets (e.g. planets tracked which move slightly in J2000 over
the course of observations, or combining epochs observed with slightly different positions).

For example:

default(’concat’)
vis = [’n4826_16apr.split.ms’,’n4826_22apr.split.ms’]
concatvis = ’n4826_tboth.ms’
freqtol = ’50MHz’
visweightscale=[’1’,2’]
concat()

combines the two days in ’n4826 16apr.split.ms’ and ’n4826 22apr.split.ms’ into a new
output MS called ’n4826 tboth.ms’, and the second MS is weighted twice the first one.

ALERT: Note that if you are concatenating MSs which use antennas which were moved between
observations, the MS definition does only foresee a unique antenna ID, but not a unique name(!).
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The moved antenna will appear twice in the antenna list under the same name but on different
stations and with two different IDs. The pair (’NAME@STATION’) will be the unique identifier.

If you would like to only concatenate the subtables of several MSs, not the bulk visibility data, you
can use the task testconcat instead of concat to save time and diskspace. testconcat has the
same parameters as concat. It produces an output MS with the concatenated subtables and an
empty Main table.

Furthermore, the task virtualconcat permits to concatenate MSs into a multi-MS (MMS, see
chapter 10) which is much faster as the data is moved into the MMS rather than copied and only
some reindexing is done. The bulk data is not rewritten. If you want to keep a copy of the
original MSs, set the parameter keepcopy of virtualconcat to True. The creation of that copy
will of course consume some of the time you saved by doing a virtual concatenation. Otherwise
virtualconcat offers the same functionality as concat.

2.3 Data Selection

Once in MS form, subsets of the data can be operated on using the tasks and tools. In CASA,
there are three common data selection parameters used in the various tasks: field, spw, and
selectdata. In addition, the selectdata parameter, if set to True, will open up a number of
other sub-parameters for selection. The selection operation is unified across all the tasks. The
available selectdata parameters may not be the same in all tasks. But if present, the same
parameters mean the same thing and behave in the same manner when used in any task.

For example:

field = ’’ # field names or index of calibrators ’’==>all
spw = ’’ # spectral window:channels: ’’==>all
selectdata = False # Other data selection parameters

versus

field = ’’ # field names or index of calibrators ’’==>all
spw = ’’ # spectral window:channels: ’’==>all
selectdata = True # Other data selection parameters

timerange = ’’ # time range: ’’==>all
uvrange = ’’ # uv range’’=all
antenna = ’’ # antenna/baselines: ’’==>all
scan = ’’ # scan numbers: Not yet implemented
msselect = ’’ # Optional data selection (Specialized. but see help)

The following are the general syntax rules and descriptions of the individual selection parameters
of particular interest for the tasks:
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2.3.1 General selection syntax

Most of the selections are effected through the use of selection strings. This sub-section describes
the general rules used in constructing and parsing these strings. Note that some selections are
done through the use of numbers or lists. There are also parameter-specific rules that are described
under each parameter.

All lists of basic selection specification-units are comma separated lists and can be of any length.
White-spaces before and after the commas (e.g. ’3C286, 3C48, 3C84’) are ignored, while white-
space within sub-strings is treated as part of the sub-string (e.g. ’3C286, VIRGO A, 3C84’). In
some cases, spaces need to be quoted, e.g. ”’spw 1’” (note the double quote around the single
quotes).

All integers can be of any length (in terms of characters) composed of the characters 0–9. Floating
point numbers can be in the standard format (DIGIT.DIGIT, DIGIT., or .DIGIT) or in the mantissa-
exponent format (e.g. 1.4e9). Places where only integers make sense (e.g. IDs), if a floating point
number is given, only the integer part is used (it is truncated).

Range of numbers (integers or real numbers) can be given in the format ’N0~N1’. For integer
ranges, it is expanded into a list of integers starting from N0 (inclusive) to N1 (inclusive). For real
numbers, it is used to select all values present for the appropriate parameter in the Measurement
Set between N0 and N1 (including the boundaries). Note that the ’~’ character is used rather than
the more obvious ’-’ in order to accommodate hyphens in strings and minus signs in numbers.

Wherever appropriate, units can be specified. The units are used to convert the values given to
the units used in the Measurement Set. For ranges, the unit is specified only once (at the end) and
applies to both the range boundaries.

2.3.1.1 String Matching

String matching can be done in three ways. Any component of a comma separated list that cannot
be parsed as a number, a number range, or a physical quantity is treated as a regular expression
or a literal string. If the string does not contain the characters ’*’, ’{’, ’}’ or ’?’, it is treated
as a literal string and used for exact matching. If any of the above mentioned characters are part
of the string, they are used as a regular expression. As a result, for most cases, the user does not
need to supply any special delimiters for literal strings and/or regular expressions. For example:

field = ’3’ # match field ID 3 and not select field named "3C286".

field = ’3*’ # used as a pattern and matched against field names. If
# names like "3C84", "3C286", "3020+2207" are found,
# all will match. Field ID 3 will not be selected
# (unless of course one of the above mentioned field
# names also correspond to field ID 3!).

field = ’30*’ # will match only with "3020+2207" in above set.

However if it is required that the string be matched exclusively as a regular expression, it can be
supplied within a pair of ’/’ as delimiters (e.g. ’/.+BAND.+/’). A string enclosed within double
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quotes (’"’) is used exclusively for pattern matching (patterns are a simplified form of regular
expressions - used in most UNIX commands for string matching). Patterns are internally converted
to equivalent regular expressions before matching. See the Unix command "info regex", or visit
http://www.regular-expressions.info, for details of regular expressions and patterns.

Strings can include any character except the following:

’,’ ’;’ ’"’ ’/’ NEWLINE

(since these are part of the selection syntax). Strings that do not contain any of the characters
used to construct regular expressions or patterns are used for exact matches. Although it is highly
discouraged to have name in the MS containing the above mentioned reserved characters, if one
does choose to include the reserved characters as parts of names etc., those names can only be
matched against quoted strings (since regular expression and patterns are a super-set of literal
strings – i.e., a literal string is also a valid regular expression).

This leaves ’"’, ’*’, ’{’, ’}’ or ’?’ as the list of printable character that cannot be part of a
name (i.e., a name containing this character can never be matched in a MSSelection expression).
These will be treated as pattern-matching even inside double double quotes (’" "’). There is
currently no escape mechanism (e.g. via a backslash).

Some examples of strings, regular expressions, and patterns:

• The string ’LBAND’ will be used as a literal string for exact match. It will match only the
exact string LBAND.

• The wildcarded string ’*BAND*’ will be used as a string pattern for matching. This will
match any string which has the sub-string BAND in it.

• The string ’"*BAND*"’ will also be used as a string pattern, matching any string which has
the sub-string BAND in it.

• The string ’/.+BAND.+/’ will be used as a regular expression. This will also match any string
which as the sub-string BAND in it. (the .+ regex operator has the same meaning as the *
wildcard operator of patterns).

2.3.2 The field Parameter

The field parameter is a string that specifies which field names or ids will be processed in the
task or tool. The field selection expression consists of comma separated list of field specifications
inside the string.

Field specifications can be literal field names, regular expressions or patterns (see § 2.3.1.1). Those
fields for which the entry in the NAME column of the FIELD MS sub-table match the literal field
name/regular expression/pattern are selected. If a field name/regular expression/pattern fails to
match any field name, the given name/regular expression/pattern are matched against the field
code. If still no field is selected, an exception is thrown.

http://www.regular-expressions.info
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Field specifications can also be given by their integer IDs. IDs can be a single or a range of IDs.
Field ID selection can also be done as a boolean expression. For a field specification of the form
’>ID’, all field IDs greater than ID are selected. Similarly for ’<ID’ all field IDs less than the ID
are selected.

For example, if the MS has the following observations:

MS summary:
==========
FIELDID SPWID NChan Pol NRows Source Name
---------------------------------------------------------------
0 0 127 RR 10260 0530+135
1 0 127 RR 779139 05582+16320
2 0 127 RR 296190 05309+13319
3 0 127 RR 58266 0319+415
4 0 127 RR 32994 1331+305
5 1 1 RR,RL,LL,RR 23166 KTIP

one might select

field = ’0~2,KTIP’ # FIELDID 0,1,2 and field name KTIP
field = ’0530+135’ # field 0530+135
field = ’05*’ # fields 0530+135,05582+16320,05309+13319

2.3.3 The spw Parameter

The spw parameter is a string that indicates the specific spectral windows and the channels within
them to be used in subsequent processing. Spectral window selection (’SPWSEL’) can be given as
a spectral window integer ID, a list of integer IDs, a spectral window name specified as a literal
string (for exact match) or a regular expression or pattern.

The specification can be via frequency ranges or by indexes. A range of frequencies are used to
select all spectral windows which contain channels within the given range. Frequencies can be
specified with an optional unit — the default unit being Hz. Other common choices for radio and
mm/sub-mm data are kHz, MHz, and GHz. You will get the entire spectral windows, not just the
channels in the specified range. You will need to do channel selection (see below) to do that.

The spw can also be selected via comparison for integer IDs. For example, ’>ID’ will select all
spectral windows with ID greater than the specified value, while ’<ID’ will select those with ID
lesser than the specified value.

Spectral window selection using strings follows the standard rules:

spw = ’1’ # SPWID 1
spw = ’1,3,5’ # SPWID 1,3,5
spw = ’0~3’ # SPWID 0,1,2,3
spw = ’0~3,5’ # SPWID 0,1,2,3 and 5
spw = ’<3,5’ # SPWID 0,1,2,3 and 5
spw = ’*’ # All spectral windows
spw = ’1412~1415MHz’ # Spectral windows containing 1412-1415MHz
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In some cases, the spectral windows may allow specification by name. For example,

spw = ’3mmUSB, 3mmLSB’ # choose by names (if available)

might be meaningful for the dataset in question.

Note that the order in which multiple spws are given may be important for other parameters. For
example, the mode = ’channel’ in clean uses the first spw as the origin for the channelization of
the resulting image cube.

2.3.3.1 Channel selection in the spw parameter

Channel selection can be included in the spw string in the form ’SPWSEL:CHANSEL’ where CHANSEL
is the channel selector. In the end, the spectral selection within a given spectral window comes
down to the selection of specific channels. We provide a number of shorthand selection options for
this. These CHANSEL options include:

• Channel ranges: ’START~STOP’

• Frequency ranges: ’FSTART~FSTOP’

• Channel striding/stepping: ’START~STOP^STEP’ or ’FSTART~FSTOP^FSTEP’

The most common selection is via channel ranges ’START~STOP’ or frequency ranges ’FSTART~FSTOP’:

spw = ’0:13~53’ # spw 0, channels 13-53, inclusive
spw = ’0:1413~1414MHz’ # spw 0, 1413-1414MHz section only

All ranges are inclusive, with the channel given by, or containing the frequency given by, START and
STOP plus all channels between included in the selection. You can also select the spectral window
via frequency ranges ’FSTART~FSTOP’, as described above:

spw = ’1413~1414MHz:1413~1414MHz’ # channels falling within 1413~1414MHz
spw = ’*:1413~1414MHz’ # does the same thing

You can also specify multiple spectral window or channel ranges, e.g.

spw = ’2:16, 3:32~34’ # spw 2, channel 16 plus spw 3 channels 32-34
spw = ’2:1~3;57~63’ # spw 2, channels 1-3 and 57-63
spw = ’1~3:10~20’ # spw 1-3, channels 10-20
spw = ’*:4~56’ # all spw, channels 4-56

Note the use of the wildcard in the last example.

A step can be also be included using ’^STEP’ as a postfix:

spw = ’0:10~100^2’ # chans 10,12,14,...,100 of spw 0
spw = ’:^4’ # chans 0,4,8,... of all spw
spw = ’:100~150GHz^10GHz’ # closest chans to 100,110,...,150GHz

A step in frequency will pick the channel in which that frequency falls, or the nearest channel.
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2.3.4 The selectdata Parameters

The selectdata parameter, if set to True (default), will expand the inputs to include a number of
sub-parameters, given below and in the individual task descriptions (if different). If selectdata =
False, then the sub-parameters are treated as blank for selection by the task.

The common selectdata expanded sub-parameters are:

2.3.4.1 The antenna Parameter

The antenna selection string is a semi-colon (’;’) separated list of baseline specifications. A
baseline specification is of the form:

• ’ANT1’ — Select all baselines including the antenna(s) specified by the selector ANT1.

• ’ANT1&’ — Select only baselines between the antennas specified by the selector ANT1.

• ’ANT1&ANT2’ — Select only the cross-correlation baselines between the antennas specified by
selector ANT1 and antennas specified by selector ANT2. Thus ’ANT1&’ is an abbreviation for
’ANT1&ANT1’.

• ’ANT1&&ANT2’ — Select only auto-correlation and cross-correlation baselines between anten-
nas specified by the selectors ANT1 and ANT2. Note that this is what the default antenna=’’
gives you.

• ’ANT1&&&’ — Select only autocorrelations specified by the selector ANT1.

The selectors ANT1 and ANT2 are comma-separated lists of antenna integer-IDs or literal antenna
names, patterns, or regular expressions. The ANT strings are parsed and converted to a list of
antenna integer-IDs or IDs of antennas whose name match the given names/pattern/regular ex-
pression. Baselines corresponding to all combinations of the elements in lists on either side of
ampersand are selected.

Integer IDs can be specified as single values or a range of integers. When items of the list are parsed
as literal strings or regular expressions or patterns (see § 2.3.1 for more details on strings). All
antenna names that match the given string (exact match)/regular expression/pattern are selected.

ALERT: Just for antenna selection, a user supplied integer (or integer list) is converted to a string
and matched against the antenna name. If that fails, the normal logic of using an integer as an
integer and matching it with antenna index is done. Note that currently there is no method for
specifying a pure index (e.g. a number that will not first be checked against the name).

The comma is used only as a separator for the list of antenna specifications. The list of baselines
specifications is a semi-colon separated list, e.g.

antenna = ’1~3 & 4~6 ; 10&11’
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will select baselines between antennas 1,2,3 and 4,5,6 (’1&4’, ’1&5’, . . . , ’3&6’) plus baseline
’10&11’.

The wildcard operator (’*’) will be the most often used pattern. To make it easy to use, the
wildcard (and only this operator) can be used without enclosing it in quotes. For example, the
selection

antenna = ’VA*’

will match all antenna names which have ’VA’ as the first 2 characters in the name (irrespective
of what follows after these characters).

There is also a negation operator “!” that can be used to de-select antennas or baselines.

Some examples:

antenna=’’ # shows blank autocorr pages
antenna=’*&*’ # does not show the autocorrs
antenna=’*&&*’ # show both auto and cross-cor (default)
antenna=’*&&&’ # shows only autocorrs

antenna=’5&*’ # shows non-auto baselines with AN 5

antenna=’5,6&&&’ # AN 5 and 6 autocor
antenna=’5&&&;6&*’ # AN 5 autocor plus cross-cors to AN 6

antenna=’!5’ # baselines not involving AN 5

Antenna numbers as names: Needless to say, naming antennas such that the names can also
be parsed as a valid token of the syntax is a bad idea. Nevertheless, antenna names that contain
any of the reserved characters and/or can be parsed as integers or integer ranges can still be used
by enclosing the antenna names in double quotes (’ "ANT" ’). E.g. the string

antenna = ’10~15,21,VA22’

will expand into an antenna ID list 10,11,12,13,14,15,21,22 (assuming the index of the antenna
named ’VA22’ is 22). If, however, the antenna with ID index 50 is named ’21’, then the string

antenna = ’10~15,21,VA22’

will expand into an antenna ID list of 10,11,12,13,14,15,50,22. Keep in mind that numbers are
FIRST matched against names, and only against indices if that matching fails. There is currently
no way to force a selection to use the index, and if there an antenna with that name it will select
that.

Read elsewhere (e.g. info regex under Unix) for details of regular expression and patterns.

Antenna stations Instead of antenna names, the antenna station names are also accepted by the
selection syntax., e.g. ’N15’ for the JVLA.
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ANT@STATION sections syntax Sometimes, data from multiple array configurations are
stored in a single MS. But some antennas may have been moved during reconfiguration and the
’ANT@STATION’ syntax can distinguish between them. ’ANT’ is the antenna name or index and
’STATION’ is the antenna station name, e.g., ’EA12@W03’ selects antenna EA012 but only at
times when it is positioned on station W03. Wildcards are accepted, e.g. ’EA12@*’ selects all
visibilities from antenna EA12, and ’*@W03’ would select all antennas that are located on station
’W03’ during any observations included in the MS.

2.3.4.2 The scan Parameter

The scan parameter selects the scan ID numbers of the data. There is currently no naming
convention for scans. The scan ID is filled into the MS depending on how the data was obtained,
so use this with care.

Examples:

scan = ’3’ # scan number 3.
scan = ’1~8’ # scan numbers 1 through 8, inclusive
scan = ’1,2,4,6’ # scans 1,2,4,6
scan = ’<9’ # scans <9 (1-8)

NOTE: ALMA and VLA/JVLA number scans starting with 1 and not 0. You can see what the
numbering is in your MS using the listobs task with verbose=True (see § 2.2.7).

2.3.4.3 The timerange Parameter

The time strings in the following (T0, T1 and dT) can be specified as YYYY/MM/DD/HH:MM:SS.FF.
The time fields (i.e., YYYY, MM, DD, HH, MM, SS and FF), starting from left to right, may be omitted
and they will be replaced by context sensitive defaults as explained below.

Some examples:

1. timerange=’T0~T1’: Select all time stamps from T0 to T1. For example:

timerange = ’2007/10/09/00:40:00 ~ 2007/10/09/03:30:00’

Note that fields missing in T0 are replaced by the fields in the time stamp of the first valid
row in the MS. For example,

timerange = ’09/00:40:00 ~ 09/03:30:00’

where the YY/MM/ part of the selection has been defaulted to the start of the MS.
Fields missing in T1, such as the date part of the string, are replaced by the corresponding
fields of T0 (after its defaults are set). For example:

timerange = ’2007/10/09/22:40:00 ~ 03:30:00’
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does the same thing as above.

2. timerange=’T0’: Select all time stamps that are within an integration time of T0. For
example,

timerange = ’2007/10/09/23:41:00’

Integration time is determined from the first valid row (more rigorously, an average integration
time should be computed). Default settings for the missing fields of T0 are as in (1).

3. timerange=’T0+dT’: Select all time stamps starting from T0 and ending with time stamp
T0+dT. For example,

timerange = ’23:41:00+01:00:00’

picks an hour-long chunk of time.

Defaults of T0 are set as usual. Defaults for dT are set from the time corresponding to MJD=0.
Thus, dT is a specification of length of time from the assumed nominal ”start of time”.

4. timerange=’>T0’: Select all times greater than T0. For example,

timerange = ’>2007/10/09/23:41:00’
timerange = ’>23:41:00’ # Same thing without day specification

Default settings for T0 are as above.

5. timerange=’<T1’: Select all times less than T1. For example,

timerange = ’<2007/10/09/23:41:00’

Default settings for T1 are as above.

An ultra-conservative selection might be:

timerange = ’1960/01/01/00:00:00~2020/12/31/23:59:59’

which would choose all possible data!

2.3.4.4 The uvrange Parameter

Rows in the MS can also be selected based on the uv-distance or physical baseline length that the
visibilities in each row correspond to. This uvrange can be specified in various formats.

The basic building block of uv-distance specification is a valid number with optional units in the
format N[UNIT] (the unit in square brackets is optional). We refer to this basic building block
as UVDIST. The default unit is meter. Units of length (such as ’m’ and ’km’) select physical
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baseline distances (independent of wavelength). The other allowed units are in wavelengths (such
as ’lambda’, ’klambda’ and ’Mlambda’ and are true uv-plane radii

ruv =
√

u2 + v2. (2.1)

If only a single UVDIST is specified, all rows, the uv-distance of which exactly matches the given
UVDIST, are selected.

UVDIST can be specified as a range in the format ’N0~N1[UNIT]’ (where N0 and N1 are valid
numbers). All rows corresponding to uv-distance between N0 and N1 (inclusive) when converted
the specified units are selected.

UVDIST can also be selected via comparison operators. When specified in the format ’>UVDIST’, all
visibilities with uv-distances greater than the given UVDIST are selected. Likewise, when specified
in the format ’<UVDIST’, all rows with uv-distances less than the given UVDIST are selected.

Any number of above mentioned uv-distance specifications can be given as a comma-separated list.

Examples:

uvrange = ’100~200km’ # an annulus in physical baseline length
uvrange = ’24~35Mlambda, 40~45Mlambda’ # two annuli in units of mega-wavelengths
uvrange = ’< 45klambda’ # less than 45 kilolambda
uvrange = ’> 0lambda’ # greater than zero length (no auto-corrs)
uvrange = ’100km’ # baselines of length 100km
uvrange = ’100klambda’ # uv-radius 100 kilolambda

2.3.4.5 The correlation Parameter

The correlation parameter will select between different correlation products. They can be either
the correlation ID or values such as ’XX’, ’YY’, ’XY’, ’YX’, ’RR’, ’LL’, ’RL’, ’LR’.

2.3.4.6 The intent Parameter

intent is the scan intent that was specified when the observations were set up. They typically
describe what was intended with a specific scan, i.e. a flux or phase calibration, a bandpass, a
pointing, an observation of your target, or something else or a combination. The format for the
scan intents of your observations are listed in the logger when you run listobs. Minimum matching
with wildcards will work, like ’*BANDPASS*’. This is especially useful when multiple intents are
attached to scans.

2.3.4.7 The observation Parameter

The observation parameter can select between different observation IDs. They will be assigned to
parts of a combined data set during a run of concat. Each input MS will receive its own observation
id in the process.
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2.3.4.8 The msselect Parameter

More complicated selections within the MS structure are possible using the Table Query Language
(TaQL). This is accessed through the msselect parameter.

Note that the TaQL syntax does not follow the rules given in § 2.3.1 for our other selection strings.
TaQL is explained in more detail in Aips++ NOTE 199 — Table Query Language (http:
//aips2.nrao.edu/docs/notes/199/199.html). This will eventually become a CASA document.
The specific columns of the MS are given in the most recent MS specification document: Aips++
NOTE 229 — Measurement‘ Set definition version 2.0 (http://aips2.nrao.edu/docs/
notes/229/229.html). This documentation will eventually be updated to the CASA document
system.

Most selection can be carried out using the other selection parameters. However, these are merely
shortcuts to the underlying TaQL selection. For example, field and spectral window selection can
be done using msselect rather than through field or spw:

msselect=’FIELD_ID == 0’ # Field id 0 only
msselect=’FIELD_ID <= 1’ # Field id 0 and 1
msselect=’FIELD_ID IN [1,2]’ # Field id 1 and 2
msselect=’FIELD_ID==0 && DATA_DESC_ID==3’ # Field id 0 in spw id 3 only

ALERT: The msselect style parameters will be phased out of the tasks. TaQL selection will still
be available in the Toolkit.

http://aips2.nrao.edu/docs/notes/199/199.html
http://aips2.nrao.edu/docs/notes/199/199.html
http://aips2.nrao.edu/docs/notes/229/229.html
http://aips2.nrao.edu/docs/notes/229/229.html


Chapter 3

Data Examination and Editing

3.1 Plotting and Flagging Visibility Data in CASA

The tasks available for plotting and flagging of data are:

• flagmanager — manage versions of data flags (§ 3.2)

• plotms — create X-Y plots of data in MS and calibration tables, flag data (§ 3.3.1)

• plotxy — older X-Y plotter with some functionalities not yet implemented in plotms (§ 3.3.2)

• flagdata --- Data Flagging (§ 3.4)

• flagcmd --- manipulate and apply flags using FLAG CMD table (§ 3.5)

• browsetable --- browse data in any CASA table (including a MS) (§ 3.6)

• plotants --- create simple plots of antenna positions (§ 3.3.3)

• plotuv --- plotting of uv-coverages (§ 3.3.4)

The following sections describe the use of these tasks.

Information on other related operations can be found in:

• listobs — list summary of a MS (§ 2.2.7)

• listvis — list data in a MS (§ 2.2.9)

• selectdata — general data selection syntax (§ 2.3)

• viewer — use the casaviewer to display the MS as a raster image, and flag it (§ 7)

122
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3.2 Managing flag versions with flagmanager

The flagmanager task will allow you to manage different versions of flags in your data. These are
stored inside a CASA flagversions table, under the name of the MS <msname>.flagversions. For
example, for the MS jupiter6cm.usecase.ms, there will need to be jupiter6cm.usecase.ms.flagversions
on disk. This is created on import (by importvla or importuvfits) or when flagging is first done
on an MS without a .flagversions (e.g. with plotxy).

By default, when the .flagversions is created, this directory will contain a flags.Original in it
containing a copy of the original flags in the MAIN table of the MS so that you have a backup. It
will also contain a file called FLAG VERSION LIST that has the information on the various flag
versions there. The flagversions are cumulative, i.e. a specific version number contains all the flags
from the lower version numbers, too.

The inputs for flagmanager are:

vis = ’’ # Name of input visibility file (MS)
mode = ’list’ # Flag management operation (list,save,restore,delete)

The mode=’list’ option will list the available flagversions from the ¡msname¿.flagversions file. For
example:

CASA <102>: default(’flagmanager’)
CASA <103>: vis = ’jupiter6cm.usecase.ms’
CASA <104>: mode = ’list’
CASA <105>: flagmanager()
MS : /home/imager-b/smyers/Oct07/jupiter6cm.usecase.ms

main : working copy in main table
Original : Original flags at import into CASA
flagautocorr : flagged autocorr
xyflags : Plotxy flags

The mode parameter expands the options. For example, if you wish to save the current flagging
state of vis=¡msname¿,

mode = ’save’ # Flag management operation (list,save,restore,delete)
versionname = ’’ # Name of flag version (no spaces)
comment = ’’ # Short description of flag version
merge = ’replace’ # Merge option (replace, and, or)

with the output version name specified by versionname. For example, the above xyflags version
was written using:

default(’flagmanager’)
vis = ’jupiter6cm.usecase.ms’
mode = ’save’
versionname = ’xyflags’
comment = ’Plotxy flags’
flagmanager()
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and you can see that there is now a sub-table in the flagversions directory

CASA <106>: ls jupiter6cm.usecase.ms.flagversions/
IPython system call: ls -F jupiter6cm.usecase.ms.flagversions/
flags.flagautocorr flags.Original flags.xyflags FLAG_VERSION_LIST

It is recommended that you use this facility regularly to save versions during flagging.

Note that if a flagversion already exists under a name, the task will give a warning and add a suffix
’.old.timestamp’ tp the previous version.

You can restore a previously saved set of flags using the mode=’restore’ option:

mode = ’restore’ # Flag management operation (list,save,restore,delete)
versionname = ’’ # Name of flag version (no spaces)
merge = ’replace’ # Merge option (replace, and, or)

The merge sub-parameter will control how the flags are restored. For merge=’replace’, the flags
in versionname will replace those in the MAIN table of the MS. For merge=’and’, only data that
is flagged in BOTH the current MAIN table and in versionname will be flagged. For merge=’or’,
data flagged in EITHER the MAIN or in versionname will be flagged.

The mode=’delete’ option can be used to remove versionname from the flagversions:

mode = ’delete’ # Flag management operation (list,save,restore,delete)
versionname = ’’ # Name of flag version (no spaces)

3.3 X-Y Plotting and Editing of the Data

There are three main X-Y plotting tasks in CASA:

• plotms — create X-Y plots of data in MS, flag data (§ 3.3.1)

• plotxy — older X-Y plotter with some functionalities not yet implemented in plotms (§ 3.3.2)

• plotants — create simple plots of antenna positions (§ 3.3.3)

3.3.1 MS Plotting and Editing using plotms

The principal way to get X-Y plots of visibility data and calibration tables is the plotms task. This
task also provides editing capability. Plotms is a GUI-style plotter, based on Qt. It can either be
started as a task within CASA (plotms) or from outside CASA (type casaplotms on the command
line).

The current inputs to the plotms task are:
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# plotms :: A plotter/interactive flagger for visibility data.
vis = ’’ # input MS (or CalTable) (blank for none)
gridrows = 1 # Number of subplot rows (default 1).
gridcols = 1 # Number of subplot columns (default 1).
rowindex = 0 # Row location of the plot (0-based, default 0)
colindex = 0 # Column location of the plot (0-based, default 0)
plotindex = 0 # Index to address a subplot (0-based, default 0)
xaxis = ’’ # plot x-axis (blank for default/current)
yaxis = ’’ # plot y-axis (blank for default/current)
selectdata = True # data selection parameters

field = ’’ # field names or field index numbers (blank for all)
spw = ’’ # spectral windows:channels (blank for all)
timerange = ’’ # time range (blank for all)
uvrange = ’’ # uv range (blank for all)
antenna = ’’ # antenna/baselines (blank for all)
scan = ’’ # scan numbers (blank for all)
correlation = ’’ # correlations (blank for all)
array = ’’ # (sub)array numbers (blank for all)
observation = ’’ # Select by observation ID(s)
intent = ’’ # Select observing intent
msselect = ’’ # MS selection (blank for all)

averagedata = True # data averaging parameters
avgchannel = ’’ # average over channel? (blank = False, otherwise value

# in channels)
avgtime = ’’ # average over time? (blank = False, other value in

# seconds)
avgscan = False # only valid if time averaging is turned on. average

# over scans?
avgfield = False # only valid if time averaging is turned on. average

# over fields?
avgbaseline = False # average over all baselines? (mutually exclusive with

# avgantenna)
avgantenna = False # average by per-antenna? (mutually exclusive with

# avgbaseline)
avgspw = False # average over all spectral windows?
scalar = False # Do scalar averaging?

transform = False # transform data in various ways?
extendflag = False # have flagging extend to other data points?
iteraxis = ’’ # the axis over which to iterate
customsymbol = False # set a custom symbol(s) for unflagged points
coloraxis = ’’ # selects which data to use for colorizing
customflaggedsymbol = False # set a custom plot symbol for flagged points
plotrange = [] # plot axes ranges: [xmin,xmax,ymin,ymax]
title = ’’ # Title written along top of plot
xlabel = ’’ # Text for horizontal axis. Blank for default.
ylabel = ’’ # Text for vertical axis. Blank for default.
showmajorgrid = False # Show major grid lines (horiz and vert.)
showminorgrid = False # Show minor grid lines (horiz and vert.)
showlegend = False # Show a legend on the plot.
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plotfile = ’’ # Name of plot file to save automatically.
showgui = True # Show GUI

clearplots = True # Remove any existing plots so new ones can replace
# them.

callib = ’’ # Calibration library filename or dictionary for on-the-
# fly calibration.

Almost all of these parameters can also be set or modified from inside the plotms window. Note
that, if the vis parameter is set to the name of a measurement or calibration table set here, when
you start up plotms, the entire measurement set will be plotted, which can be time consuming. It
is probably best to leave all parameters blank for now, setting them as needed inside the plotms
GUI.

Figure 3.1: A freshly-started plotms GUI window. Note that the Plots > Data tab is selected,
which is discussed in § 3.3.1.1, 3.3.1.7, and 3.3.1.9.
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3.3.1.1 Loading and Selecting Data

When plotms is first started, a window will appear as in Figure 3.1. It will, by default, display the
Plots tab (as chosen from the tabs at the top of the plotms window—e.g., Plots, Flag, Tools...)
and the Plots > Data tab (as chosen from the tabs on the far left side of the plotms window—e.g.,
Data, Calibration, Axes, Pages, Transform...). First, a measurement set should be loaded
by clicking on Browse near the top of the Plots > Data tab, and selecting a .ms directory (just
select the directory itself; do not descend into the .ms directory). A plot can now be made of the
measurement set by clicking on Plot—but beware, this would plot the entire measurement set, and
could take quite some time! It is probably better to select a subset of the measurement set using
the Selection windows in the Plots > Data tab before clicking Plot.

The options for data selection are:

• field

• spw

• timerange

• uvrange

• antenna

• scan

• corr

• array

• observation

• msselect

These are described in § 2.3. Note that, unlike when setting data selection parameters from the
CASA command line, no quotation marks are needed around strings.

Once you have selected the desired subset of data, if you click Plot, plotms will by default plot
amplitude versus time. See the next section for information about other possible axes.

For a given data selection, plotms will only load the data once. This speeds up plotting considerably
when changing plot parameters such as different axes, colors etc. Sometimes, however, the data
changes on disk, e.g., when other data processing tasks were applied. To force plotms to reload
the data, checkmark the little force reload box left to the Plot’ button or press the SHIFT key
while clicking the Plot button.
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3.3.1.2 A Brief Note Regarding plotms Memory Usage

In order to provide a wide range of flexible interactive plotting options while minimizing the I/O
burden, plotms caches the data values for the plot (along with a subset of relevant meta-info) in as
efficient a manner as possible. For plots of large numbers of points, the total memory requirement
can be quite large. plotms attempts to predict the memory it will require (typically 5 or 6 bytes
per plotted point when only one axis is a data axis, depending upon the data shapes involved), and
will complain if it believes there is insufficient memory to support the requested plot. For most
practical interactive purposes (plots that load and draw in less than a few or a few 10s of minutes),
there is usually not a problem on typical modern workstations (attempts to plot large datasets on
small laptops might be more likely to encounter problems here).

The absolute upper limit on the number of simultaneously plotted points is currently set by the
ability to index the points in the cache. For modern 64 bit machines, this is about 4.29 billion
points (requiring around 25GB of memory). (Such plots are not especially useful interactively, since
the I/O and draw become prohibitive.)

In general, it is usually most efficient to plot data in modest chunks of not more than a few hundred
million points or less, either using selection or averaging. Note that all iterations are (currently)
cached simultaneously for iterated plots, so iteration is not a way to manage memory use. A few
hundred million points tends to be the practical limit of interactive plotms use w.r.t. information
content and utility in the resulting plots, especially when you consider the number of available
pixels on your screen.

In scripts, or for very large data sets, it can be desirable to use plotms in a non-interactive mode.
This can be done by setting showgui=False and to directly plot into a png image specified by
plotfile.

3.3.1.3 Plot Axes

The X and Y axes of a plot are selected by clicking on the Plots > Axes tab on the left side of
the plotms window, and choosing an entry from the drop-down menus below X Axis and Y Axis
(see Figure 3.2). Possible axes are:

• Scan — The scan number, as listed by listobs (§ 2.2.7) or the data summary in plotms
(§ 3.3.1.9).

• Field — The field number, as listed by listobs (§ 2.2.7) or the plotms data summary
(§ 3.3.1.9).

• Time — The time at which the visibility was observed, given in terms of calendar year
(yyyy/mm/dd/hh:mm:ss.ss).

• Interval — The integration time in seconds.

• Spw — The spectral window number. The characteristics of each spectral window are listed
in listobs (§ 2.2.7) or the plotms data summary (§ 3.3.1.9).
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Figure 3.2: The Plots > Axes tab in the plotms GUI window, used to make a plot of Amp
versus Channel.

• Channel — The spectral channel number.

• Frequency — Frequency in units of GHz. The frame for the frequency (e.g., topocentric,
barycentric, LSRK) can be set in the Plots > Trans tab (§ 3.3.1.10).

• Velocity — Velocity in units of km s−1, as defined by the Frame, Velocity Defn, and
Rest Freq parameters in the Plots > Transform tab (§ 3.3.1.10).

• Corr — Correlations which have been assigned integer IDs: 5 = RR; 6 = RL; 7 = LR; and
8 = LL.

• Antenna1 — The first antenna in a baseline pair; for example, for baseline 2-4, Antenna1
= 2. Antennae are numbered according to the antenna IDs listed in listobs (§ 2.2.7) or the
plotms data summary (§ 3.3.1.9).

• Antenna2 — The second antenna in a baseline pair; for baseline 2-4, Antenna2 = 4. An-
tennae are numbered according to the antenna IDs listed in listobs (§ 2.2.7) or the plotms
data summary (§ 3.3.1.9).
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• Antenna — Antenna ID for plotting antenna-based quantities. Antennae are numbered ac-
cording to the antenna IDs listed in listobs (§ 2.2.7) or the plotms data summary (§ 3.3.1.9).

• Baseline — The baseline number.

• Row — The MS data row number.

• Real and Imag — The real and imaginary parts of the visibility in units which are propor-
tional to Jansky (for data which are fully calibrated, the units should be Jy).

• UVDist — Projected baseline separations in units of meters. Note that UVDist is not a
function of frequency.

• UVwave — Projected baseline separations in units of the observing wavelength (lambda, not
kilolambda). UVDist L is a function of frequency, and therefore, there will be a different
data point for each frequency channel.

• U, V, and W — u, v, and w in units of meters.

• Uwave, Vwave, and Wwave — u, v, and w in units of wavelengths lambda.

• Amp — Data amplitudes in units which are proportional to Jansky (for data which are fully
calibrated, the units should be in Jy).

• Phase — Data phases in units of degrees.

• Wt and Wt*Amp — the weight of the visibility (see AppendixF) and the product of the
weight and the amplitude

• WtSp — WEIGHT SPECTRUM column, i.e. a weight per channel

• Sigma — the SIGMA column of the visibilities (see Appendix F)

• SigmaSp — SIGMA SPECTRUM column, i.e. a SIGMA per channel

• Flag and FlagRow — Data which are flagged have Flag = 1, whereas unflagged data are set
to Flag = 0, FlagRow is teh MS row number. Note that, to display flagged data, you will
have to click on the Plots > Display tab and choose a Flagged Points Symbol (§ 3.3.1.8).

• Azimuth and Ant-Azimuth — Azimuth in units of degrees. Azimuth plots a fiducial
value for the entire array, while Ant-Azimuth plots the azimuth for each individual antenna
(their azimuths will differ by small amounts, because each antenna is located at a slightly
different longitude, latitude, and elevation).

• Elevation and Ant-Elevation — Elevation in units of degrees. Elevation is a represen-
tative value for the entire array, while Ant-Elevation is the elevation for each individual
antenna (their elevations will differ by small amounts, because each antenna is located at a
slightly different longitude, latitude, and elevation).

• HourAngle — Hour angle in units of hours. This is a fiducial value for the entire array.
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• ParAngle and Ant-ParAng — Parallactic angle in units of degrees. ParAngle is the
fiducial parallactic angle for all antennae in the array, while Ant-ParAng plots the parallactic
angle for each individual antenna (their parallactic angles will differ by small amounts, because
each antenna is located at a slightly different longitude, latitude, and elevation).

• Row — Data row number. A row number corresponds to a unique time, baseline, and
spectral window in the measurement set.

• FlagRow — In some tasks, if a whole data row is flagged, then FlagRow will be set to 1 for
that row. Unflagged rows have FlagRow = 0. However, note that some tasks (like plotms)
may flag a row, but not set FlagRow = 1. It is probably better to plot Flag than FlagRow
for most applications.

• GainAmp, GainPhase, GainReal, GainImag — are the amplitude, phase, real and imag-
inary part of the calibration tables for regular complex gain tables.

• Delay — The delay of a delay calibration table

• Opac — Opacity values of a Opacity calibration table

• SwPower — Switched Power values for VLA switched power calibration tables

• Tsys — Tsys for ALMA Tsys calibration tables

If the data axis selected from the drop-down menu is already stored in the cache (therefore implying
that plotting will proceed relatively quickly), an “X” will appear in the checkbox next to In Cache?.
If the data shall be reloaded from disk, the “force reload” checkmark should be set at the bottom
of this display.

For relevant data axes like Amp and Phase, the user will be presented with the option to plot
raw data or calibrated data. This can be selected via a drop-down menu called Data Column,
located directly under the drop-down menu for X or Y Axis selection (see the Y axis in Figure 3.2).
To plot raw data, select “data”; to plot calibrated data, select “corrected”. Note that this choice
will only have an impact on a plot if a calibration table has been applied to the measurement set
(see applycal, Sect. 4.6.1).

If a data model has been applied to the measurement set (e.g., with setjy, Sect. 4.3.5) it can
be plotted by selecting “model” from the Data Column menu. Residuals can be plotted via
“corrected-model”, “data-model”, “data/model”, and “corrected/model”.

3.3.1.4 Calibration Library

The keyword ’callib’ in the plotms task parameters can be used to provide a calibration library
file (see AppendixG). This file allows one to apply calibration tables to the uncalibrated data on
the fly, i.e. without a run of applycal beforehand. The tab Calibration on the right hand side
contains a field to specify the calibration library or to specify the calibration library commands
directly. There’s also a switch to either apply the calibration library to produce the “corrected”
data (“Calibration On”) or to show an existing “corrected” data column (“Calibration Off”).
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3.3.1.5 Tools

Various tools—selectable as icon buttons at the bottom of the plotms window—can be used to
zoom, edit, and locate data. The icon buttons can be seen at the bottom of Figures 3.1 and 3.2,
and are, from left to right:

• Zoom — The “magnifying glass” button (1st on left) lets you draw a box around a region
of the plot (left-click on one corner of the box, and drag the mouse to the opposite corner of
the desired box), and then zooms in on this box.

• Pan — The “four-arrow” button (2nd from left) lets you pan around a zoomed plot.

• Annotate — The 3rd button from the left is chosen from a drop-down menu to either
Annotate Text (“T with a green diamond” button) or Annotate Rectangle (“pencil”
button). In the Annotate Text environment, click on a location in the plot where text
is desired; a window will pop up, allowing you to type text in it. When you click the OK
button, this text will appear on the plot. Annotate Rectangle simply lets you draw a box
on the plot by left-clicking and dragging the mouse. By clicking on the Annotator tab near
the top of the plotms window, different fonts, colors, line styles, etc. can be selected for
annotations.

• Home — The “house” button (5th from left) returns to the original zoom level.

• Stack Back and Stack Forward — The left and right arrow buttons (4th and 6th from
left) step through the zoom settings you’ve visited.

• Mark Regions — The “box with a green diamond” button (7th from left) lets you mark a
region for flagging, unflagging, or locating. Left-click on one corner of the desired region, and
then drag the mouse to set the opposite corner of the region. You can mark multiple boxes
before performing an operation on them.

• Clear Regions — Clicking on the “box with a red circle” button (8th from left) will clear
all regions which have been marked using Mark Regions.

• Flag — Click on the “flag” button (9th from left) to flag all points in the marked regions.

• Unflag — Click on the “crossed-out flag” button (10th from left) to unflag any flagged points
that would be in the marked regions (even if invisible).

• Locate — The “magnifying glass on a sheet of paper” button (11th from left) will print out
information to the command line about points in the marked regions.

• Hold Drawing — If the “hold drawing” button (rightmost, or 12th from left) is depressed,
and if new plot axes are selected from the Plots > Axes tab, these new data will be cached
but not plotted. When the button is clicked on again and un-depressed, it will automatically
plot the data that was last requested. This can be particularly useful when changing the size
of the plotms window.
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Under the Options tab near the top of the plotms window one can select the layout of the page.
For multiple plots per page, one can select the grid layout, ie the number of rows and columns
that determine the number of sub-plots. The when changing plot axes, clear any existing
regions or annotations checkbox determines when regions and annotation are deleted from the
plot. The Tool Button Style drop-drop down menu determines if icons and/or text represent the
buttons at the bottom of the plotms window.

It is possible to hide these icons by going to the View > Toolbars menu at the top of the plotms
window and un-depressing the Tools option (except for Hide Drawing, which is hidden by clicking
on View > Toolbars > Display). In addition, the above tools can also be accessed by clicking
on the Tools tab near the top of the plotms window (just below the View menu).

The Tools tab also enables one additional tool, the Tracker. To use Tracker, click on the Hover
and/or

Display checkbox, and place your mouse over the plot. Tracker will output the X and Y position
of your mouse, either as text superimposed on the plot near your mouse (if Hover is selected) or in
the blank window in the Tools tab (if Display is selected). Pressing the SPACE bar will copy the
lines into the larger white box below to the right. This can be repeated many times and a log of
positions and values will be created. The content in the box can then be easily copied and pasted
into any other application that is used for data analysis. The Clear button wipes out the content
of the box for a fresh start into new scientific adventures.

3.3.1.6 Interactive Flagging in plotms

Interactive flagging, on the principle of “see it — flag it”, is possible on the X-Y display of the data
plotted by plotms. The user can use the cursor to mark one or more regions, and then flag, unflag,
or list the data that falls in these zones of the display.

Using the row of icons buttons at the bottom of the plotms window (§ 3.3.1.5), click on the Mark
Regions button (which will appear to depress), then mark a region by left-clicking and dragging
the mouse (each click and drag will mark an additional region). You can get rid of all your regions
by clicking on the Clear Regions. Once regions are marked, you can then click on one of the
other buttons to take action:

1. Flag — flag the points in the region(s),

2. Unflag — unflag flagged points in the region(s),

3. Locate — spew out a list of the points in the region(s) to the command line (Warning: this
could be a long list!).

Figure 3.3 shows an example of marking regions and then clicking the Flag button. Whenever you
click on a button, that action occurs without requiring an explicit disk-write. If you quit plotms
and re-enter, you will see your previous edits.
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Figure 3.3: Plot of amplitude versus time, before (left) and after (right) flagging two marked
regions. To unflag these regions, mark the two same regions and click the Unflag button.

A table with the name ¡msname¿.flagversions (where vis=<msname>) will be created in the same
directory if it does not exist already. It is recommended that you save important flagging stages
using the flagmanager task (§ 3.2).

Flags can also be extended with options in the Flagging tab, found near the top of the plotms
window. Flag extension enables the user to plot a subset of the data and extend the flagging to a
wider set. In this release, the only functional extensions are over channel and correlation.

By checking the boxes next to Extend Flags and Channel, flagging will be extended to other
channels in the same spw as the displayed point. For example, if spw=’0:0’ and channel 0 is
displayed, then flagging will extend to all channels in spw 0.

By checking the boxes next to Extend Flags and Correlation, flags will be extended beyond the
correlations displayed. Currently the only option is to extend to All correlations, implying that all
correlations will be flagged, e.g. with RR displayed, the correlations RR, RL, LR, and LL will all
be flagged.

WARNING: use of flag extensions may lead to deletion of much more data than desired. Be
careful!

3.3.1.7 Averaging Data

The Plots > Data tab enables averaging of the data in order to increase signal-to-noise of the
plotted points or to increase plotting speed. The options for Averaging are:

• channel

• time

• all baselines or per antenna
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• all spectral windows

• scalar

The box next to a given Averaging mode needs to be checked for that averaging to take effect.

For example, to average n channels together, the user would click on the box next to Channels
so that an “X” appears in it, and then type the number n in the empty box. When the user next
clicks on Plot, every n channels will then be averaged together and the total number of channels
plotted will be decreased by a factor of n.

Time averaging is a little trickier, as it is controlled by three fields. If the checkbox next to Time
under Averaging is clicked on, a blank box with units of seconds will become active, along with
two additional checkboxes: Scan and Field. If averaging is desired over a relatively short interval
(say, 30 seconds, shorter than the scan length), a number can simply be entered into the blank box
and, when the data are replotted, the data will be time averaged. Clicking on the Scan or Field
checkbox in this case will have no impact on the time averaging.

These checkboxes become relevant if averaging over a relatively long time—say the entire observa-
tion, which consists of multiple scans—is desired. Regardless of how large a number is typed into
the Time averaging blank box, only data within individual scans will be averaged together. In
order to average data across scan boundaries, the Scan checkbox must be clicked on and the data
replotted. Finally, clicking on the Field checkbox enables the averaging of multiple fields together
in time.

Clicking on the All Baselines checkbox will average all baselines in the array together. Alterna-
tively, the Per Antenna box may be checked, which will average all baselines for a given antenna
together. In this case, all baselines are represented twice; baseline 3-24 will contribute to the aver-
ages for both antenna 3 and antenna 24. This can produce some rather strange-looking plots if the
user also selects on antenna—say, if the user requests to plot only antenna 0 and then averages Per
Antenna, In this case, an average of all baselines including antenna 0 will be plotted, but each
individual baseline including antenna 0 will also be plotted (because the presence of baselines 0-1,
0-2, 0-3, etc. trigger Per Antenna averaging to try and compute averages for antennae 1, 2, 3, etc.
Therefore, baseline 0-1 will contribute to the average for antenna 0, but it will also singlehandedly
be the average for antenna 1.)

Spectral windows can be averaged together by checking the box next to All Spectral Windows.
This will result in, for a given channel n, all channels n from the individual spectral windows being
averaged together.

Finally, the default mode is vector averaging, where the complex average is formed by averaging
the real and imaginary parts of the relevant visibilities. If Scalar is chosen, then the amplitude of
the average is formed by a scalar average of the individual visibility amplitudes.

When averaging, plotms will prefer unflagged data. I.e., if an averaging bin contains any unflagged
data at all, only the average of the unflagged will be shown. For averaging bins that contain only
unflagged data, the average of that unflagged data will be shown. When flagging on a plot of
averaged data, the flags will be applied to the unaveraged data in the MS.
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3.3.1.8 Plot Symbols

Plot symbols are selected in the Plots > Display tab. Most fundamentally, the user can choose to
plot unflagged data and/or flagged data. By default, unflagged data is plotted (the circle next to
Default is checked under Unflagged Points Symbol), and flagged data is not plotted (the circle
next to None is checked under Flagged Points Symbol. We note here that plotting flagged
data on an averaged plot is undertaken at the user’s own risk, as the distinction between flagged
points and unflagged points becomes blurred if data are averaged over a dimension that is partially
flagged. Take, for example, a plot of amplitude versus. time where all channels are averaged
together, but some channels have been flagged due to RFI spikes. In creating the average, plotms
will skip over the flagged channels and only use the unflagged ones. The averaged points will be
considered unflagged, and the flagged data will not appear on the plot at all.

A selection of None produces no data points, Default results in data points which are small circles
(blue for unflagged data and red for flagged data), and Custom allows the user to define a plot
symbol. If Custom plot symbols are chosen, the user can determine the symbol size by typing a
number in the blank box next to px or by clicking on the adjacent up or down arrows. Symbol
shape can be chosen from the drop-down menu to be either “circle”, “square”, “diamond”, or
“pixel” (note than “pixel” only has one possible size). “autoscaling” attempts to adjust the size of
the points from dots to circles of different sizes, depending on how many points are plotted. Symbol
color can be chosen by typing a hex color code in the blank box next to Fill: (e.g., “ff00ff”), or
by clicking on the ... button and selecting a color from the pop-up GUI. The adjacent drop-down
menu provides options for how heavily the plot symbol is shaded with this color, from heaviest to
lightest: “fill”, “mesh1”, “mesh2”, “mesh3”, and “no fill”. Finally, the plot symbol can be outlined
in black (if Outline: Default is checked) or not (if Outline: None is checked). Note that if “no
fill” and Outline: None are selected, the plot symbols will be invisible.

Finally, unflagged data points can be given informative symbol colors using the Colorize parameter.
By checking the box next to Colorize and selecting a data dimension from the drop-down menu,
the data will be plotted with colors that vary along that dimension. For example, if “corr” is chosen
from the Colorize menu, “RR”, “LL”, “RL”, and “LR” data will each be plotted with a different
color. Note that, currently, colorize and plotting flagged data appear to be incompatible; a plot
can only include one of these special features at a time.

3.3.1.9 Summarizing Data

Information about the measurement set can be obtained from within plotms by clicking on the
Summary button, found at the top menu bar. If “All” is chosen from the pull-down menu
next to Summary, listobs-style output about scans, correlator configurations, and antennae will
be written to the command line from which plotms was started. For more detail, click on the
Verbose checkbox. For a specific subset of the data, choose a selection from the pull-down menu
like “Antenna” or “Field”.
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3.3.1.10 Defining Frequency and Velocity

If the user plans to plot Frequency, the reference frame must be defined. By default, the plotted
frequency is simply that observed at the telescope. However, transformations can be made by
choosing a Frame from the drop-down menu in the Plots > Transform tab. Frequency reference
frames can be chosen to be:

• LSRK — local standard of rest (kinematic)

• LSRD — local standard of rest (dynamic)

• BARY — barycentric

• GEO — geocentric

• TOPO — topocentric

• GALACTO — galactocentric

• LGROUP — Local Group

• CMB — cosmic microwave background dipole

Velocity is affected by the user’s choice of Frame, but it is also impacted by the choice of velocity
definition and spectral line rest frequency. The velocity definition is chosen from the Velocity
Defn drop-down menu in the Plots > Trans tab, offering selections of Radio, True, or Optical.

For more information on frequency frames and spectral coordinate systems, see the paper by Greisen
et al. (A&A, 446, 747, 2006) 1.

Finally, the spectral line’s rest frequency in units of MHz should be typed into the blank box next
to Rest Freq in the Plots > Trans tab. You can use the me.spectralline tool method to turn
transition names into frequencies

CASA <16>: me.spectralline(’HI’)
Out[17]:

{’m0’: {’unit’: ’Hz’, ’value’: 1420405751.786},
’refer’: ’REST’,
’type’: ’frequency’}

For a list of known lines in the CASA measures system, use the toolkit command me.linelist(). For
example:

CASA <21>: me.linelist()
Out[21]: ’HI H186A H185A H184A H183A H182A H181A H180A H179A H178A H177A H176A H175A

H174A H173A H172A H171A H170A H169A H168A H167A H166A H165A H164A H163A H162A H161A H160A...
He182A He181A He180A He179A He178A He177A He176A He175A He174A He173A He172A He171A He170A
He169A He168A He167A He166A He165A He164A He163A He162A He161A He160A He159A He158A He157A...

1Also at http://www.aoc.nrao.edu/~egreisen/scs.ps

http://www.aoc.nrao.edu/~egreisen/scs.ps
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C186A C185A C184A C183A C182A C181A C180A C179A C178A C177A C176A C175A C174A C173A C172A
C171A C170A C169A C168A C167A C166A C165A C164A C163A C162A C161A C160A C159A C158A C157A...
NH3_11 NH3_22 NH3_33 NH3_44 NH3_55 NH3_66 NH3_77 NH3_88 NH3_99 NH3_1010 NH3_1111 NH3_1212
OH1612 OH1665 OH1667 OH1720 OH4660 OH4750 OH4765 OH5523 OH6016 OH6030 OH6035 OH6049 OH13433
OH13434 OH13441 OH13442 OH23817 OH23826 CH3OH6.7 CH3OH44 H2O22 H2CO4.8 CO_1_0 CO_2_1 CO_3_2
CO_4_3 CO_5_4 CO_6_5 CO_7_6 CO_8_7 13CO_1_0 13CO_2_1 13CO_3_2 13CO_4_3 13CO_5_4 13CO_6_5
13CO_7_6 13CO_8_7 13CO_9_8 C18O_1_0 C18O_2_1 C18O_3_2 C18O_4_3 C18O_5_4 C18O_6_5 C18O_7_6
C18O_8_7 C18O_9_8 CS_1_0 CS_2_1 CS_3_2 CS_4_3 CS_5_4 CS_6_5 CS_7_6 CS_8_7 CS_9_8 CS_10_9
CS_11_10 CS_12_11 CS_13_12 CS_14_13 CS_15_14 CS_16_15 CS_17_16 CS_18_17 CS_19_18 CS_12_19
SiO_1_0 SiO_2_1 SiO_3_2 SiO_4_3 SiO_5_4 SiO_6_5 SiO_7_6 SiO_8_7 SiO_9_8 SiO_10_9 SiO_11_10
SiO_12_11 SiO_13_12 SiO_14_13 SiO_15_14 SiO_16_15 SiO_17_16 SiO_18_17 SiO_19_18 SiO_20_19
SiO_21_20 SiO_22_21 SiO_23_22’

3.3.1.11 Shifting the Phase Center

The plot’s phase center can be shifted in the Plots > Trans tab. Enter the X and Y shifts in
units of arcseconds in the blank boxes under Phase center shift.

3.3.1.12 Plot Ranges

The X and Y ranges of the plot can be set in the Plots > Axes tab. By default, the circle next
to Automatic will be checked, and the ranges will be auto-scaled. To define the range, click on
the circle below Automatic and enter a minimum and maximum value in the blank boxes (as for
the X Axis in Figure 3.2. Note that if identical values are placed in the blank boxes (xmin=xmax
and/or ymin=ymax), then the values will be ignored and a best guess will be made to auto-range
that axis.

3.3.1.13 Plot Labels

The plot and axes labels which are displayed in the plot window are set in the Plots > Canvas
tab. To change the plot title, under Canvas Title, click on the circle next to the blank box and
enter the desired text. To change the X- and Y-axis labels, similarly click on the circles next to the
blank boxes under Show X Axis and Show Y Axis and type the desired text in the blank box.
To display these new labels, simply click the Plot button.

The user can determine the locations of axis labels in the Plots > Axes tab. The X-axis label
switches from the bottom to the top of the plot depending on what is selected for Attach to:.
Similarly for the Y-Axis, the user can choose to attach axis labels and tick marks to the Top or
Bottom (note that the axis labels have been attached to the Bottom and Right in Figure 3.2.

Finally, axis labels can be removed all together by unchecking the boxes next to Show X Axis
and Show Y Axis on the Plots > Canvas tab.
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3.3.1.14 Grid Lines

A grid of lines can be superimposed on the plot using Grid Lines in the Plots > Canvas tab.
“Major” grid lines are drawn at the locations of major tick marks, while “minor” grid lines are
drawn at minor tick marks.

Grid line colors, thicknesses, and styles are selected independently for the “major” and “minor”
grid lines. Desired line thickness should be typed into the blank boxes just to the right of the
Major and Minor labels. Colors are set by clicking on the ... buttons. The blank boxes to the
left of the ... buttons will then contain the hex codes for the selected colors (e.g., “808080”). Line
styles can also be selected from the drop-down menus to the right of ... buttons.

3.3.1.15 Legend

A plot symbol legend can be added to the plot by clicking on the checkbox next to Legend in the
Plots > Canvas tab. However, given the current functionalities of plotms, a symbol legend is of
very limited use. This option is usefule when overplotting data.

3.3.1.16 The Options Tab

A few miscellaneous options are available in the Options tab, the last tab at the top of the plotms
window. The Tool Button Style drop-drop down menu determines if icons and/or text represent
the buttons in the toolbar near the bottom of the plotms window.

The Log Events drop down menu determines how verbose plotms is in documenting its actions
on the command line.

There is a checkbox that determines the persistence of regions and annotations on new plots,
labelled When changing plot axes, clear any existing regions and annotations.

A useful option is the fixed size for cached image checkbox. It determines how large the dots in
the panel are with respect to the screen resolution. The values influence how the data is redrawn
on the panel. When the Screen resolution is selected, the plotms window can be resized without
redrawing on the canvas – a considerable speedup for large data sets. The penalty is that the dots
of the data points are the size of a pixel on the screen, which may be very small for high resolution
monitors.

Finally, the File chooser history limit determines the number of remembered directories in the
file loading pop-up of the Browse selection of the Data tab.

3.3.1.17 Iteration

In many cases, it is desirable to iterate through the data that were selected in the Data tab. A
typical example is to display a single baseline in a time vs. amplitude plot and then proceed to the
next baselines step by step. This can be done via the Page tab on the left hand side of plotms.
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A drop-down menu allows you to select the parameter to be iterated on, such as baseline or spw
(press plot after changing your selection). The plot titles in the main panel in plotms show which
data slice is currently displayed. To proceed to the next plot use the green buttons below the main
panel. The different button symbols let you to proceed panel by panel or to jump to the first or
last panel directly. The number of plots per page can be selected under Options-¿ Grid, the last of
the top row of tabs (corresponding to the gridrows and gridcols in the command line interface).

There are two scaling options for the axes: Global and Self. Global will use a common axis range
based on data loaded with the selection criteria specified in the Data tab. Self readjusts the axes
scaling to the data for each individual panel of the iteration.

Below, one can invoke multiple panels per display by selecting the number of rows and columns to
be displayed on the canvas.

3.3.1.18 Overplotting

Different values of the same dataset can be shown at the same time. E.g. to add a second y-axis,
press the “Add Y Axis Data” button under the “Axes” tab. Then select the parameters for the
newly created axis by selecting from the now available “Y Axis Data” drop-down menu. If the two
y-axes have the same units, they can be displayed both on the same axis. If they are different,
e.g. Amplitude and Elevation (both versus time; see Fig. 3.4), one axis should be attached to the
left and the other to the right hand side of the plot. Using more than a single y-axis data is also
reflected in the “Display” tab where a drop-down menu appears in order to select multiple y-axis
options.

In the plotms input interface, you can overplot by invoking plotms more than once with clearplot=F.
Each run of plotms corresponds to a plot to go on top of previous ones.

3.3.1.19 Plotting Multiple Data Sets

plotms can also plot more than a single dataset in separate panels. To do so, press “Add Plot”
next to the “Plot” button. This will bring up a new data window where the plot parameters are
defined. Right-click options are used to “Minimize”, “Maximize”, or “Close” these panels which
helps to keep a better overview on the individual datasets. If Options-¿ Grid is selected to have
more than a single panel, the different datasets will be shown side by side.

When plotms is run from the command line, the location of the plots can be defined as follows.
gridcols and gridrows define the number of plots on the screen. To define the location where a
subplot is to appear on this grid, use colindex and rowindex. If one uses a plotindex, this will be
used as a label to address the plot. Each call of plotms with the same plotindex will overplot on the
subplot where plotindex was defined the first time. Here is an example on multiple plotms calls:

#Plot in the second column, first row of a 2x2 grid and define this plot as plotindex=0
plotms(vis=’vis1.ms’, gridrows=2, gridcols=2, colindex=1, rowindex=0)

#Overplot in the same panel using a different axis and symbol for the second plot.
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Figure 3.4: Overplotting in plotms: Two different y-axes have been chosen for this plot, amplitude
and elevation.

plotms(vis=’vis2.ms’, clearplots=False, plotindex=1, rowindex=0,
colindex=1, gridrows=2, gridcols=2, yaxislocation=’right’, symbolshape=’circle’)

#Define a second plot and give it a label plotindex=2, in the lower right corner of the grid.
plotms(vis=’vis1.ms’, clearplots=False, plotindex=2, rowindex=1,colindex=1, gridrows=2, gridcols=2)

#Move the plot with the overplot one panel to the left. This requires clearing
#the plots and rerunning the script specifications with the new plot locations.
plotms(vis=’vis1.ms, gridrows=2, gridcols=2, colindex=0, rowindex=0, symbolshape=’diamond’)
plotms(vis=’vis2.ms’, clearplots=False, plotindex=1, rowindex=0, colindex=0,

gridrows=2, gridcols=2,yaxislocation=’right’,
symbolshape=’circle’)

plotms(vis=self.ms, clearplots=False, plotindex=2, rowindex=1,colindex=1,gridrows=2, gridcols=2)
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3.3.1.20 Saving your plot

You can save a copy of a plot to file in the Plots > Export tab. Click the Browse button for a
GUI-based selection of the directory and file name to which the plot will be saved. The file format
can also be determined in this GUI by the suffix given to the filename: .png (PNG), .jpg (JPG), .ps
(PS), .pdf (PDF), and txt (TEXT). Alternatively, the file format can be selected from the Format
drop-down menu located just below the Browse button. In this case, plotms will add a suffix to
the file name depending on the format chosen.

ALERT: The plot files produced by the PS and PDF options can be large and time-consuming to
export. The JPG is the smallest.

The exported plot resolution can be manipulated using the High Resolution, DPI, and Size
options.

Click on Export to create the file, you may select to either plot only the current page or all pages
(filenames will be automatically incremented).

the TEXT format will not save an image but the data points themselves. This allows one to dump
the current plot into a file that is used in other programs for further processing. The reported data
is the same as when using the locate button in plotms and the format looks like:

# x y chan scan field ant1 ant2 ant1name ant2name time freq spw corr offset currchunk irel
# Real Imag None None None None None None None MJD(seconds) GHz None None None None None
0.282938 0.0387583 31 5 2 1 12 ea02@E02 ea21@E01 4778968956.000 36.308479452 1 RR 26 0 26
0.263241 -0.00806698 31 7 2 1 12 ea02@E02 ea21@E01 4778969356.000 36.308479452 1 RR 29 1 28
0.258207 0.0301206 31 9 2 1 12 ea02@E02 ea21@E01 4778969745.000 36.308479452 1 RR 30 2 28
0.311155 -0.0180511 31 11 2 1 12 ea02@E02 ea21@E01 4778970133.250 36.308479452 1 RR 31 3 28
0.284589 -0.0628808 31 13 2 1 12 ea02@E02 ea21@E01 4778970522.250 36.308479452 1 RR 32 4 28

where x and y are the two plotted axes and the other columns contain additional information such
as the baselines or frequencies. The three last columns offset, corrchunk, and irel are internal data
management items for plotms and you most likely will never use them.

3.3.1.21 Exiting plotms

To exit the plotms GUI, select Quit from the File menu at the top of the plotms window. You
can also dismiss the window by killing it with the “X” on the frame.

Alternatively, you can just leave it alone, and plotms will keep running in the background. If the
data file changes in the background, you can force reloading the data via the ’force reload’ checkbox
next to the ’Plot’ button. Alternatively, press SHIFT while clicking on ’Plot’ for the same purpose.
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3.3.2 Plotting and Editing using plotxy

Inside the Toolkit: Access to matplotlib is also provided through the pl tool. See below for a
description of the pl tool functions.

ALERT: The plotxy code is fragile and slow, and is being replaced by the plotms (§ 3.3.1). We
retain plotxy in this release as not all functionality is available yet in plotms.

Plotxy is a tool for visualizing and editing visibility data. Unlike plotms, it is useful in scripting, as
it can non-interactively produce a hardcopy plot (see § 3.3.2.13). It also has multi-plot (§ 3.3.2.8),
iteration (§ 3.3.2.3), and overplotting (§ 3.3.2.4) functionality—unlike plotms in the current release.
Plotxy uses the matplotlib plotting library to display its plots. You can find information on
matplotlib at http://matplotlib.sourceforge.net/.

To bring up this plotter use the plotxy task. The inputs are:

# plotxy :: X-Y plotter/interactive flagger for visibility data

vis = ’’ # Name of input visibility
xaxis = ’time’ # X-axis: def = ’time’: see help for options
yaxis = ’amp’ # Y-axis: def = ’amp’: see help for options

datacolumn = ’data’ # data (raw), corrected, model, residual (corrected - model)

selectdata = False # Other data selection parameters
spw = ’’ # spectral window:channels: ’’==>all, spw=’1:5~57’
field = ’’ # field names or index of calibrators: ’’==>all
averagemode = ’’ # Select averaging type: ’vector’, ’scalar’
restfreq = ’’ # a frequency quanta or transition name. see help for options
extendflag = False # Have flagging extend to other data points?
subplot = 111 # Panel number on display screen (yxn)
plotsymbol = ’.’ # Options include . : , o ^ v > < s + x D d 2 3 4 h H | _
plotcolor = ’darkcyn’ # Plot color
plotrange = [-1, -1, -1, -1] # The range of data to be plotted (see help)
multicolor = ’corr’ # Plot in different colors: Options: none, both, chan, corr
selectplot = False # Select additional plotting options (e.g, fontsize, title,etc)
overplot = False # Overplot on current plot (if possible)
showflags = False # Show flagged data?
interactive = True # Show plot on gui?
figfile = ’’ # ’’= no plot hardcopy, otherwise supply name

ALERT: The plotxy task expects all of the scratch columns to be present in the MS, even if it
is not asked to plot the contents. If you get an error to the effect ”Invalid Table operation: Table:
cannot add a column” then use clearcal() to force these columns to be made in the MS. Note
that this will clear anything in all scratch columns (in case some were actually there and being
used).

Setting selectdata=True opens up the selection sub-parameters:

selectdata = True # Other data selection parameters
antenna = ’’ # antenna/baselines: ’’==>all, antenna = ’3,VA04’

http://matplotlib.sourceforge.net/
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Figure 3.5: The plotxy plotter, showing the Jupiter data versus uv-distance. You can see bad
data in this plot. The bottom set of buttons on the lower left are: 1,2,3) Home, Back, and
Forward. Click to navigate between previously defined views (akin to web navigation). 4) Pan.
Click and drag to pan to a new position. 5) Zoom. Click to define a rectangular region for zooming.
6) Subplot Configuration. Click to configure the parameters of the subplot and spaces for the
figures. 7) Save. Click to launch a file save dialog box. The upper set of buttons in the lower
left are: 1) Mark Region. Press this to begin marking regions (rather than zooming or panning).
2,3,4) Flag, Unflag, Locate. Click on these to flag, unflag, or list the data within the marked
regions. 5) Next. Click to move to the next in a series of iterated plots. Finally, the cursor
readout is on the bottom right.

timerange = ’’ # time range: ’’==>all
correlation = ’’ # correlations: default = ’’
scan = ’’ # scan numbers: Not yet implemented
feed = ’’ # multi-feed numbers: Not yet implemented
array = ’’ # array numbers: Not yet implemented
uvrange = ’’ # uv range’’==>all; uvrange = ’0~100kl’ (default unit=meters)
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These are described in § 2.3.

Averaging is controlled with the set of parameters

averagemode = ’vector’ # Select averaging type: vector, scalar
timebin = ’0’ # Length of time-interval in seconds to average
crossscans = False # Have time averaging cross scan boundaries?
crossbls = False # have averaging cross over baselines?
crossarrays = False # have averaging cross over arrays?
stackspw = False # stack multiple spw on top of each other?
width = ’1’ # Number of channels to average

See § 3.3.2.9 below for more on averaging.

You can extend the flagging beyond the data cell plotted:

extendflag = True # Have flagging extend to other data points?
extendcorr = ’’ # flagging correlation extension type
extendchan = ’’ # flagging channel extension type
extendspw = ’’ # flagging spectral window extension type
extendant = ’’ # flagging antenna extension type
extendtime = ’’ # flagging time extension type

See § 3.3.2.11 below for more on flag extension.

The restfreq parameter can be set to a transition or frequency:

restfreq = ’HI’ # a frequency quanta or transition name. see help for options
frame = ’LSRK’ # frequency frame for spectral axis. see help for options
doppler = ’RADIO’ # doppler mode. see help for options

See § 3.3.2.12 below for more on setting rest frequencies and frames.

Setting selectplot=True will open up a set of plotting control sub-parameters. These are described
in § 3.3.2.2 below.

The interactive and figfile parameters allow non-interactive production of hardcopy plots. See
§ 3.3.2.13 for more details on saving plots to disk.

The iteration, overplot, plotrange, plotsymbol, showflags and subplot parameters deserve extra ex-
planation, and are described below.

For example:

plotxy(vis=’jupiter6cm.ms’, # jupiter 6cm dataset
xaxis=’uvdist’, # plot uv-distance on x-axis
yaxis=’amp’, # plot amplitude on y-axis
field=’JUPITER’, # plot only JUPITER
selectdata=True, # open data selection
correlation=’RR,LL’, # plot RR and LL correlations
selectplot=True, # open plot controls
title = ’Jupiter 6cm uncalibrated’) # give it a title
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The plotter resulting from these settings is shown in figure 3.5.

ALERT: The plotxy task still has a number of issues. The averaging has been greatly speeded up
in this release, but there are cases where the plots will be made incorrectly. In particular, there are
problems plotting multiple spw at the same time. There are sometimes also cases where data that
you have flagged in plotxy from averaged data is done so incorrectly. This task is under active
development for the next cycle to fix these remaining problems, so users should be aware of this.

ALERT: Another know problem with (plotxy) is that it fails if the path to your working directory
contains spaces in its name, e.g. /users/smyers/MyTest/ is fine, but /users/smyers/My Test/ is
not!

3.3.2.1 GUI Plot Control

You can use the various buttons on the plotxy GUI to control its operation – in particular, to
determine flagging and unflagging behaviors.

There is a standard row of buttons at the bottom. These include (left to right):

• Home — The “house” button (1st on left) returns to the original zoom level.

• Step — The left and right arrow buttons (2nd and 3rd from left) step through the zoom
settings you’ve visited.

• Pan — The “four-arrow button” (4th from left) lets you pan in zoomed plot.

• Zoom — The most useful is the “magnifying glass” (5th from the left) which lets you draw
a box and zoom in on the plot.

• Panels — The “window-thingy” button (second from right) brings up a menu to adjust the
panel placement in the plot.

• Save – The “disk” button (last on right) saves a .png copy of the plot to a generically named
file on disk.

In a row above these, there are a set of other buttons (left to right):

• Mark Region — If depressed lets you draw rectangles to mark points in the panels. This
is done by left-clicking and dragging the mouse. You can Mark multiple boxes before doing
something. Clicking the button again will un-depress it and forget the regions. ESC will
remove the last region marked.

• Flag — Click this to Flag the points in a marked region.

• Unflag — Click this to Unflag any flagged point that would be in that region (even if
invisible).

• Locate — Print out some information to the logger on points in the marked regions.
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• Next — Step to the next plot in an iteration.

• Quit — Exit plotcal, clear the window and detach from the MS.

These buttons are shared with the plotcal tool.

3.3.2.2 The selectplot Parameters

These parameters work in concert with the native matplotlib functionality to enable flexible repre-
sentations of data displays.

Setting selectplot=True will open up a set of plotting control sub-parameters:

selectplot = True # Select additional plotting options (e.g, fontsize, title,etc)
markersize = 5.0 # Size of plotted marks
linewidth = 1.0 # Width of plotted lines
skipnrows = 1 # Plot every nth point
newplot = False # Replace the last plot or not when overplotting
clearpanel = ’Auto’ # Specify if old plots are cleared or not
title = ’’ # Plot title (above plot)
xlabels = ’’ # Label for x-axis
ylabels = ’’ # Label for y-axis
fontsize = 10.0 # Font size for labels
windowsize = 5.0 # Window size: not yet implemented

Inside the Toolkit:
For even more functionality, you can
access the pl tool directly using Py-
lab functions that allow one to an-
notate, alter, or add to any plot
displayed in the matplotlib plotter
(e.g. plotxy).

The markersize parameter will change the size of the plot
symbols. Increasing it will help legibility when doing screen
shots. Decreasing it can help in congested plots. The
linewidth parameter will do similar things to the lines.

The skipnrows parameter, if set to an integer n greater than
1, will allow only every nth point to be plotted. It does this,
as the name suggests, by skipping over whole rows of the
MS, so beware (channels are all within the same row for
a given spw). Be careful flagging on data where you have
skipped points! Note that you can also reduce the number
of points plotted via averaging (§ 3.3.2.9) or channel striding in the spw specification (§ 2.3.3).

The newplot toggle lets you choose whether or not the last layer plotted is replaced when over-
plot=True, or whether a new layer is added.

The clearpanel parameter turns on/off the clearing of plot panels that lie under the current panel
layer being plotted. The options are: ’none’ (clear nothing), ’auto’ (automatically clear the plotting
area), ’current’ (clear the current plot area only), and ’all’ (clear the whole plot panel).

The title, xlabels, and ylabels parameters can be used to change the plot title and axes labels.

The fontsize parameter is useful in order to enlarge the label fonts so as to be visible when making
plots for screen capture, or just to improve legibility. Shrinking can help if you have lots of panels
on the plot also.
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The windowsize parameter is supposed to allow adjustments on the window size. ALERT: This
currently does nothing, unless you set it below 1.0, in which case it will produce an error.

3.3.2.3 The iteration parameter

Under Page one can select plot iterations parameters. There are currently four iteration options
available: ’field’, ’antenna’, and ’baseline’. If one of these options is chosen, the data will be split
into separate plot displays for each value of the iteration axis (e.g., for the VLA, the ’antenna’
option will get you 27 displays, one for each antenna). An example use of iteration:

# choose channel averaging, every 5 channels
plotxy(’n5921.ms’,’channel’,subplot=221,iteration=’antenna’,width=’5’)

The results of this are shown in Figure 3.6. Note that this example combines the use of width,
iteration and subplot.

NOTE: If you use iteration=’antenna’ or ’baseline’, be aware if you have set antenna selection.
You can also control whether you see auto-correlations or not using the appropriate syntax, e.g.
antenna=’*&&*’ or antenna=’*&&&’ (§ 2.3.4.1).

3.3.2.4 The overplot parameter

The overplot parameter toggles whether the current plot will be overlaid on the previous plot or
subpanel (via the subplot setting, § section:edit.plot.plotxy.subplot) or will overwrite it. The default
is False and the new plot will replace the old.

The overplot parameter interacts with the newplot sub-parameter (see § 3.3.2.2).

See § 3.3.2.7 for an example using overplot.

3.3.2.5 The plotrange parameter

The plotrange parameter can be used to specify the size of the plot. The format is [xmin, xmax,
ymin, ymax]. The units are those on the plot. For example,

plotrange = [-20,100,15,30]

Note that if xmin=xmax and/or ymin=ymax, then the values will be ignored and a best guess will
be made to auto-range that axis.

Unfortunately, the units for the time axis must be in Julian seconds. This is somewhat inconvenient
as the usual time parameter is given in Julian days. To calculate the Julian seconds the me.epoch
tool can be used. An example: For 02:00 UT on 2012/05/22, the value of MJD seconds can be
calculated via

86400*(me.epoch(’utc’,’2012/05/22’)[’m0’][’value’]+2/24.)

which results in 4844368800.0.
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Figure 3.6: The plotxy iteration plot. The first set of plots from the example in § 3.3.2.3 with
iteration=’antenna’. Each time you press the Next button, you get the next series of plots.

3.3.2.6 The plotsymbol parameter

The plotsymbol parameter defines both the line or symbol for the data being drawn as well as the color; from
the matplotlib online documentation (e.g., type pl.plot? for help):

The following line styles are supported:
- : solid line
-- : dashed line
-. : dash-dot line
: : dotted line
. : points
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, : pixels
o : circle symbols
^ : triangle up symbols
v : triangle down symbols
< : triangle left symbols
> : triangle right symbols
s : square symbols
+ : plus symbols
x : cross symbols
D : diamond symbols
d : thin diamond symbols
1 : tripod down symbols
2 : tripod up symbols
3 : tripod left symbols
4 : tripod right symbols
h : hexagon symbols
H : rotated hexagon symbols
p : pentagon symbols
| : vertical line symbols
_ : horizontal line symbols
steps : use gnuplot style ’steps’ # kwarg only

The following color abbreviations are supported
b : blue
g : green
r : red
c : cyan
m : magenta
y : yellow
k : black
w : white

In addition, you can specify colors in many weird and
wonderful ways, including full names ’green’, hex strings
’#008000’, RGB or RGBA tuples (0,1,0,1) or grayscale
intensities as a string ’0.8’.
Line styles and colors are combined in a single format string, as in
’bo’ for blue circles.

3.3.2.7 The showflags parameter

The showflags parameter determines whether only unflagged data (showflags=False) or flagged
(showflags=True) data is plotted by this execution. The default is False and will show only un-
flagged “good” data.

Note that if you want to plot both unflagged and flagged data, in different colors, then you need
to run plotxy twice using overplot (see § 3.3.2.4) the second time, e.g.

> plotxy(vis="myfile", xaxis=’uvdist’, yaxis=’amp’ )
> plotxy(vis="myfile", xaxis=’uvdist’, yaxis=’amp’, overplot=True, showflags=True )
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3.3.2.8 The subplot parameter

The subplot parameter takes three numbers. The first is the number of y panels (stacking vertically),
the second is the number of xpanels (stacking horizontally) and the third is the number of the panel
you want to draw into. For example, subplot=212 would draw into the lower of two panels stacked
vertically in the figure.

An example use of subplot capability is shown in Fig 3.7. These were drawn with the commands
(for the top, bottom left, and bottom right panels respectively):

plotxy(’n5921.ms’,’channel’, # plot channels for the n5921.ms data set
field=’0’, # plot only first field
datacolumn=’corrected’, # plot corrected data
plotcolor=’’, # over-ride default plot color
plotsymbol=’go’, # use green circles
subplot=211) # plot to the top of two panels

plotxy(’n5921.ms’,’x’, # plot antennas for n5921.ms data set
field=’0’, # plot only first field
datacolumn=’corrected’, # plot corrected data
subplot=223, # plot to 3rd panel (lower left) in 2x2 grid
plotcolor=’’, # over-ride default plot color
plotsymbol=’r.’) # red dots

plotxy(’n5921.ms’,’u’,’v’, # plot uv-coverage for n5921.ms data set
field=’0’, # plot only first field
datacolumn=’corrected’, # plot corrected data
subplot=224, # plot to the lower right in a 2x2 grid
plotcolor=’’, # over-ride default plot color
plotsymbol=’b,’) # blue, somewhat larger dots

# NOTE: You can change the gridding
# and panel size by manipulating
# the ny x nx grid.

See also § 3.3.2.3 above, and Figure 3.6 for an example of channel averaging using iteration and
subplot.

3.3.2.9 Averaging in plotxy

The averaging parameters and sub-parameters are:

averagemode = ’vector’ # Select averaging type: vector, scalar
timebin = ’0’ # length of time in seconds to average, default=’0’, or: ’all’
crossscans = False # have time averaging cross over scans?
crossbls = False # have averaging cross over baselines?
crossarrays = False # have averaging cross over arrays?
stackspw = False # stack multiple spw on top of each other?
width = ’1’ # number of channels to average, default: ’1’, or: ’all’, ’allspw’



CHAPTER 3. DATA EXAMINATION AND EDITING 152

Figure 3.7: Multi-panel display of visibility versus channel (top), antenna array configuration
(bottom left) and the resulting uv coverage (bottom right). The commands to make these three
panels respectively are: 1) plotxy(’ngc5921.ms’, xaxis=’channel’, datacolumn=’data’, field=’0’, sub-
plot=211, plotcolor=”, plotsymbol=’go’) 2) plotxy(’ngc5921.ms’, xaxis=’x’, field=’0’, subplot=223,
plotsymbol=’r.’), 3) plotxy(’ngc5921.ms’, xaxis=’u’, yaxis=’v’, field=’0’, subplot=224, plotsym-
bol=’b,’,figfile=’ngc5921 multiplot.png’).

The choice of averagemode controls how the amplitudes are calculated in the average. The default
mode is ’vector’, where the complex average is formed by averaging the real and imaginary parts
of the relevant visibilities. If ’scalar’ is chosen, then the amplitude of the average is formed by a
scalar average of the individual visibility amplitudes.

Time averaging is effected by setting the timebin parameter to a value larger than the integration
time. Currently, timebin takes a string containing the averaging time in seconds, e.g.

timebin = ’60.0’
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to plot one-minute averages.

Channel averaging is invoked by setting width to a value greater than 1. Currently, the averaging
width is given as a number of channels.

By default, the averaging will not cross scan boundaries (as set in the import process). However,
if crossscans=True, then averaging will cross scans.

Note that data taken in different sub-arrays are never averaged together. Likewise, there is no way
to plot data averaged over field.

3.3.2.10 Interactive Flagging in plotxy

Hint!
In the plotting environments such as
plotxy, the ESC key can be used to
remove the last region box drawn.

Interactive flagging, on the principle of “see it — flag it”, is
possible on the X-Y display of the data plotted by plotxy.
The user can use the cursor to mark one or more regions,
and then flag, unflag, or list the data that falls in these
zones of the display.

There is a row of buttons below the plot in the window. You
can punch the Mark Region button (which will appear
to depress), then mark a region by left-clicking and dragging the mouse (each click and drag will
mark an additional region). You can get rid of all your regions by clicking again on the Mark
Region button (which will appear to un-depress), or you can use the ESC key to remove the last
box you drew. Once regions are marked, you can then click on one of the other buttons to take
action:

1. Flag — flag the points in the region(s),

2. Unflag — unflag flagged points in the region(s),

3. Locate — spew out a list of the points in the region(s) to the logger (Warning: this could
be a long list!).

Whenever you click on a button, that action occurs without forcing a disk-write (unlike previous
versions). If you quit plotxy and re-enter, you will see your previous edits.

A table with the name ¡msname¿.flagversions (where vis=¡msname¿) will be created in the same
directory if it does not exist already.

It is recommended that you save important flagging stages using the flagmanager task (§ 3.2).

3.3.2.11 Flag extension in plotxy

Flag extension is controlled using extendflag=T and its sub-parameters:
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Figure 3.8: Plot of amplitude versus uv distance, before (left) and after (right) flagging two marked
regions. The call was: plotxy(vis=’ngc5921.ms’, xaxis=’uvdist’, field=’1445*’).

extendflag = True # Have flagging extend to other data points?
extendcorr = ’’ # flagging correlation extension type
extendchan = ’’ # flagging channel extension type
extendspw = ’’ # flagging spectral window extension type
extendant = ’’ # flagging antenna extension type
extendtime = ’’ # flagging time extension type

The use of extendflag enables the user to plot a subset of the data and extend the flagging to a
wider set.

ALERT: Using the extendflag options will greatly slow down the flagging in plotxy. You will see
a long delay after hitting the Flag button, with lots of logger messages as it goes through each flag.
Fixing this requires a refactoring of plotxy which is underway starting in Patch 4 development.

Setting extendchan=’all’ will extend the flagging to other channels in the same spw as the displayed
point. For example, if spw=’0:0’ and channel 0 is displayed, then flagging will extend to all channels
in spw 0.

The extendcorr sub-parameter will extend the flagging beyond the correlations displayed. If ex-
tendcorr=’all’, then all correlations will be flagged, e.g. with RR displayed RR,RL,LR,LL will be
flagged. If extendcorr=’half ’, then the extension will be to those correlations in common with that
show, e.g. with RR displayed then RR,RL,LR will be flagged.

Setting extendspw=’all’ will extend the flagging to all other spw for the selection. Using the same
example as above, with spw=’0:0’ displayed, then channel 0 in ALL spw will be flagged. Note that
use of extendspw could result in unintended behavior if the spw have different numbers of channels,
or if it is used in conjunction with extendchan.
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WARNING: use of the following options, particularly in conjunction with other flag extensions,
may lead to deletion of much more data than desired. Be careful!

Setting extendant=’all’ will extend the flagging to all baselines that have antennas in common
with those displayed and marked. For example, if antenna=’1&2’ is shown, then ALL baselines to
BOTH antennas 1 and 2 will be flagged. Currently, there is no option to extend the flag to ONLY
baselines to the first (or second) antenna in a displayed pair.

Setting extendtime=’all’ will extend the flagging to all times matching the other selection or ex-
tension for the data in the marked region.

3.3.2.12 Setting rest frequencies in plotxy

The restfreq parameter can be set to a transition or frequency and expands to allow setting of frame
information. For example,

restfreq = ’HI’ # a frequency quanta or transition name. see help for options
frame = ’LSRK’ # frequency frame for spectral axis. see help for options
doppler = ’RADIO’ # doppler mode. see help for options

Examples of transitions include:

restfreq=’1420405751.786Hz’ # 21cm HI frequency
restfreq=’HI’ # 21cm HI transition name
restfreq=’115.2712GHz’ # CO 1-0 line frequency

For a list of known lines in the CASA measures system, use the toolkit command me.linelist(). For
example:

CASA <14>: me.linelist()
Out[14]: ’C109A CI CII166A DI H107A H110A H138B H166A H240A H272A

H2CO HE110A HE138B HI OH1612 OH1665 OH1667 OH1720’

ALERT: The list of known lines in CASA is currently very restricted, and will be increased in
upcoming releases (to include lines in ALMA bands for example).

You can use the me.spectralline tool method to turn transition names into frequencies

CASA <16>: me.spectralline(’HI’)
Out[17]:

{’m0’: {’unit’: ’Hz’, ’value’: 1420405751.786},
’refer’: ’REST’,
’type’: ’frequency’}

(not necessary for this task, but possibly useful).

The frame sub-parameter sets the frequency frame. The allowed options can be listed using the
me.listcodes method on the me.frequency() method, e.g.
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CASA <17>: me.listcodes(me.frequency())
Out[17]:

{’extra’: array([],
dtype=’|S1’),

’normal’: array([’REST’, ’LSRK’, ’LSRD’, ’BARY’, ’GEO’, ’TOPO’, ’GALACTO’, ’LGROUP’,
’CMB’],

dtype=’|S8’)}

The doppler sub-parameter likewise sets the Doppler system. The allowed codes can be listed using
the me.listcodes method on the me.doppler() method,

CASA <18>: me.listcodes(me.doppler())
Out[18]:

{’extra’: array([],
dtype=’|S1’),

’normal’: array([’RADIO’, ’Z’, ’RATIO’, ’BETA’, ’GAMMA’, ’OPTICAL’, ’TRUE’,
’RELATIVISTIC’],

dtype=’|S13’)}

For most cases the ’RADIO” Doppler system is appropriate, but be aware of differences.

For more information on frequency frames and spectral coordinate systems, see the paper by Greisen
et al. (A&A, 446, 747, 2006) 2.

3.3.2.13 Printing from plotxy

There are two ways to get hardcopy plots in plotxy.

The first is to use the “disk save” icon from the interactive plot GUI to print the current plot. This
will bring up a sub-menu GUI that will allow you to choose the filename and format. The allowed
formats are .png (PNG), .eps (EPS), and svg (SVG). If you give the filename with a suffix (.png,
.eps, or svg) it will make a plot of that type. Otherwise it will put a suffix on depending on the
format chosen from the menu.

ALERT: The plot files produced by the EPS option can be large, and the SVG files can be very
large. The PNG is the smallest.

The second is to specify a figfile. You probably want to disable the GUI using interactive=False
in this case. The type of plot file that is made will depend upon the filename suffix. The allowed
choices are .png (PNG), .eps (EPS), and svg (SVG).

This latter option is most useful from scripts. For example,

default(’plotxy’)
vis = ’ngc5921.ms’
field = ’2’
spw = ’’

2Also at http://www.aoc.nrao.edu/~egreisen/scs.ps

http://www.aoc.nrao.edu/~egreisen/scs.ps
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xaxis = ’uvdist’
yaxis = ’amp’
interactive=False
figfile = ’ngc5921.uvplot.amp.png’
plotxy()

will plot amplitude versus uv-distance in PNG format. No plotxy GUI will appear.

ALERT: if you use this option to print to figfile with an iteration set, you will only get the first
plot.

3.3.2.14 Exiting plotxy

You can use the Quit button to clear the plot from the window and detach from the MS. You can
also dismiss the window by killing it with the X on the frame, which will also detach the MS.

You can also just leave it alone. The plotter pretty much keeps running in the background even
when it looks like it’s done! You can keep doing stuff in the plotter window, which is where the
overplot parameter comes in. Note that the plotcal task (§ 4.5.1) will use the same window, and
can also overplot on the same panel.

If you leave plotxy running, beware of (for instance) deleting or writing over the MS without
stopping. It may work from a memory version of the MS or crash.

3.3.2.15 Example session using plotxy

The following is an example of interactive plotting and flagging using plotxy on the Jupiter 6cm
continuum VLA dataset. This is extracted from the script jupiter6cm usecase.py available in the
script area.

This assumes that the MS jupiter6cm.usecase.ms is on disk with flagautocorr already run.

default(’plotxy’)

vis = ’jupiter6cm.usecase.ms’

# The fields we are interested in: 1331+305,JUPITER,0137+331
selectdata = True

# First we do the primary calibrator
field = ’1331+305’

# Plot only the RR and LL for now
correlation = ’RR LL’

# Plot amplitude vs. uvdist
xaxis = ’uvdist’
yaxis = ’amp’
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multicolor = ’both’

# The easiest thing is to iterate over antennas
iteration = ’antenna’

plotxy()

# You’ll see lots of low points as you step through RR LL RL LR
# A basic clip at 0.75 for RR LL and 0.055 for RL LR will work
# If you want to do this interactively, set
iteration = ’’

plotxy()

# You can also use flagdata to do this non-interactively
# (see below)

# Now look at the cross-polar products
correlation = ’RL LR’

plotxy()

#---------------------------------------------------------------------
# Now do calibrator 0137+331
field = ’0137+331’
correlation = ’RR LL’
xaxis = ’uvdist’
spw = ’’
iteration = ’’
antenna = ’’

plotxy()

# You’ll see a bunch of bad data along the bottom near zero amp
# Draw a box around some of it and use Locate
# Looks like much of it is Antenna 9 (ID=8) in spw=1

xaxis = ’time’
spw = ’1’
correlation = ’’

# Note that the strings like antenna=’9’ first try to match the
# NAME which we see in listobs was the number ’9’ for ID=8.
# So be careful here (why naming antennas as numbers is bad).
antenna = ’9’

plotxy()

# YES! the last 4 scans are bad. Box ’em and flag.

# Go back and clean up



CHAPTER 3. DATA EXAMINATION AND EDITING 159

xaxis = ’uvdist’
spw = ’’
antenna = ’’
correlation = ’RR LL’

plotxy()

# Box up the bad low points (basically a clip below 0.52) and flag

# Note that RL,LR are too weak to clip on.

#---------------------------------------------------------------------
# Finally, do JUPITER
field = ’JUPITER’
correlation = ’’
iteration = ’’
xaxis = ’time’

plotxy()

# Here you will see that the final scan at 22:00:00 UT is bad
# Draw a box around it and flag it!

# Now look at what’s left
correlation = ’RR LL’
xaxis = ’uvdist’
spw = ’1’
antenna = ’’
iteration = ’antenna’

plotxy()

# As you step through, you will see that Antenna 9 (ID=8) is often
# bad in this spw. If you box and do Locate (or remember from
# 0137+331) it’s probably a bad time.

# The easiest way to kill it:

antenna = ’9’
iteration = ’’
xaxis = ’time’
correlation = ’’

plotxy()

# Draw a box around all points in the last bad scans and flag ’em!

# Now clean up the rest
xaxis = ’uvdist’
correlation = ’RR LL’
antenna = ’’
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spw = ’’

# You will be drawing many tiny boxes, so remember you can
# use the ESC key to get rid of the most recent box if you
# make a mistake.

plotxy()

# Note that the end result is we’ve flagged lots of points
# in RR and LL. We will rely upon imager to ignore the
# RL LR for points with RR LL flagged!

3.3.3 Plotting antenna positions using plotants

This task is a simple plotting interface (to the plotxy functionality) to produce plots of the antenna
positions (taken from the ANTENNA sub-table of the MS).

The inputs to plotants are:

# plotants :: Plot the antenna distribution in the local reference frame:
vis = ’’ # Name of input visibility file (MS)
figfile = ’’ # Save the plotted figure to this file

3.3.4 Plotting uv-coverages plotuv

A simple way to plot uv-coverages is offered by the task plotuv:

# plotuv :: Plot the baseline distribution
vis = ’’ # Name of input visibility file (MS)
field = ’’ # Select field using ID(s) or name(s)
antenna = ’’ # Select data based on antenna/baseline
spw = ’’ # Select spectral window/channels
observation = ’’ # Select by observation ID(s)
array = ’’ # Select (sub)array(s) by array ID number
maxnpts = 100000 # Maximum number of points per plot.
colors = [’r’, ’y’, ’g’, ’b’] # a list of matplotlib color codes
symb = ’,’ # A matplotlib plot symbol code
ncycles = 1 # How many times to cycle through colors per

# plot.
figfile = ’’ # Save the plotted figure(s) using this name

plotuv provides basic selection of data as well as plotting style options. The difference to plotms is
that plotuv is also plotting the Hermitian conjugates of the visibilities which produces the familiar
symmetric plots. This is a remedy to the restriction in plotms to allow flagging of data. This is
achieved via a unambiguous link from a displayed data point to a visibility. Plotting Hermitian
conjugates would break this rule in plotms and plotuv is used instead to plot Hermitian conjugates.
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3.4 Data Flagging using flagdata

flagdata can flag measurement sets and calibration tables with an elaborate selection syntax. It
also contains auto-flagging routines.

For a full description of flagdata please visit:

http://www.aoc.nrao.edu/~rurvashi/FlaggerDocs/FlaggerDocs.html

The inputs to flagdata are:

# flagdata :: All-purpose flagging task based on data-selections and flagging modes/algorithms.
vis = ’’ # Name of MS file or calibration table to flag
mode = ’manual’ # Flagging mode

field = ’’ # Field names or field index
# numbers: ’’ ==> all, field=’0~2,3C286’

spw = ’’ # Spectral-window/frequency/channel: ’’ ==> all, spw=’0:17~19’
antenna = ’’ # Antenna/baselines: ’’ ==> all, antenna =’3,VA04’
timerange = ’’ # Time range: ’’ ==> all,timerange=’09:14:0~09:54:0’
correlation = ’’ # Correlation: ’’ ==> all, correlation=’XX,YY’
scan = ’’ # Scan numbers: ’’ ==> all
intent = ’’ # Observation intent: ’’ ==> all, intent=’CAL*POINT*’
array = ’’ # (Sub)array numbers: ’’ ==> all
uvrange = ’’ # UV range: ’’ ==> all;

# uvrange =’0~100klambda’, default units=meters
observation = ’’ # Observation ID: ’’ ==> all
feed = ’’ # Multi-feed numbers: Not yet implemented
autocorr = False # Flag auto-correlations

action = ’apply’ # Action to perform in MS
# and/or in inpfile (none/apply/calculate)

display = ’’ # Display data and/or
# end-of-MS reports at runtime (data/report/both).

flagbackup = True # Back up the state of flags before the run

savepars = False # Save the current parameters
# to the FLAG_CMD table or to a file

vis can take a measurement set or calibration table. Data selection for calibration tables is limited to
field, scan, time, antenna, spw, and observation. Since calibration tables do not have a FLAG CMD
table, parameter settings, if requested, can only be saved in external files.

The mode parameter (§3.4.2) selects the flagging algorithm and the following are available:

list = list of flagging commands to apply to MS
manual = flagging based on specific selection parameters
clip = clip data according to values
quack = remove/keep specific time range at scan beginning/end
shadow = remove antenna-shadowed data

http://www.aoc.nrao.edu/~rurvashi/FlaggerDocs/FlaggerDocs.html
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elevation = remove data below/above given elevations
tfcrop = automatic identification of outliers on the time-freq plane
rflag = automatic detection of outliers based on sliding-window RMS filters
extend = extend and/or grow flags beyond what the basic algorithms detect
summary = report the amount of flagged data
unflag = unflag the specified data

Flagging will only be applied to the data selection that is performed with the usual selection
parameters (§ 2.3). The dataset is iterated-through in chunks (small pieces of data) consisting
of one field, one spw, and a user-defined timerange (default is one scan). In addition to the
typical antenna, spw, timerange, etc. selections, we would like to point out some addition of the
correlation syntax for modes clip, tfcrop, and rflag. One can combine correlation products with
simple mathematical expressions

’ABS’, ’ARG’, ’RE’, ’IM’, ’NORM’

followed by the polarization products (using an underscore in between “ ” )

’ALL’, ’I’, ’XX’, ’YY’, ’RR’, ’LL’, ’WVR’

’WVR’ refers to the water vapour radiometer of ALMA data. Note that the operators ABS,ARG,RE,
etc. are written only once as the first value. if more than one correlation is given, the operator will
be applied to all of them. An example would be

correlation=’RE_XX,XY’

which would select all real XX and XY polarization for flagging.

3.4.1 The action parameter

The keyword action controls whether the actual flagging commands will be applied or not and the
options are the empty string ”, ’apply’ and ’calculate’.

apply is likely the most popular one as it applies the flags to the MS:

action = ’apply’ # Action to perform in MS and/or in inpfile
# (none/apply/calculate)

display = ’’ # Display data and/or end-of-MS reports at runtime
# (data/report/both).

flagbackup = True # Back up the state of flags before the run

flagbackup specifies if a backup of the current flags should be saved in the “*.flagversions” file.
display can be ”, ’data’, ’report’, ’both’ where the empty string ” will report no individual flagging
statistics, whereas ’data’ launches an interactive GUI to display data and flags for each chunk to
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browse through. The plots are time-frequency planes and both old and new flags are being overlaid
for all correlations per baseline. In the GUI, one can step though all chunks for inspection and if
the flagging is unsatisfactory, one can exit without applying the flags. If the flagging is acceptable,
it is also possible to continue flagging without viewing all chunks (the number of chunks can be
very large for typical JVLA and ALMA data sets. display=’report’ lists the flagging statistics at
the end of the procedure on the screen and both starts the GUI and reports all statistics at the end.

action=’calculate’ calculates the flags but does not write them to the MS or calibration table. This
is useful if one would like to inspect the computed flags in the GUI without a straight application:

action = ’calculate’ # Action to perform in MS and/or in inpfile
# (none/apply/calculate)

display = ’’ # Display data and/or end-of-MS reports at runtime
# (data/report/both).

The empty string action=” will do nothing and is useful when the commands themselves shall only
be written to the FLAG CMD sub-table or to an external file using the savepars parameter to
specify the filename.

savepars will save the flagging commands to a file that can be later used for input in flagdata via
mode=’list’. It also shares the flagcmd syntax and can be used there. The file name is specified
by outfile and, if empty, the FLAG CMD table in the MS will be populated. A REASON can be
given by the reason keyword which may be useful for bookkeeping as well as for unflagging data
that are marked by specific REASON keywords.

3.4.2 Flagging Modes

3.4.2.1 Manual Flag/Unflag

mode = ’manual’ # Flagging mode (list/manual/clip/shadow/quack/el
# evation/tfcrop/rflag/extend/unflag/summary)

field = ’’ # Field names or field index numbers: ’’ ==> all,
# field=’0~2,3C286’

spw = ’’ # Spectral-window/frequency/channel: ’’ ==> all,
# spw=’0:17~19’

antenna = ’’ # Antenna/baselines: ’’ ==> all, antenna
# =’3,VA04’

timerange = ’’ # Time range: ’’ ==>
# all,timerange=’09:14:0~09:54:0’

correlation = ’’ # Correlation: ’’ ==> all, correlation=’XX,YY’
scan = ’’ # Scan numbers: ’’ ==> all
intent = ’’ # Observation intent: ’’ ==> all,

# intent=’CAL*POINT*’
array = ’’ # (Sub)array numbers: ’’ ==> all
uvrange = ’’ # UV range: ’’ ==> all; uvrange =’0~100klambda’,

# default units=meters
observation = ’’ # Observation ID: ’’ ==> all
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feed = ’’ # Multi-feed numbers: Not yet implemented
autocorr = False # Flag auto-correlations

The ’manual’ mode is the most straight-forward of all modes. All visibilities that are selected by the
various data selection parameters will be flagged or unflagged, depending on the action parameter.
autocorr is a shorthand for antenna=’*&&&’ to flag all auto correlations in the data.

3.4.2.2 List

mode = ’list’ # Flagging mode (list/manual/clip/shadow/quack/el
# evation/tfcrop/rflag/extend/unflag/summary)

inpfile = ’’ # Input ASCII file, list of
# files or Python list of strings with

# flag commands.
reason = ’any’ # Select by REASON types

A list of flag commands can be provided through a file or a list of files, specified by the inpfile
parameter. Each input line may contain a flagging mode with data selection parameters as well as
parameters that are specific to that mode. All parameters that are not set will be reset to their
default values (default mode is ’manual’). Each line of this file or list of strings will be taken
as a command to the flagdata task. This mode=’list’ is similar to the task flagcmd with the
inpmode=’list’ option.

An example for such a file would be:

mode=’shadow’
mode=’clip’ clipminmax=[0,5] correlation=’ABS_ALL’
mode=’quack’ quackmode=’end’ quackinterval=1.0
antenna=’ea01’ timerange=’00:00:00~01:00:00’
antenna=’ea11’ timerange=’00:00:00~03:00:00’ spw=’0~4’

Alternatively, this can be issued in the task directly like:

flagdata(vis=’vis’,mode=’list’,
inpfile=["mode=’shadow’",

"mode=’clip’ clipminmax=[0,5] correlation=’ABS_ALL’",
"mode=’quack’ quackmode=’end’ quackinterval=1.0"’
"antenna=’ea01’ timerange=’00:00:00~01:00:00’",
"antenna=’ea11’ timerange=’00:00:00~03:00:00’ spw=’0~4’"])

or via a variable

cmds=["mode=’shadow’,
"mode=’clip’ clipminmax=[0,5] correlation=’ABS_ALL’",
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"mode=’quack’ quackmode=’end’ quackinterval=1.0",
"antenna=’ea01’ timerange=’00:00:00~01:00:00’",
"antenna=’ea11’ timerange=’00:00:00~03:00:00’ spw=’0~4’"]

flagdata(vis=’vis’,mode=’list’, inpfile=cmds)

The syntax needs to be written with quotes e.g. mode=’manual’ antenna=’ea10’. There should be
no space between key=value. Spaces are used to separate pairs of parameters, not commas.

3.4.2.3 Clip

mode = ’clip’ # Flagging mode (list/manual/clip/shadow/quack/
# elevation/tfcrop/rflag/extend/unflag/summary)

...
datacolumn = ’DATA’ # Data column on which to operate

# (data,corrected,model,residual)
clipminmax = [] # Range to use for clipping
clipoutside = True # Clip outside the range, or within it
channelavg = False # Average over channels (scalar average)
timeavg = False # Average over time ranges
timebin = ’’ # Bin width for time averaging.
clipzeros = False # Clip zero-value data

in addition to the regular selection parameters, mode=’clip’ also has an option to select between
a number of scratch columns in datacolumn. This includes the usual DATA, CORRECTED, etc.,
and also clipping based on data weights WEIGHT, WEIGHT SPECTRUM as well as other MS
columns. clipminmax selects the range of values to be clipped – usually this is combined with
clipoutside=True to clip everything but the values covered in clipminmax. The data can also be
averaged over the selected spw channel ranges by setting channelavg=True, or time averages via
timeavg=True and setting of timebin. clip will also flag ’NaN’, ’inf’, and ’-inf’ values by default
and can flag exact zero values (these are sometimes produced by the JVLA correlator) using the
clipzeros parameter.

Note : For modes clip, tfcrop and rflag, channel-ranges can be excluded from flagging by selecting
ranges such as spw=’0:05̃;106̃3’. This is a way to protect known spectral-lines from being flagged
by the autoflag algorithms.

3.4.2.4 Shadow

mode = ’shadow’ # Flagging mode (list/manual/clip/shadow/quack/
# elevation/tfcrop/rflag/extend/unflag/summary)

...
tolerance = 0.0 # Amount of shadow allowed (in meters)
addantenna = ’’ # File name or dictionary with additional antenna names,

# positions and diameters
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This option flags shadowed antennas, i.e. when one antenna blocks part of the aperture of a second
antenna that is behind the first one. Shadowing can be gradual and the criterion for a shadow flag
is when a baseline is shorter than radius1 + radius2 − tolerance (where the radii of the antennae
are taken from the MS antenna subtable); see Fig. 3.9. addantenna may be used to account for
shadowing when antennas are not listed in the MS but are physically present. Please read the
flagdata inline help for the syntax of this option.

Figure 3.9: This figure shows the geometry used to compute shadowed antennas.

3.4.2.5 Quack

mode = ’quack’ # Flagging mode (list/manual/clip/shadow/quack/
# elevation/tfcrop/rflag/extend/unflag/summary)

...
quackinterval = 0.0 # Quack n seconds from scan beginning or end
quackmode = ’beg’ # Quack mode. ’beg’ ==>

# beginning of scan.’endb’ ==> end of
# scan. ’end’ ==> all but
# end of scan. ’tail’ ==> all but
# beginning of scan

quackincrement = False # Flag incrementally in time?

quack is used to remove data at scan boundaries. quackinterval specifies the time in seconds to
be flagged, and quackmode can be ’beg’ to flag the quackinterval at the beginning of each selected
scan, ’endb’ at the end of scan. ’tail’ flags all but the beginning of scan and ’end’ all but the end of
scan. The quackincrement is either True or False, depending if one wishes to flag the quackinterval
from the first unflagged data in the scan, or from the scan boundaries independent of data being
already flagged or not.

3.4.2.6 Elevation

mode = ’elevation’ # Flagging mode (list/manual/clip/shadow/quack/
# elevation/tfcrop/rflag/extend/unflag/summary)
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...
lowerlimit = 0.0 # Lower limiting elevation (in degrees)
upperlimit = 90.0 # Upper limiting elevation (in degrees)

Flagging based on the elevation of the antennae. This may be useful to avoid data taken at very
low elevations or close to transit and the lowerlimit and upperlimit parameters specify the range of
good elevations.

3.4.2.7 Tfcrop

mode = ’tfcrop’ # Flagging mode (list/manual/clip/shadow/quack/
# elevation/tfcrop/rflag/extend/unflag/summary
# )

...
ntime = ’scan’ # Time-range to use for each chunk (in seconds

# or minutes)
combinescans = False # Accumulate data across scans.
datacolumn = ’DATA’ # Data column on which to operate

# (data,corrected,model,residual)
timecutoff = 4.0 # Flagging thresholds in units of deviation

# from the fit
freqcutoff = 3.0 # Flagging thresholds in units of deviation

# from the fit
timefit = ’line’ # Fitting function for the time direction

# (poly/line)
freqfit = ’poly’ # Fitting function for the frequency direction

# (poly/line)
maxnpieces = 7 # Number of pieces in the polynomial-fits (for

# ’freqfit’ or ’timefit’ = ’poly’)
flagdimension = ’freqtime’ # Dimensions along which to calculate fits

# (freq/time/freqtime/timefreq)
usewindowstats = ’none’ # Calculate additional flags using sliding

# window statistics (none,sum,std,both)
halfwin = 1 # Half-width of sliding window to use with

# ’usewindowstats’ (1,2,3).
extendflags = True # Extend flags along time,

# frequency and correlation.

TFCrop is an autoflag algorithm that detects outliers on the 2D time-frequency plane, and can oper-
ate on un-calibrated data (non bandpass-corrected). The original implementation of this algorithm
is described in NCRA Technical Report 202 (Oct 2003).

The algorithm iterates through the data in chunks of time. For each chunk, the result of user-
specified visibility-expressions are organized as 2D time-frequency planes, one for each baseline and
correlation-expression result, and the following steps are performed.
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1. Calculate a bandshape template : Average the data across time, to construct an average
bandpass. Construct an estimate of a clean bandpass (without RFI) via a robust piece-wise
polynomial fit to the average bandpass shape.

Note : A robust fit is computed in up to 5 iterations. It begins with a straight line fit
across the full range, and gradually increases to ’maxnpieces’ number of pieces with third-
order polynomials in each piece. At each iteration, the stddev between the data and the fit
is computed, values beyond N-stddev are flagged, and the fit and stddev are re-calculated
with the remaining points. This stddev calculation is adaptive, and converges to a value that
reflects only the data and no RFI. At each iteration, the same relative threshold is applied to
detect flags, and this results in a varying set of flagging thresholds, that allows deep flagging
only when the fit represents the true data best. Iterations stop when the stddev changes by
less than 10%, or when 5 iterations are completed.

The resulting clean bandpass is a fit across the base of RFI spikes.

2. Divide out this clean bandpass function from all timesteps in the current chunk. Now, any
data points that deviate from a mean of 1 can be considered RFI. This step helps to separate
narrow-band RFI spikes from a smooth but varying bandpass, in situations where a simple
range-based clipping will flag good sections of the bandpass.

3. Perform iterative flagging (robust flagging) of points deviating from a value of 1.

Flagging is done in up to 5 iterations. In each iteration, for every timestep, calculate the
stddev of the bandpass-flattened data, flag all points further than N times stddev from the
fit, and recalculate the stddev. At each iteration, the same relative threshold is applied to
detect flags. Optionally, use sliding-window based statistics to calculate additional flags.

4. Repeat steps 1 and 3, but in the other direction (i.e. average the data across frequency, calcu-
late a piece-wise polynomial fit to the average time-series, and find flags based on deviations
w.r.to this fit.)

The default parameters of the tfcrop implementation are optimized for strong narrow-band RFI
(see, e.g. Fig. 3.10). With broad-band RFI, the piece-wise polynomial can sometimes model it as
part of the band-shape, and therefore not detect it as RFI. In this case, reducing the maximum
number of pieces in the polynomial can help. This algorithm usually has trouble with noisy RFI
that is also extended in time of frequency, and additional statistics-based flagging is recommended
(via the ’usewindowstats’ parameter). It is often required to set up parameters separately for each
spectral-window.

If frequency ranges of known astronomical spectral lines are known a-priori , they can be pro-
tected from automatic flagging by de-selecting those frequency-ranges via the ’spw’ data-selection
parameter.

The extendflag parameter will clean up small portions of data between flagged data points along
time and/or frequency when more than 50% of all timeranges or 80% of all channels are already
flagged. It will also extend the flags to the other polarizations. Alternatively, mode=’extend’ can
be used (Fig. 3.12).
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Figure 3.10: This screenshot represents a run where ’tfcrop’ was run on a spw=’9’ with mainly
narrow-band RFI. RIGHT : An example of protecting a spectral line (in this case, demonstrated
on an RFI spike) by setting the spw-selection to spw=’0:0 45;53 63’. In both figures, the top row
indicates the data before flagging, and the bottom row after flagging.

3.4.2.8 Rflag

mode = ’rflag’ # Flagging mode (list/manual/clip/shadow/quack/
# elevation/tfcrop/rflag/extend/unflag/summary
# )

...
ntime = ’scan’ # Time-range to use for each chunk (in seconds

# or minutes)
combinescans = False # Accumulate data across scans.
datacolumn = ’DATA’ # Data column on which to operate

# (data,corrected,model,residual)
winsize = 3 # Number of timesteps in the sliding time

# window [aips:fparm(1)]
timedev = ’’ # Time-series noise estimate [aips:noise]
freqdev = ’’ # Spectral noise estimate [aips:scutoff]
timedevscale = 5.0 # Threshold scaling for timedev [aips:fparm(9)]
freqdevscale = 5.0 # Threshold scaling for freqdev

# [aips:fparm(10)]
spectralmax = 1000000.0 # Flag whole spectrum if freqdev is greater

# than spectralmax [aips:fparm(6)]
spectralmin = 0.0 # Flag whole spectrum if freqdev is less than

# spectralmin [aips:fparm(5)]
extendflags = True # Extend flags along time, frequency and correlation.
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RFlag is an autoflag algorithm based on a sliding window statistical filter. The RFlag algorithm
was originally developed by Eric Greisen in AIPS (31DEC11). AIPS documentation : Subsection
E.5 of the AIPS cookbook (Appendix E : Special Considerations for JVLA data calibration and
imaging in AIPS3)

In RFlag, the data is iterated-through in chunks of time, statistics are accumulated across time-
chunks, thresholds are calculated at the end, and applied during a second pass through the dataset.

The CASA implementation also optionally allows a single-pass operation where statistics and
thresholds are computed and also used for flagging, within each time-chunk (defined by ’ntime’
and ’combinescans’).

For each chunk, calculate local statistics, and apply flags based on user supplied (or auto-calculated)
thresholds.

1. Time analysis (for each channel)

(a) Calculate local rms of real and imag visibilities, within a sliding time window

(b) Calculate the median rms across time windows, deviations of local rms from this median,
and the median deviation

(c) Flag if local rms is larger than timedevscale x (medianRMS + medianDev)

2. Spectral analysis (for each time)

(a) Calculate avg of real and imag visibilities and their rms across channels

(b) Calculate the deviation of each channel from this avg, and the median-deviation

(c) Flag if deviation is larger than freqdevscale x medianDev

The extendflag parameter will clean up small portions of data between flagged data points along
time and/or frequency when more than 50% of all timeranges or 80% of all channels are already
flagged. It will also extend the flags to the other polarizations. Alternatively, mode=’extend’ can
be used.

Some examples (also see Fig. 3.11):

1. Calculate thresholds automatically per scan, and use them to find flags. Specify scale-factor
for time-analysis thresholds, use default for frequency.

flagdata(’my.ms’, mode=’rflag’,spw=’9’,timedevscale=4.0,writeflags=True)

2. Supply noise-estimates to be used with default scale-factors.

flagdata(vis=’my.ms’, mode=’rflag’, spw=’9’, timedev=0.1, freqdev=0.5, writeflags=True);

3http://www.aips.nrao.edu/cook.html#CEE

http://www.aips.nrao.edu/cook.html#CEE
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Two-passes. This replicates the usage pattern in AIPS.

• The first pass saves commands in an output text files, with auto-calculated thresholds.
Thresholds are returned from rflag only when writeflags=False (calc-only mode). The
user can edit this file before doing the second pass, but the python-dictionary structure
must be preserved.

• The second pass applies these commands (writeflags=True).

flagdata(vis=’my.ms’, mode=’rflag’, spw=’9,10’, timedev=’tdevfile.txt’, freqdev=’fdevfile.txt’, writeflags=False);
flagdata(vis=’my.ms’, mode=’rflag’, spw=’9,10’,

timedev=’tdevfile.txt’, freqdev=’fdevfile.txt’, writeflags=True);

Figure 3.11: Example of rflag on narrow-band RFI

3.4.2.9 Extend

mode = ’extend’ # Flagging mode (list/manual/clip/shadow/quack/el
# evation/tfcrop/rflag/extend/unflag/summary)

field = ’’ # Field names or field index numbers: ’’ ==> all,
# field=’0~2,3C286’

spw = ’’ # Spectral-window/frequency/channel: ’’ ==> all,
# spw=’0:17~19’

antenna = ’’ # Antenna/baselines: ’’ ==> all, antenna
# =’3,VA04’

timerange = ’’ # Time range: ’’ ==>
# all,timerange=’09:14:0~09:54:0’

correlation = ’’ # Correlation: ’’ ==> all, correlation=’XX,YY’
scan = ’’ # Scan numbers: ’’ ==> all
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intent = ’’ # Observation intent: ’’ ==> all,
# intent=’CAL*POINT*’

array = ’’ # (Sub)array numbers: ’’ ==> all
uvrange = ’’ # UV range: ’’ ==> all; uvrange =’0~100klambda’,

# default units=meters
observation = ’’ # Observation ID: ’’ ==> all
feed = ’’ # Multi-feed numbers: Not yet implemented
ntime = ’scan’ # Time-range to use for each chunk (in seconds or

# minutes)
combinescans = False # Accumulate data across scans.
extendpols = True # If any correlation is flagged, flag all

# correlations
growtime = 50.0 # Flag all ’ntime’ integrations if more than X%

# of the timerange is flagged (0-100)
growfreq = 50.0 # Flag all selected channels if more than X% of

# the frequency range is flagged(0-100)
growaround = False # Flag data based on surrounding flags
flagneartime = False # Flag one timestep before and after a flagged

# one (True/False)
flagnearfreq = False # Flag one channel before and after a flagged one

# (True/False)

Although the modes tfcrop and rflag already have extendflag parameters, some autoflagging algo-
rithms may still leave small islands of unflagged data behind, data that are surrounded by flagged
visibilities in the time-frequency space. Although the algorithm may deem these visibilities as good
ones, they are frequently affected by low-level RFI that spills from the adjacent, flagged points and
one may wish to clean those up.

ntime specifies the time ranges over which to clean up, e.g. ’1.5min’ or ’scan’ which checks on all
data within a scan. To span time ranges larger than scans, one can set combinescans to True.

extendpols=True would extend all flags to all polarization products when at least one of them is
flagged.

growtime flags the entire time range for a flagged channel, when a certain fraction of flagged time
intervals is exceeded.

growfreq is similar but extends the flags in frequency when a given fraction of channels is already
flagged.

growaround checks for flagged data points in the time-frequency domain that neighbor a datum.
The threshold is four data points. If more surrounding points are flagged, the central datum will
be flagged, too.

flagneartime flags adjacent data points along the time axis, around a flagged datum

flagnearfreq flags neighboring channels.

For an example, see Fig. 3.12.
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Figure 3.12: This screenshot represents a run where ’tfcrop’ was run only on ’ABS RR’ (top row)
and followed by an extension along time and correlations (bottom row).

3.4.2.10 Unflag

mode = ’unflag’ # Flagging mode (list/manual/clip/shadow/quack/
# elevation/tfcrop/rflag/extend/unflag/summary
# )

field = ’’ # Field names or field index numbers: ’’==>all,
# field=’0~2,3C286’

spw = ’’ # spectral-window/frequency/channel
antenna = ’ea01’ # antenna/baselines: ’’==>all, antenna

# =’3,VA04’
timerange = ’’ # time range:

# ’’==>all,timerange=’09:14:0~09:54:0’
correlation = ’’ # Select data based on correlation
scan = ’’ # scan numbers: ’’==>all
intent = ’’ # Select data based on observation intent:

# ’’==>all
feed = ’’ # multi-feed numbers: Not yet implemented
array = ’’ # (sub)array numbers: ’’==>all
uvrange = ’’ # uv range: ’’==>all; uvrange =’0~100klambda’,

# default units=meters
observation = ’’ # Select data based on observation ID: ’’==>all

The selection data will be unflagged.
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3.4.2.11 Summary

mode = ’summary’ # Flagging mode (list/manual/clip/shadow/quack/
# elevation/tfcrop/rflag/extend/unflag/summary
# )

...
minrel = 0.0 # minimum number of flags (relative)
maxrel = 1.0 # maximum number of flags (relative)
minabs = 0 # minimum number of flags (absolute)
maxabs = -1 # maximum number of flags (absolute). Use a

# negative value to indicate infinity.
spwchan = False # Print summary of channels per spw
spwcorr = False # Print summary of correlation per spw
basecnt = False # Print summary counts per baseline

This mode reports the number of rows and data points that are flagged. The selection of reported
points can be restricted (see inline help for details).

mode=’summary’ can also report back a dictionary if the task is run as

s = flagdata(..., mode=’summary’)

with a variable assigned, here ’s’.

3.5 Command-based flagging using flagcmd

The task flagcmd will flag the visibility data set or calibration table based on a specified set of
flagging commands using a flagging syntax (see § 3.5.3). These commands can be input from the
FLAG CMD MS table, from a Flag.xml SDM table, from an ascii file, or from input python strings.
Facilities for manipulation, listing, or plotting of these flags are also provided.

The inputs to flagcmd are:

# flagcmd :: Flagging task based on batches of flag-commands
vis = ’’ # Name of MS file or calibration table to flag
inpmode = ’table’ # Input mode for flag commands(table/list/xml)

inpfile = ’’ # Source of flag commands
tablerows = [] # Rows of inpfile to read
reason = ’any’ # Select by REASON types
useapplied = False # Select commands whose rows

# have APPLIED column set to True

action = ’apply’ # Action to perform in MS and/or in inpfile
# (apply/unapply/list/plot/clear/extract)

flagbackup = True # Automatically backup the
# FLAG column before execution

savepars = False # Save flag commands to the MS or to a file
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The default input mode is inpmode=’table’ which directs the task to input flag commands from the
FLAG CMD internal MS table. See § 3.5.1 for more options.

The default operation mode is action=’apply’ directing the task to apply relevant flagging com-
mands to the MS data main table. See § 3.5.2 for more options.

See § 3.5.3 for a description of the flagging command syntax.

It is possible to flag calibration tables using flagcmd, although we recommend using the flagdata
task for this.

When using flagcmd to flag calibration tables, only the apply and list actions are supported.
Because calibration tables do not have a FLAG CMD sub-table, the default inpmode=’table’ can
only be used if an MS is given in the inpfile parameter so that flags from the MS are applied to
the calibration table directly. Otherwise, the flag commands must be given using inpmode=’list’,
either from a file or from a list of strings.

3.5.1 Input modes inpmode

The inpmode parameter selects options for the input mode for the flagging commands.

Available inpmode options are:

• ’table’ — input from MS table (§ 3.5.1.1)

• ’list’ — input from ASCII file or from a list of strings (§ 3.5.1.2)

• ’xml’ — input from XML table (§ 3.5.1.3)

3.5.1.1 Input mode ’table’

The default input mode is inpmode=’table’ which directs the task to input flag commands from a
FLAG CMD MS table. This has the sub-parameters:

inpmode = ’table’ # Input mode for flag commands(table/list/xml)
inpfile = ’’ # Source of flag commands
tablerows = [] # Rows of inpfile to read
reason = ’any’ # Select by REASON types
useapplied = False # Select commands whose rows

# have APPLIED column set to
# True

If inpfile = ” then it will look for the FLAG CMD table in the MS given by vis. You can use this
sub-parameter to direct the task to look directly at another table.

The tablerows sub-parameter is a simple Python list of the row numbers of the table to consider in
processing flags. The default is all rows.
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The useapplied sub-parameter toggles whether only flag commands marked as not having been
applied are considered (the default), or to allow (re)processing using all commands.

The reason sub-parameter selects the REASON type to process. The default ’any’ means all
commands, note that reason=” would only select flags who have a blank REASON column entry.

One use case is to read the flag commands from the FLAG CMD of an MS and apply them to a
calibration table given in the parameter vis. Example:

flagcmd(vis=’cal-X54.B1’, inpmode=’table’,
inpfile=’uid___A002_X2a5c2f_X54.ms’, action=’apply’)

3.5.1.2 Input flag mode ’list’

This mode allows one to insert a list of strings with flagging commands, the name of a file or a
list of filenames that contains these commands equivalent to the mode=’list’ in flagdata (§ 3.4.2.2).
E.g. a file flags.txt that contains

scan=’1~3’ mode=’manual’
mode=’clip’ clipminmax=[0,2] correlation=’ABS_XX’ clipoutside=False
spw=’9’ mode=’tfcrop’ correlation=’ABS_YY’ ntime=51.0
mode=’extend’ extendpols=True

can be called via

flagcmd(vis,inpmode=’list’,inpfile=’flags.txt’)

Alternatively, the individual flagging commands can be directly provided in the call itself like

inpfile=["scan=’1~3’ mode=’manual’",
"mode=’clip’ clipminmax=[0,2] correlation=’ABS_XX’ clipoutside=False",
"spw=’9’ mode=’tfcrop’ correlation=’ABS_YY’ ntime=51.0",
"mode=’extend’ extendpols=True"]

3.5.1.3 Input flag mode ’xml’

The input mode inpmode=’xml’ directs the task to input flag commands from a XML SDM online
flagging Flag.xml file. When set this opens the sub-parameters:

inpmode = ’xml’ # Input mode for flag commands(table/list/xml)
tbuff = 0.0 # Time buffer (sec) to pad flags
ants = ’’ # Allowed flag antenna names to select by
reason = ’any’ # Select by REASON types
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This mode will look for a file called Flag.xml inside the MS directory specified under vis. Note that
if the data was filled from the SDM using importevla (§ 2.2.2) then the relevant XML file will
have been copied to the MS already.

The tbuff sub-parameter sets a padding buffer (in seconds) to the begin and end times of the online
flags in the XML file. As in importevla, the online flag time buffer tbuff is specified in seconds,
but in fact should be keyed to the intrinsic online integration time to allow for events (like slewing)
that occur within an integration period. This is particularly true for JVLA data, where a tbuff
value of 0.5× to 1.5× the integration time is needed. For example, if data were taken with 1-second
integrations, then at least tbuff=0.5 should be used, likewise tbuff=5 for 10-second integrations.
Note: For JVLA data you should use 1.5× (e.g. tbuff=15 for 10-second integrations) for data
taken in early 2011 or before due to a timing error. We do not yet know what ALMA data will
need for padding (if any).

The ants sub-parameter selects the antennas from which online flags will be selected (default is all
antennas). For example, ants=’ea01’ is a valid choice for JVLA data.

The reason sub-parameter selects by the REASON field in the Flag.xml file. The default ’any’
means all commands. Note that reason=” would only select flags who have a blank REASON field
entry.

3.5.2 Operation types action

The action selects options for operating on the selected flags and possibly the data.

Available action options are:

• ’apply’ — apply flag commands to data (§ 3.5.2.1)

• ’unapply’ — unapply flags in data (§ 3.5.2.2)

• ’list’ — list and/or save flag commands (§ 3.5.2.3)

• ’plot’ — plot flag commands (§ 3.5.2.4)

• ’clear’ — clear rows from FLAG CMD table (§ 3.5.2.5)

• ’extract’ — extract internal flag dictionary (§ 3.5.2.6)

3.5.2.1 Apply flags — optype option ’apply’

The default operation mode is action=’apply’ directing the task to apply relevant flagging com-
mands to the vis data main table.

action = ’apply’ # Action to perform in MS and/or in inpfile
# (apply/unapply/list/plot/clear/extract)

flagbackup = True # Automatically backup the
# FLAG column before execution
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The flagbackup toggle sets whether a new copy of the MS main table FLAG column is written to
the .flagversions backup directory for that MS before the requested flagging operation.

3.5.2.2 Unapply flags — action option ’unapply’

The unapply option allows unflagging of data based on the selected flag commands. This choice
opens the sub-parameters:

action = ’unapply’ # Action to perform in MS and/or in inpfile
# (apply/unapply/list/plot/clear/extract)

flagbackup = True # Automatically backup the
# FLAG column before execution

As in action=’apply’, it is possible to make a backup to the *.flagversions file by using flag-
backup=True.

In order to guarantee that only the data selected in the command is unapplied, the framework will
first unapply the selected rows and then re-apply the overlapping data that got unapplied in the
first pass. This is a true unapply action, but it will take longer to process because it will re-apply
all the remaining commands that have APPLIED = True!

3.5.2.3 List flags — action=’list’

The ’list’ option will give a listing of the flagging commands. This choice opens the sub-parameters:

action = ’list’ # Action to perform in MS and/or in inpfile
# (apply/unapply/list/plot/clear/extract)

savepars = True # Save flag commands to the MS or to a file
outfile = ’’ # Name of output file to save commands

This action lists the commands on the screen without applying them. One can save the flagging
script to an file specified in the outfile parameter when savepars=True. If outfile is empty, it will
save the commands to the MS given in vis.

The format of the listing output depends on the source of the flagging commands. A set of flag-
ging commands specified through inpmode=’list’ will be listed directly. The flagging commands
extracted through inpmode=’table’ will reflect the columns in the table:

’Row’, ’Timerange’, ’Reason’, ’Type’, ’Applied’, ’Lev’, ’Sev’, ’Command’

while commands from inpmode=’xml’ will be shown with the SDM XML table fields:

’Key’, ’FlagID’, ’Antenna’, ’Reason’, ’Timerange’
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3.5.2.4 Plot flags — action=’plot’

The ’plot’ option will produce a graphical plot of flags of time versus antenna. This choice opens
the sub-parameters:

action = ’plot’ # Action to perform in MS and/or in inpfile
# (apply/unapply/list/plot/clear/extract)

plotfile = ’’ # Name of output file to save plot

This is only useful for online flags or general flag commands that are specified by antenna plus
timerange using the standard REASON codes that are known SDM Flag.xml enumerations.

If the plotfile sub-parameter is non-blank, then a plotfile will be made with that name instead of
appearing in a matplotlib plotter window on the users workstation.

ALERT: The plotted enumerations are currently only those known to be allowed JVLA online
flags as of 15 April 2011, and include:

’FOCUS’, ’SUBREFLECTOR’, ’OFF SOURCE’, ’NOT IN SUBARRAY’

with all others being plotted as ’Other’.

3.5.2.5 Clear flags — action=’clear’

The ’clear’ action will delete selected rows from the FLAG CMD MS table. This choice opens the
sub-parameters:

action = ’clear’ # Action to perform in MS and/or in inpfile
# (apply/unapply/list/plot/clear/extract)

clearall = False # Delete all rows from FLAG_CMD
rowlist = [] # FLAG_CMD rows to clear

The rowlist sub-parameter is a simple Python list of the row numbers of the table to consider in
processing flags. The default is a blank list which indicates the desire to clear all rows.

In either case, if clearall=False then nothing will happen by default as a safeguard. If clearall=True,
then a blank list will direct the deletion of the selected rows from the table.

ALERT: Use this option with care. You can easily mess up the FLAG CMD table.

3.5.2.6 Extract Flag Commands— action=’extract’

The ’extract’ option will return the internal flagging dictionary to python:

action = ’extract’ # Action to perform in MS and/or in inpfile
# (apply/unapply/list/plot/clear/extract)

The value can be returned to a variable like:

myflagd = flagcmd(vis=msfile,useapplied=True,action=’extract’)
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3.5.3 Flagging command syntax

A flagging command syntax has been devised to populate the COMMAND column of the FLAG CMD
table and to direct the operation of the flagcmd task.

The syntax is similar to flagdata, so please check help flagdata for more info.

You can also use help flagcmd inside casapy for this syntax guide also.

Commands are a string (which may contain internal ”strings”) consisting of KEY=VALUE pairs
separated by whitespace (see examples below).

NOTE: There should be no whitespace between KEY=VALUE or within each KEY or VALUE,
since the simple parser first breaks command lines on whitespace, then on ”=”.

Each key should only appear once on a given command line/string

There is an implicit ”mode” for each command, with the default being ’manual’ if not given.

Comment lines can start with ’#’ and will be ignored.

1. Data selection parameters (used by all flagging modes, see also § 2.3)

timerange=’’
antenna=’’
spw=’’
correlation=’’
field=’’
scan=’’
feed=’’
array=’’
uvrange=’’
intent=’’
observation=’’

Note: a command consisting only of selection key-value pairs is a basic ”manual” operation,
i.e. flag the data meeting the selection

2. Modes specific parameters with default values (for further details, refer to the task flagdata,
§ 3.4.2).

(a) Mode manual

autocorr=False

(b) Mode clip
(c) Mode manual

datacolumn=’DATA’
clipminmax=[]
clipoutside=True
channelavg=False
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clipzeros=False
timeavg=False
timebin=’’

(d) Mode shadow

tolerance=0.0
addantenna=’’

(e) Mode quack

quackinterval=0.0
quackmode=’beg’
quackincrement=False

(f) Mode elevation

lowerlimit=0.0
upperlimit=90.0

(g) Mode tfcrop

ntime=’scan’
combinescans=False
datacolumn=’DATA’
timecutoff=4.0
freqcutoff=3.0
timefit=’line’
freqfit=’poly’
maxnpieces=7
flagdimension=’freqtime’
usewindowstats=’none’
halfwin=1

(h) Mode extend

ntime=’scan’
combinescans=False
extendpols=True
growtime=50.0
growfreq=50.0
growaround=False
flagneartime=False
flagnearfreq=False

(i) Mode rflag

ntime=’scan’
combinescans=False
datacolumn=’DATA’
winsize=3
timedev=’’
freqdev=’’
timedevscale=5.0
freqdevscale=5.0
spectralmax=1000000.0
spectralmin=0.0
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(j) Mode unflag

3. Basic elaboration options for online and interface use

id=’’ # flag ID tag (not necessary)
reason=’’ # reason string for flag
flagtime=’’ # a timestamp for when this flag was generated (for

user history use)

NOTE: there is no flagtime column in FLAG CMD at this time, but we will propose to add
this as an optional column

NOTE: These are currently ignored and not used

4. Extended elaboration options for online and interface use Note: these are FLAG CMD
columns, but their use is not clear but included here for compatibility and future expan-
sion

level=N # flagging "level" for flags with same reason
severity=N # Severity code for the flag, on a scale of 0-10 in order

of increasing severity; user specified

3.6 Browse the Data

The browsetable task is available for viewing data directly (and handles all CASA tables, including
Measurement Sets, calibration tables, and images). This task brings up the CASA Qt casabrowser,
which is a separate program. You can launch this from outside casapy.

The default inputs are:

# browsetable :: Browse a table (MS, calibration table, image)

tablename = ’’ # Name of input table

Currently, its single input is the tablename, so an example would be:

browsetable(’ngc5921.ms’)

For an MS such as this, it will come up with a browser of the MAIN table (see Fig 3.13). If you
want to look at sub-tables, use the tab table keywords along the left side to bring up a panel
with the sub-tables listed (Fig 3.14), then choose (left-click) a table and View:Details to bring it
up (Fig 3.15). You can left-click on a cell in a table to view the contents.

Note that one useful feature is that you can Edit the table and its contents. Use the Edit table
choice from the Edit menu, or click on the Edit button. Be careful with this, and make a backup
copy of the table before editing!



CHAPTER 3. DATA EXAMINATION AND EDITING 183

Figure 3.13: browsetable: The browser displays the main table within a frame. You can scroll
through the data (x=columns of the MAIN table, and y=the rows) or select a specific page or row
as desired. By default, 1000 rows of the table are loaded at a time, but you can step through the
MS in batches.

Use the Close Tables and Exit option from the Files menu to quit the casabrowser.

There are a lot of features in the casabrowser that are not fully documented here. Feel free to
explore the capabilities such as plotting and sorting!

ALERT: You are likely to find that the casabrowser needs to get a table lock before proceeding.
Use the clearstat command to clear the lock status in this case.
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Figure 3.14: browsetable: You can use the tab for Table Keywords to look at other tables within
an MS. You can then double-click on a table to view its contents.
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Figure 3.15: browsetable: Viewing the SOURCE table of the MS.



Chapter 4

Synthesis Calibration

Inside the Toolkit:
The workhorse for synthesis calibra-
tion is the cb tool.

This chapter explains how to calibrate interferometer data
within the CASA task system. Calibration is the process of
determining the net complex correction factors that must
be applied to each visibility in order to make them as close
as possible to what an idealized interferometer would mea-
sure, such that when the data is imaged an accurate picture of the sky is obtained. This is not an
arbitrary process, and there is a philosophy behind the CASA calibration methodology (see § 4.2.1
for more on this). For the most part, calibration in CASA using the tasks is not too different
than calibration in other packages such as AIPS or Miriad, so the user should not be alarmed by
cosmetic differences such as task and parameter names!

4.1 Calibration Tasks

Alert: The calibration table format changed in CASA 3.4. CASA 4.2 is the last version that will
support the caltabconvert function that provides conversions from the pre-3.4 caltable format to
the modern format; it will be removed for CASA 4.3. In general, it is best to recalculate calibration
using CASA 3.4 or later.

Alert: In CASA 4.2 the gaincurve and opacity parameters have been removed from all calibration
tasks (as advertised in 4.1). These calibration types are supported via the gencal task.

Alert: As part of continuing development of a more flexible and improved interface for specifying
calibration for apply, a new parameter has been introduced in applycal and the solving tasks:
docallib. This parameter toggles between use of the traditional calibration apply parameters
(gaintable, gainfield, interp, spwmap, and calwt), and a new callib parameter which currently
provides access to the experimental Cal Library mechanism, wherein calibration instructions are
stored in a file. The default remains docallib=False in CASA 4.5, and this reveals the traditional
apply parameters which continue to work as always, and the remainder of this chapter is still written
using docallib=F. Users interested in the Cal Library mechanism’s flexibility are encouraged to
try it and report any problems; see Appendix G for information on how to use it, including how to

186
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convert traditional applycal to Cal Library format. Note also that plotms and mstransform now
support use of the Cal Library to enable on-the-fly calibration when plotting and generating new
MSs.

The standard set of calibration solving tasks (to produce calibration tables) are:

• bandpass — complex bandpass (B) calibration solving, including options for channel-binned
or polynomial solutions (§ 4.4.2),

• gaincal — complex gain (G,T) and delay (K) calibration solving, including options for time-
binned or spline solutions. (§ 4.4.3),

• polcal — polarization calibration including leakage and angle (§ 4.4.5),

• blcal — baseline-based complex gain or bandpass calibration (§ 4.4.6).

There are helper tasks to create, manipulate, and explore calibration tables:

• accum — Accumulate incremental calibration solutions into a cumulative cal table (§ 4.5.5)
(ALERT: The accum task is generally no longer recommended for most calibration scenarios.
Please write to the NRAO CASA helpdesk if you need support using accum.),

• applycal — Apply calculated calibration solutions (§ 4.6.1),

• clearcal — Re-initialize the calibration for a visibility dataset (§ 4.6.3),

• fluxscale — Bootstrap the flux density scale from standard calibration sources (§ 4.4.4),

• listcal — List calibration solutions (§ 4.5.2),

• plotcal — Plot calibration solutions (§ 4.5.1),

• setjy — Compute model visibilities with the correct flux density for a specified source
(§ 4.3.5),

• smoothcal — Smooth calibration solutions derived from one or more sources (§ 4.5.4),

• split — Write out new MS containing calibrated data from a subset of the original MS
(§ 4.7.1).

There are some development versions of calibration and utility tasks that are recently added to the
suite:

• calstat — Statistics of calibration solutions (§ 4.5.3),

• cvel — Regrid a spectral MS onto a new frequency channel system (§ 4.7.7),

• gencal — Create a calibration tables from metadata such as antenna position offsets, gain-
curves and opacities (§ 4.3.6),
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• wvrgcal — Generate a gain table based on Water Vapour Radiometer data (for ALMA use
- § 4.3.8),

• hanningsmooth — Apply a Hanning smoothing filter to spectral-line uv data (§ 4.7.3),

• mstransform — experimental Task to combine cvel, hanningsmooth, split operations in
a single step (§ 4.7.4),

• uvcontsub — Carry out uv-plane continuum fitting and subtraction (§ 4.7.6),

• uvmodelfit — Fit a component source model to the uv data (§ 4.7.8),

• uvsub — Subtract the transform of a model image from the uv data (§ 4.7.5),

• statwt — Recalcuate the data weights based on their scatter (§ 4.7.9),

• conjugatevis — Change the signs of visibility phases (§ 4.7.10).

.

These are not yet full-featured, and may have only rudimentary controls and options.

The following sections outline the use of these tasks in standard calibration processes.

Information on other useful tasks and parameter setting can be found in:

• listobs — summary of a MS (§ 2.2.7),

• listvis — list data in a MS (§ 2.2.9),

• plotms — prototype next-generation X-Y plotting and editing (§ 3.3.1),

• plotxy — previous generation X-Y plotting and editing (§ 3.3.2),

• plotweather — plot the weather information of an MS and calculate atmospheric opacities
(§ 4.3.4.1),

• flagdata — non-interactive data flagging (§ 3.4),

• data selection — general data selection syntax (§ 2.3).

4.2 The Calibration Process — Outline and Philosophy

A work-flow diagram for CASA calibration of interferometry data is shown in Figure 4.1. This
should help you chart your course through the complex set of calibration steps. In the following
sections, we will detail the steps themselves and explain how to run the necessary tasks and tools.

This can be broken down into a number of discrete phases:
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Figure 4.1: Flow chart of synthesis calibration operations. Not shown are use of table manipulation
and plotting tasks accum, plotcal, and smoothcal (see Figure 4.2).
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• Calibrator Model Visibility Specification — set model visibilities for calibrators, either
unit point source visibilities for calibrators with unknown flux density or structure (generally,
sources used for calibrators are approximately point-like), or visibilities derived from a priori
images and/or known or standard flux density values.

• Prior Calibration — set up previously known calibration quantities that need to be pre-
applied, such antenna gain-elevation curves, atmospheric models, delays, and antenna position
offsets. Use the setjy task (§ 4.3.5) for calibrator flux densities and models, and use gencal
(§ 4.3.6) for antenna position offsets, gaincurves, antenna efficiencies, and opacities;

• Bandpass Calibration — solve for the relative gain of the system over the frequency chan-
nels in the dataset (if needed), having pre-applied the prior calibration. Use the bandpass
task (§ 4.4.2);

• Gain Calibration — solve for the gain variations of the system as a function of time, having
pre-applied the bandpass (if needed) and prior calibration. Use the gaincal task (§ 4.4.3);

• Polarization Calibration — solve for polarization leakage terms and linear polarization
position angle (§ 4.4.5);

• Establish Flux Density Scale — if only some of the calibrators have known flux densi-
ties, then rescale gain solutions and derive flux densities of secondary calibrators. Use the
fluxscale task (§ 4.4.4);

• Manipulate, Accumulate, and Iterate — if necessary, accumulate different calibration
solutions (tables), smooth, and interpolate/extrapolate onto different sources, bands, and
times. Use the accum (§ 4.5.5) and smoothcal (§ 4.5.4) tasks;

• Examine Calibration — at any point, you can (and should) use plotcal (§ 4.5.1) and/or
listcal (§ 4.5.2) to look at the calibration tables that you have created;

• Apply Calibration to the Data — this can be forced explicitly by using the applycal
task (§ 4.6.1), and can be undone using clearcal (§ 4.6.3);

• Post-Calibration Activities — this includes the determination and subtraction of contin-
uum signal from line data, the splitting of data-sets into subsets (usually single-source), and
other operations (such as model-fitting). Use the uvcontsub (§ 4.7.6), split (§ 4.7.1), and
uvmodelfit (§ 4.7.8) tasks.

The flow chart and the above list are in a suggested order. However, the actual order in which
you will carry out these operations is somewhat fluid, and will be determined by the specific
data-reduction use cases you are following. For example, you may need to do an initial Gain
Calibration on your bandpass calibrator before moving to the Bandpass Calibration stage. Or
perhaps the polarization leakage calibration will be known from prior service observations, and can
be applied as a constituent of Prior Calibration.
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4.2.1 The Philosophy of Calibration in CASA

Calibration is not an arbitrary process, and there is a methodology that has been developed to
carry out synthesis calibration and an algebra to describe the various corruptions that data might
be subject to: the Hamaker-Bregman-Sault Measurement Equation (ME), described in Appendix E.
The user need not worry about the details of this mathematics as the CASA software does that for
you. Anyway, it’s just matrix algebra, and your familiar scalar methods of calibration (such as in
AIPS) are encompassed in this more general approach.

There are a number of “physical” components to calibration in CASA:

• data — in the form of the Measurement Set (§ 2.1). The MS includes a number of columns
that can hold calibrated data, model information, and weights;

• calibration tables — these are in the form of standard CASA tables, and hold the calibration
solutions (or parameterizations thereof);

• task parameters — sometimes the calibration information is in the form of CASA task
parameters that tell the calibration tasks to turn on or off various features, contain important
values (such as flux densities), or list what should be done to the data.

At its most basic level, Calibration in CASA is the process of taking “uncalibrated” data, setting
up the operation of calibration tasks using parameters, solving for new calibration tables, and
then applying the calibration tables to form “calibrated” data. Iteration can occur as necessary,
with the insertion of other non-calibration steps (e.g. imaging to generate improved source models
for “self-calibration”).

4.2.2 Keeping Track of Calibration Tables

The calibration tables are the currency that is exchanged between the calibration tasks. The
“solver” tasks (gaincal, bandpass, blcal, polcal) take in the MS (which may have a calibration
model attached) and previous calibration tables, and will output an “incremental” calibration
table (it is incremental to the previous calibration, if any). This table can then be smoothed using
smoothcal if desired.

You can optionally accumulate the incremental calibration onto previous calibration tables with
accum, which will then output a cumulative calibration table. This task will also interpolate onto
a different time scale. See § 4.5.5 for more on accumulation and interpolation.

Figure 4.2 graphs the flow of these tables through the sequence

solve => smooth => accumulate

Note that this sequence applied to separate types of tables (e.g. ’B’, ’G’) although tables of other
types can be previous calibration input to the solver.
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Figure 4.2: Chart of the table flow during calibration. The parameter names for input or output of
the tasks are shown on the connectors. Note that from the output solver through the accumulator
only a single calibration type (e.g. ’B’, ’G’) can be smoothed, interpolated or accumulated at a
time. accum is optional (and not recommended as of v4.0). The final set of cumulative calibration
tables of all types (accumulated or as a list of caltables) are then input to applycal as shown in
Figure 4.1.

The final set of cumulative calibration tables is what is applied to the data using applycal. You
will have to keep track of which tables are the intermediate incremental tables, and which are
cumulative, and which were previous to certain steps so that they can also be previous to later
steps until accumulation. This can be a confusing business, and it will help if you adopt a consistent
table naming scheme (see Figure 4.2) for an example naming scheme).

4.2.3 The Calibration of traditional VLA data in CASA

CASA supports the calibration of traditional VLA data that is imported from the Archive through
the importvla task. See § 2.2.3 for more information.
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ALERT: Data taken both before and after the Modcomp turn-off in late June 2007 will be handled
automatically by importvla. You do not need to set special parameters to do so, and it will obey
the scaling specified by applytsys.

You can also import VLA data in UVFITS format with the importuvfits task (§ 2.2.5.1). However,
in this case, you must be careful during calibration in that some prior or previous calibrations (see
below) may or may not have been done in AIPS and applied (or not) before export.

For example, the default settings of AIPS FILLM will apply VLA gaincurve and approximate
(weather-based) atmospheric optical depth corrections when it generates the extension table CL
1. If the data is exported immediately using FITTP, then this table is included in the UVFITS
file. However, CASA is not able to read or use the AIPS SN or CL tables, so that prior calibration
information is lost and must be applied during calibration here (i.e. using gaincurve=True and
setting the opacity parameter).

On the other hand, if you apply calibration in AIPS by using the SPLIT or SPLAT tasks to apply
the CL tables before exporting with FITTP, then this calibration will be in the data itself. In this
case, you do not want to re-apply these calibrations when processing in CASA.

4.2.4 Loading Jansky VLA data in CASA

Jansky VLA data can be loaded into CASA either via importevla or by using the task importasdm.
Both tasks will convert ASDM raw data files into Measurement Sets. importasdm will convert the
data itself and the majority of the metadata. importevla will run importasdm followed by Jansky
VLA-specific corrections, like the application of the on-line flags (e.g. times when the subreflector
was not in place or the an antenna was not on source), an option to clip values that are exactly
zero (as of 2010, such values still may appear in the VLA raw data), and flagging for shadowing.

4.3 Preparing for Calibration

There are a number of “a priori” calibration quantities that may need to be initialized or estimated
before further calibration solving is carried out. These include

• weight initialization — if desired, initialization of spectral weights (by default, unchannel-
ized weight accounting is used, and no special action is required)

• system temperature correction — turn correlation coefficient into correlated flux density
(necessary for some telescopes),

• gain curves — antenna gain-elevation dependence,

• atmospheric optical depth — attenuation of the signal by the atmosphere, including
correcting for its elevation dependence.

• flux density models — establish the flux density scale using “standard” calibrator sources,
with models for resolved calibrators,
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• delays — antenna-based delay offsets,

• antenna position errors — offsets in the positions of antennas assumed during correlation.

• ionosphere — dispersive delay and Faraday effects arising from signal transmission through
the magnetized plasma of the ionosphere.

These are pre-determined effects and should be applied (if known) as priors when solving for other
calibration terms, and included in the final application of all calibration. If unknown, then they
will be solved for or subsumed in other calibration such as bandpass or gains.

We now deal with these in turn.

4.3.1 Weight initialization and WEIGHT SPECTRUM

See Appendix F for a more complete description of weight accounting in CASA.

CASA 4.3 introduced initial experimental support for spectral weights. At this time, this is mainly
relevant to ALMA processing for which spectral Tsys corrections, which faithfully reflect spectral
sensitivity, are available. In most other cases, sensitivity is, to a very good approximation, channel-
independent after bandpass calibration (and often also before), except perhaps at the very edges
of spectral windows (and for which analytic expressions of the sensitivity loss are generally un-
available). Averaging of data with channel-dependent flagging which varies on sufficiently short
timescales will also generate channel-dependent net weights (see split2 or mstransform for more
details).

By default, CASA’s weight accounting scheme maintains unchannelized weight information that is
appropriately updated when calibration is applied. In the case of spectral calibrations (Tsys and
bandpass), an appropriate spectral average is used for the weight update. This spectral average
is formally correct for weight update by bandpass. For Tsys, traditional treatments used a single
measurement per spectral window; ALMA has implemented spectral Tsys to better track sensitivity
as a function of channel, and so should benefit from spectral weight accounting as described here,
especially where atmospheric emmission lines occur. If spectral weight accounting is desired, users
must re-initialize the spectral weights using the initweights task:

initweight(vis=’mydata.ms’, wtmode=’nyq’, dowtsp=True)

In this task, the wtmode parameter controls the weight initialization convention. Usually, when ini-
tializing the weight information for a raw dataset, one should choose wtmode=’nyq’ so that the chan-
nel bandwidth and integration time information are used to initialize the weight information. The
dowtsp parameter controls whether (T) or not (F) the spectral weights (WEIGHT SPECTRUM
column) are initialized. The default is dowtsp=False, wherein only the non-spectral weights
(WEIGHT column) will be initialized. If the spectral weights have been initialized, then down-
stream processing that supports spectral weights will use/update them. In CASA 4.3 and later,
this includes applycal, clean, and split2/mstransform; use of spectral weights in calibration
solving (e.g., gaincal and other solve tasks) is scheduled for the CASA 4.5 release.
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Note that importasdm and importevla currently initialize the non-spectral weights using channel
bandwidth and integration time information (equivalent to initweights(vis=’mydata.ms’,wtmode=’nyq’,dowtsp=F)).
In general, it only makes sense to run initweights on a raw dataset which has not yet been cali-
brated, and it should only be necessary if the filled weights are inappropriate, or if spectral weight
accounting is desired in subsequent processing. It is usually not necessary to re-initialize the weight
information when redoing calibration from scratch (the raw weight information is preserved in the
SIGMA/SIGMA SPECTRUM columns). (Re-)initializing the weight information for data that has
already been calibrated (with calwt=T, presumably) is formally incorrect and is not recommended.

When combining datasets from different epochs, it is generally preferable to have used the same
version of CASA (most recent is best), and with the same weight information conventions and calwt
settings. Doing so will minimize the likelihood of arbitrary weight imbalances that might lead to
net loss of sensitivity, and maximize the likelihood that real differences in per-epoch sensitivity
(e.g., due to different weather conditions and instrumental setups) will be properly accounted for.
Modern instruments support more variety in bandwidth and integration time settings, and so use
of these parameters in weight initialization is preferred (c.f. use of unit weight initialization, which
has often been the traditional practice).

Alert: Full and proper weight accounting for the EVLA formally depends on the veracity of the
switched power calibration scheme (§ 4.3.7). As of mid-2015, use of the EVLA switched power is not
yet recommended for general use, and otherwise uniform weights are carried through the calibration
process. As such, spectral weight accounting is not yet meaningful. Facilities for post-calibration
estimation of spectral weights are planned for a future release.

4.3.2 System Temperature and Switched-Power Corrections

Some telescopes, including the old VLA, ALMA, and the VLBA, record the visibilities in the
form of raw correlation coefficient with weights proportional to the number of bits correlated. The
correlation coefficient is the fraction of the total signal that is correlated, and thus multiplication by
the system temperature (Tsys) and the antenna gain (in Jy/K) will produce visibilities with units of
correlated flux density. ALMA records Tsys(K) information in the MS which can be extracted as a
caltable using gencal with calmode=’tsys’, and applied to data to yield units of K. Calibration
to flux density in Jy is achieved via reference to sources of known power.

Alert: Note that the old VLA system did this initial calibration on-line. The modern VLA does
not record normalized visibilities. Instead, the correlations are delivered in raw engineering units
that are proportional to power. The actual total power received is continuously monitored during
the observation, with a calibration signal of known temperature (K) switched in at a rate of 10 Hz.
This is the so-called “switched-power” calibration system on the VLA. This enables a continuous
record of the Tsys(K), as well as net electronic gain variation of each antenna’s receiving system.
The correlator requantizer gain is also monitored. These data are recorded in MS subtables and
appropriate calibration factors can be derived from them by gencal with caltype=’swpow’, and
stored in a caltable for application. This calibration is not a “Tsys” calibration of the traditional
sort; the switched-power gain is used to correct the visibility amplitude, and the Tsys is used
to set the weights. This system is still being commissioned (as of early 2014). Observations
using 8-bit sampling are usually reasonably calibrated; 3-bit-sampled switched-power data are
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subject to compression effects that are not yet completely understood, and the switched power
calibration is not recommended (instead, correction only by the requantizer gain is recommended,
using caltype=’rq’).

See § 4.3.6 for more information on use of gencal.

4.3.3 Antenna Gain-Elevation Curve Calibration

Large antennas (such as the 25-meter antennas used in the VLA and VLBA) have a forward gain
and efficiency that changes with elevation. Gain curve calibration involves compensating for the
effects of elevation on the amplitude of the received signals at each antenna. Antennas are not
absolutely rigid, and so their effective collecting area and net surface accuracy vary with elevation
as gravity deforms the surface. This calibration is especially important at higher frequencies where
the deformations represent a greater fraction of the observing wavelength. By design, this effect is
usually minimized (i.e., gain maximized) for elevations between 45 and 60 degrees, with the gain
decreasing at higher and lower elevations. Gain curves are most often described as 2nd- or 3rd-order
polynomials in zenith angle.

Gain curve calibration has been implemented in CASA for the modern VLA and old VLA (only),
with gain curve polynomial coefficients available directly from the CASA data repository. To make
gain curve and antenna efficiency corrections for VLA data, use gencal with caltable=’gceff’.
See § 4.3.6 for more information on use of gencal.

ALERT: If you are not using VLA data, do not use gaincurve corrections. A general mechanism
for incorporating gaincurve information for other arrays will be made available in future releases.
The gain-curve information available for the VLA is time-dependent (on timescales of months to
years, at least for the higher frequencies), and CASA will automatically select the date-appropriate
gain curve information. Note, however, that the time-dependence was poorly sampled prior to
2001, and so gain curve corrections prior to this time should be considered with caution.

4.3.4 Atmospheric Optical Depth Correction

The troposphere is not completely transparent. At high radio frequencies (>15 GHz), water vapor
and molecular oxygen begin to have a substantial effect on radio observations. According to the
physics of radiative transmission, the effect is threefold. First, radio waves from astronomical
sources are absorbed (and therefore attenuated) before reaching the antenna. Second, since a good
absorber is also a good emitter, significant noise-like power will be added to the overall system noise.
Finally, the optical path length through the troposphere introduces a time-dependent phase error.
In all cases, the effects become worse at lower elevations due to the increased air mass through
which the antenna is looking. In CASA, the opacity correction described here compensates only
for the first of these effects, tropospheric attenuation, using a plane-parallel approximation for the
troposphere to estimate the elevation dependence.

To make opacity corrections in CASA, an estimate of the zenith opacity is required (see observatory-
specific chapters for how to measure zenith opacity). This is then supplied to the caltype=’opac’
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parameter in gencal which creates a calibration table with all the information. E.g. for data with
two spectral windows, the inputs are like:

gencal(vis=’dataset.ms’,
caltable=’opacity.cal’,
caltype=’opac’,
spw=’0,1’,
parameter=[0.0399,0.037])

If you do not have an externally supplied value for opacity, for example from a VLA tip procedure,
then you should either use an average value for the telescope, or leave it at zero and let your gain
calibration compensate as best it can (e.g. that your calibrator is at the same elevation as your
target at approximately the same time. As noted above, there are no facilities yet to estimate this
from the data (e.g. by plotting Tsys vs. elevation).

Below, we give instructions for determining opacity for Jansky VLA data from weather statistics
and VLA observations where tip-curve data is available. It is beyond the scope of this cookbook
to provide information for other telescopes.

4.3.4.1 Determining opacity corrections for modern VLA data

For the VLA site, weather statistics and/or seasonal models that average over many years of weather
statistics prove to be reasonable good ways to estimate the opacity at the time of the observations.
The task plotweather calculates the opacity as a mix of both actual weather data and seasonal
model. It has the following inputs:

# plotweather :: Plot elements of the weather table; estimate opacity.
vis = ’’ # MS name
seasonal_weight = 0.5 # weight of the seasonal model
doPlot = True # set this to True to create a plot

The task plots the weather statistics if doPlot=T, like shown in Figure 4.3. The bottom panel dis-
plays the calculated opacities for the run as well as a seasonal model. The parameter seasonal weight
can be adjusted to calculate the opacities as a function of the weather data alone seasonal weight=0,
only the seasonal model seasonal weight=1, or a mix of the two (values between 0 and 1). Cal-
culated opacities are shown in the logger output, one for each spectral window. plotweather can
also assign a python variable to a list of calculated opacities (one entry for each spw) when run as:

myTau = plotweather(vis=’myvladata.ms’)

In this example, myTau will be returned with a list of per-spw opacities, e.g. myTau=[0.02,0.03]
and can later be used as input for gencal in caltype=’opac’ in the parameter setting, e.g.,

# opac for spws 0,1 in myTau
gencal(vis=’myvladata.ms’,caltype=’opac’,spw=’0,1’,parameter=myTau)
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Note that it is important to explicitly specify the spws that are covered by the opacity values stored
in myTau. For most modern VLA data there will be more than two spws, probably.

See § 4.3.6 for more information on use of gencal.

4.3.4.2 Determining opacity corrections for VLA data

For VLA data, zenith opacity can be measured at the frequency and during the time observations
are made using a VLA tipping scan in the observe file. Historical tipping data are available at:

http://www.vla.nrao.edu/astro/calib/tipper

Choose a year, and click Go to get a list of all tipping scans that have been made for that year.

If a tipping scan was made for your observation, then select the appropriate file. Go to the bottom
of the page and click on the button that says Press here to continue.. The results of the tipping
scan will be displayed. Go to the section called ’Overall Fit Summary’ to find the fit quality and
the fitted zenith opacity in percent. If the zenith opacity is reported as 6%, then the actual zenith
optical depth value is opacity=0.060 for gaincal and other calibration tasks.

If there were no tipping scans made for your observation, then look for others made in the same
band around the same time and weather conditions. If nothing is available here, then at K and Q
bands you might consider using an average value (e.g. 6% in reasonable weather). See the VLA
memo

http://www.vla.nrao.edu/memos/test/232/232.pdf

for more on the atmospheric optical depth correction at the VLA, including plots of the seasonal
variations.

4.3.5 Setting the Flux Density Scale using (setjy)

When solving for visibility-plane calibration, CASA calibration applications compare the observed
DATA column with the Fourier transform of calibrator model when it is provided (if no model is
specified, a point source at the phase center is assumed).

The setjy task is used to set the proper flux density and attaches a model image (if specified) of the
calibrator to the MS. For sources that are recognized flux calibrators (listed in Tables 4.1 and 4.2,
see also §C.1), setjy can calculate the flux densities as a function of frequency (and time, for Solar
System objects). Otherwise, the flux densities should be manually specified (standard=’manual’).

For the VLA, the default source models are customarily point sources defined by the ’Baars’,
’Perley 90’, ’Perley-Taylor 99’, ’Perley-Butler 2010’, time-variable ’Perley-Butler 2013’, or ’Scaife-
Heald 2012’ flux density scales (§C.1.1; ’Perley-Butler 2013’ is the current standard by default),
or point sources of unit flux density if the flux density is unknown. In fact, the model can be any
image in Jy/pixel units (models typically generated by the clean task).

http://www.vla.nrao.edu/astro/calib/tipper
http://www.vla.nrao.edu/memos/test/232/232.pdf
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Figure 4.3: The weather information for a MS as plotted by the task plotweather.
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Optionally, the MODEL column can be filled with the Fourier transform of (option usescratch=T
is setjy, ft, and clean). But for most Measurement Sets, the performance and data storage
requirements are less demanding without the MODEL DATA column.

The inputs for setjy are:

# setjy :: Fills the model column with the visibilities of a calibrator
vis = ’’ # Name of input visibility file
field = ’’ # Field name(s)
spw = ’all’ # Spectral window identifier (list)
selectdata = True # Other data selection parameters

timerange = ’’ # Time range to operate on (for usescratch=T)
scan = ’’ # Scan number range (for usescaratch=T)
intent = ’’ # Observation intent
observation = ’’ # Observation ID range (for usescratch=T)

scalebychan = True # scale the flux density on a per channel basis or else on
# a per spw basis

standard = ’Perley-Butler 2013’ # Flux density standard
model = ’’ # File location for field model
listmodels = False # List the available modimages for VLA calibrators or Tb

# models for Solar System objects

usescratch = False # Will create if necessary and use the MODEL_DATA

Table 4.1: Recognized Flux Density Calibrators. Note that the VLA uses J2000 calibrator names.
CASA accepts all strings that contain the names below. E.g. ’PKS 1934-638’ will be recognized

3C Name B1950 Name J2000 Name Alt. J2000 Name Standards
3C48 0134+329 0137+331 J0137+3309 1,3,4,5,6,7
3C123 0433+295 0437+296 J0437+2940 2
3C138 0518+165 0521+166 J0521+1638 1,3,4,5,6
3C147 0538+498 0542+498 J0542+4951 1,3,4,5,6,7
3C196 0809+483 0813+482 J0813+4813 1,2,7
3C286 1328+307 1331+305 J1331+3030 1,2,3,4,5,6,7
3C295 1409+524 1411+522 J1411+5212 1,2,3,4,5,6,7

– 1934-638 – J1939-6342 1,3,4,5,6
3C380 1828+487 1829+487 J1829+4845 7

Standards are: (1) Perley-Butler 2010, (2) Perley-Butler 2013, (3) Perley-Taylor 99, (4) Perley-
Taylor 95, (5) Perley 90, (6) Baars (Baars, J. W. M., et al. 1977, A&A, 61, 99); (7) Scaife-Heald
2012, see §C.1.1 for details.

By default the setjy task will cycle through all fields spectral windows and channels, (one solution
per spw with scalebychan = False) , setting the flux density either to 1 Jy (unpolarized), or if
the source is recognized as one of the calibrators in the above table, to the flux density (assumed
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Table 4.2: ’Butler-JPL-Horizons 2012’ recognized Solar System Objects for Flux Calibration

Planets
Venus1, Mars2, Jupiter3, Uranus4, Neptune5

Moons
Jupiter: Io, Europa, Ganymede, Callisto
Saturn: Titan7

Asteroids
Ceres, Pallas8, Vesta8, Juno8

1 Venus: model for ∼ 300MHz to 350GHz, no atmospheric lines (CO,H2O,HDO, etc.)
2 Mars: tabulated as a function of time and frequency (30 - 1000GHz) based on Rudy et al. (1988), no atmospheric
lines (CO, H20, H2O2, HDO, etc.)
3 Jupiter: model for 30-1020GHz, does not include synchrotron emission
4 Uranus: model for 60-1800GHz, contains no rings or synchrotron.
5 Neptune: model for 2-2000GHz, the broad CO absorption line is included, but contains no rings or synchrotron.

7 Titan: model for 53.3-1024.1GHz, include many spectral lines
8 not recommended (The temperature is not yet adjusted for varying distance from the Sun. The model data can be
scaled after running setjy, but it is an involved process.)
Details are described in ALMA Memo 594 available on https://science.nrao.edu/facilities/alma/aboutALMA/

Technology/ALMA_Memo_Series/alma594/abs594.

unpolarized) appropriate to the observing frequency. For example, to run setjy on a Measurement
Set called data.ms:

setjy(vis=’data.ms’) # This will set all fields and spectral windows

Models of available calibrator sources can be listed by setting listmodels=True. setjy will then
come up with all images that are in the paths where calibrator models for known telescopes are
stored. It will also show all images in the working directory - any image there could potentially be
a calibrator model. If the calibrator model is found by listmodels it can be used in the modimage
parameter without a path.

The fluxdensity parameter can be used to specify the flux of the calibrator in all Stokes pa-
rameters. It it thus a list of values [I,Q,U,V], e.g. [’12Jy’,’13mJy’,’0Jy’,’0Jy’]. In addition,
a spectral index can be specified via spix, a reference frequency reffreq (using the definition:
S = fluxdensity × freq

reffreq

spix
), as well as a polarization index (polindex), angle (polangle) and

a rotation measure (rotmeas).

Most calibrator sources are based on radio emission from quasars and jets. The spectral indices
of these sources are such that at (sub)mm wavelengths the majority of these sources become too
weak and variable to be reliable flux estimators. Alternatives are thermal objects such as planets,
moons, and asteroids. Those sources, however, are all Solar System objects, which implies that they
move and may be (strongly) resolved. The standard=’Butler-JPL-Horizons 2010’ and the rec-
ommended standard=’Butler-JPL-Horizons 2012’ (for more information on the implemented
models, see ALMA Memo 594 soon available on https://science.nrao.edu/facilities/alma/

https://science.nrao.edu/facilities/alma/aboutALMA/Technology/ALMA_Memo_Series/alma594/abs594
https://science.nrao.edu/facilities/alma/aboutALMA/Technology/ALMA_Memo_Series/alma594/abs594
https://science.nrao.edu/facilities/alma/aboutALMA/Technology/ALMA_Memo_Series/alma594/abs594
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aboutALMA/Technology/ALMA_Memo_Series/alma594/abs594.) option of setjy includes flux den-
sity calibration using Solar System objects. For ’Butler-JPL-Horizons 2012’ CASA currently sup-
ports the objects listed in Table 4.2 to be applied to ALMA data. These names are recognized
when they are used in the ’field’ parameter in setjy. In that case, setjy will obtain the geocentric
distance and angular diameter at the time of the observation from a (JPL–Horizons) ephemeris and
calculate model visibilities. Currently the objects are modeled as uniform temperature disks, but
effects like primary beam attenuation and limb darkening will be accounted for soon. Note that
this model may oversimplify the real structure, in particular asteroids.

An example, using data from the M99 tutorial in http://casaguides.nrao.edu/index.php?
title=CARMA_spectral_line_mosaic_M99:

setjy(vis=’c0104I’, field=’MARS’, spw=’0 2’, standard=’Butler-JPL-Horizons 2012’)

Tip: Running casalog.filter(’INFO1’) before running setjy with a Solar System object may send
the logger a reference to the temperature measurement. Use casalog.filter(’INFO’) to restore the
normal logging level.

The source model will be attached to the MS and applied to all calibration steps when usescratch=False.
usescratch=True fills the MODEL DATA column with the Fourier transform of the model. As of
CASA 3.4. we found that under some circumstances, creation of the MODEL column may prevent
memory issues and if tasks fail, we recommend to set usescratch=True. Note that currently setjy
will not transform a full-Stokes model image such that all polarizations are applied correctly. You
need to use ft for this.

To limit this operation to certain fields and spectral windows, use the field and/or spw parameters,
which take the usual data selection strings (§ 2.3). For example, to set the flux density of the first
field (all spectral windows)

setjy(vis=’data.ms’,field=’0’)

or to set the flux density of the second field in spectral window 17

setjy(vis=’data.ms’,field=’1’,spw=’17’)

The full-polarization flux density (I,Q,U,V) may also be explicitly provided:

setjy(vis=’data.ms’,
field=’1’,spw=’16’, # Run setjy on field id 1, spw id 17
fluxdensity=[3.5,0.2,0.13,0.0]) # and set I,Q,U,V explicitly

ALERT: The apparent brightness of objects in the Solar System will vary with time because of
the Earth’s varying distance to them, if nothing else. If the field index of a flux calibrator spans
several days, you should run setjy more than once, limiting each run to a suitable timerange by
using the timerange, scan, and/or observation selection parameters. Note that it is the field index
that matters, not the name. Typically concat assigns moving objects a new field index for each
observation, so usually it is not necessary to select a time range in setjy. However, it is worth
checking with listobs, especially for planets.

https://science.nrao.edu/facilities/alma/aboutALMA/Technology/ALMA_Memo_Series/alma594/abs594
https://science.nrao.edu/facilities/alma/aboutALMA/Technology/ALMA_Memo_Series/alma594/abs594
http://casaguides.nrao.edu/index.php?title=CARMA_spectral_line_mosaic_M99
http://casaguides.nrao.edu/index.php?title=CARMA_spectral_line_mosaic_M99
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4.3.5.1 Using Calibration Models for Resolved Sources

For observations of solar system objects using the ’Butler-JPL-Horizons 2010’ and ’Butler-JPL-
Horizons 2012’ models (§ 4.3.5) setjy will know and apply the flux distribution across the extended
structure of the calibrators.

For other sources, namely VLA calibrator sources, a flux density calibrator can be resolved at the
observing frequency and the point source model generated by setjy will not be appropriate. If
available, a model image of the resolved source at the observing frequency may be used to generate
the appropriate visibilities using the modimage parameter (or in older versions explicitly with the
ft task). To use this, provide modimage with the path to the model image. Remember, if you just
give the file name, it will assume that it is in the current working directory. Note also that setjy
using a model image will only operate on that single source, thus you would run it multiple times
(with different field settings) for different sources.

Otherwise, you may need to use the uvrange selection (§ 4.4.1.2) in the calibration solving tasks to
exclude the baselines where the resolution effect is significant. There is not hard and fast rule for
this, though you should consider this if your calibrator is shows a drop of more than 10% on the
longest baselines (use plotxy, § 3.3.2, to look at this). You may need to do antenna selection also,
if it is heavily resolved and there are few good baselines to the outer antennas. Note that uvrange
may also be needed to exclude the short baselines on some calibrators that have extended flux not
accounted for in the model. Note: the calibrator guides for the specific telescopes usually indicate
appropriate min and max for uvrange. For example, see the VLA Calibration Manual at:

http://www.vla.nrao.edu/astro/calib/manual/

for details on the use of standard calibrators for the E/VLA.

Model images for some flux density calibrators are provided with CASA:

• Red Hat Linux RPMs 32bit (RHE4, Fedora 6): located in
/usr/lib/casapy/data/nrao/VLA/CalModels

• Red Hat Linux RPMs 64bit (RHE4, Fedora 6): located in
/usr/lib64/casapy/data/nrao/VLA/CalModels

• MAC OSX .dmg: located in
/Applications/CASA.app/Contents/Resources/casa-data/nrao/VLA/CalModels

• NRAO-AOC casapy-test:
/home/casa/data/nrao/VLA/CalModels

e.g., these are found in the data/nrao/VLA/CalModels sub-directory of the CASA installation. For
example, just point to the repository copy, e.g.

modimage = ’/usr/lib/casapy/data/nrao/VLA/CalModels/3C48_C.im’

http://www.vla.nrao.edu/astro/calib/manual/
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or if you like, you can copy the ones you wish to use to your working directory.

The models available are:

3C138_L.im 3C147_L.im 3C286_L.im 3C48_L.im
3C138_C.im 3C147_C.im 3C286_C.im 3C48_C.im
3C138_X.im 3C147_X.im 3C286_X.im 3C48_X.im
3C138_U.im 3C147_U.im 3C286_U.im 3C48_U.im
3C138_K.im 3C147_K.im 3C286_K.im 3C48_K.im
3C138_Q.im 3C147_Q.im 3C286_Q.im 3C48_Q.im

(more calibrator models for the VLA are available at
https://science.nrao.edu/facilities/vla/data-processing/models These are all un-reconvolved
images of AIPS CC lists. It is important that the model image not be one convolved with a finite
beam; it must have units of Jy/pixel (not Jy/beam).

Note that setjy will rescale the flux in the models for known sources (e.g. those in Table 4.1) to
match those it would have calculated. It will thus extrapolated the flux out of the frequency band
of the model image to whatever spectral windows in the MS are specified (but will use the structure
of the source in the model image).

ALERT: The reference position in the modimage is currently used by setjy when it does the
Fourier transform, thus differences from the positions for the calibrator in the MS will show up
as phase gradients in the uv-plane. If your model image position is significantly different but you
don’t want this to affect your calibration, then you can doctor either the image header using imhead
(§ 6.2) or in the MS (using the ms tool) as appropriate. In an upcoming release we will put in a
toggle to use or ignore the position of the modimage. Note that this will not affect the flux scaling
(only put in erroneous model phases); in any event small position differences, such as those arising
by changing epoch from B1950 to J2000 using regridimage (§ 6.13), will be inconsequential to the
calibration.

This illustrates the use of uvrange for a slightly resolved calibrator:

# Import the data
importvla(archivefiles=’AS776_A031015.xp2’, vis=’ngc7538_XBAND.ms’,

freqtol=10000000.0, bandname=’X’)

# Flag the ACs
flagautocorr(’ngc7538_XBAND.ms’)

# METHOD 1: Use point source model for 3C48, plus uvrange in solve

# Use point source model for 3C48
setjy(vis=’ngc7538_XBAND.ms’,field=’0’);

# Limit 3C48 (fieldid=0) solutions to uvrange = 0-40 klambda
gaincal(vis=’ngc7538_XBAND.ms’, caltable=’cal.G’, field=’0’,

solint=60.0, refant=’10’, selectdata=True, uvrange=’0~40klambda’,
append=False)

https://science.nrao.edu/facilities/vla/data-processing/models
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# Append phase-calibrator’s solutions (no uvrange) to the same table
gaincal(vis=’ngc7538_XBAND.ms’, caltable=’cal.G’, field=’2’,

solint=60.0, refant=’10’, selectdata=True, uvrange=’’,
append=True)

# Fluxscale
fluxscale(vis=’ngc7538_XBAND.ms’, caltable=’cal.G’, reference=[’0137+331’],

transfer=[’2230+697’], fluxtable=’cal.Gflx’, append=False)

while the following illustrates the use of a model:

# METHOD 2: use a resolved model copied from the data repository
# for 3C48, and no uvrange
# (NB: detailed freq-dep flux scaling TBD)

# Copy the model image 3C48_X.im to the working directory first!

setjy(vis=’ngc7538_XBAND.ms’, field=’0’, modimage=’3C48_X.im’)

# Solutions on both calibrators with no uvrange
gaincal(vis=’ngc7538_XBAND.ms’, caltable=’cal.G2’, field=’0,2’,

solint=60.0, refant=’10’,
append=False)

# Fluxscale
fluxscale(vis=’ngc7538_XBAND.ms’, caltable=’cal.G2’, reference=[’0137+331’],

transfer=[’2230+697’], fluxtable=’cal.G2flx’, append=False)

# Both methods give 2230 flux densities ~0.7 Jy, in good agreement with
# AIPS

4.3.6 Correction for delay and antenna position offsets using gencal

The gencal task provides a means of specifying antenna-based calibration values manually. The
values are put in designated tables and can be applied to the data on-the-fly in solving tasks and
using applycal.

The gencal task has the inputs:

# gencal :: Specify Calibration Values of Various Types
vis = ’’ # Name of input visibility file
caltable = ’’ # The new/existing calibration table
caltype = ’tecim’ # The calibration type: ’amp’,’ph’,’sbd’,’mbd’,’antpos’,’an

# tposvla’,’tsys’,’evlagain’,’opac’,’gc’,’gceff’,’eff’,’te
# cim’

infile = ’’ # Input ancilliary file

spw = ’all’ # Calibration spw(s) selection
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antenna = ’1’ # Calibration antenna(s) selection
pol = ’’ # Calibration polarizations(s) selection
parameter = [] # The calibration values

Current antenna-based gencal options (caltype) are:

• ’amp’ — amplitude correction

• ’ph’ — phase correction

• ’sbd’ — single-band delay (phase-frequency slope for each spw)

• ’mbd’ — multi-band delay (phase-frequency slope over all spw)

• ’antpos’ — ITRF antenna position corrections for the Jansky VLA (automatic parameter
lookup is supported)

• ’antposvla’ — old VLA-centric antenna position corrections

• ’tsys’ — Tsys from the SYSCAL table (ALMA)

• ’evlagain’ — VLA switched-power gains (experimental; equal to ’swpow’)

• ’swpow’ — VLA switched power (equal to ’evlagain’)

• ’rq’ — VLA requantizer gains only

• ’swp/rq’ — VLA switched-power gains divided by requantizer gain

• ’opac’ — Tropospheric opacity

• ’gc’ — Gain curve (zenith-angle-dependent gain) (VLA only) (auto-lookup only)

• ’gceff’ — Antenna efficiency (sqrt(K/Jy)) (VLA only) (auto-lookup only)

• ’eff’ — Gain curve and efficiency (VLA only) (auto-lookup only)

• ’tecim’ — Total electron content to derive dispersive delays

The calibration parameter specifications cannot be time-variable in the present implementation
(though some of them will introduce implicit time-dependence upon evaluation in the apply). Cal-
ibration values can be assigned to each spw, antenna and pol selection, where applicable. The list
of calibration values specified in parameter must conform to the range of spectral windows, anten-
nas, and polarizations specified in spw, antenna and pol, with the values specified in order of the
specified polarizations (fastest), antennas, and spectral windows (slowest). If any of spw, antenna,
or pol are left unspecified (empty strings), the values specified in parameter will be assumed appli-
cable to all values of the unspecified data axes. The output caltable will otherwise assume nominal
calibration values for unspecified spectral windows, antennas, and polarizations. Note that an-
tenna position corrections formally do not have spectral-window or polarization dependence; such
specifications should not be used with ’antpos’.
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The same caltable can be specified for multiple runs of gencal, in which case the specified param-
eters will be incorporated cumulatively. E.g., amplitude parameters (caltype=’amp’) multiply
and phase-like parameters (’ph’, ’sbd’,’mbd’,’antpos’) add. Parameters for ’amp’ and ’ph’
corrections can be incorporated into the same caltable (in separate runs), but each of the other
types require their own unique caltable. A mechanism for specifying manual corrections via a text
file will be provided in the future.

Two kinds of delay corrections are supported. For caltype=’sbd’, the specified delays (in nanosec-
onds) will be applied locally to each spectral window, referring the derived phase corrections to
each spectral window’s reference frequency (where the phase correction will be zero). The phases in
each spectral window will nominally be flattened, but any phase offsets between spectral windows
will remain. (These can be corrected using caltype=’phase’, or via ordinary spectral-window-
dependent phase calibration.) For caltype=’mbd’, the evaluated phase corrections are referred
to zero frequency. This causes a correction that is coherent over many spectral windows. If the
data are already coherent over many spectral windows and share a common multi-band delay (e.g.,
VLA data, per baseband), caltype=’mbd’ corrections will maintain this coherence and flatten
the frequency-dependent phase. Using caltype=’sbd’ in this instance will introduce phase offsets
among spectral windows that reflect the multi-band delay.

For antenna position corrections (caltype=’antpos’), the antenna position offsets are specified in
the ITRF frame. If the antenna field is left empty, gencal will try to look up the appropriate
antenna position offsets at the time of the observation from the VLA baseline webpage http:
//www.vla.nrao.edu/astro/archive/baselines/.

For VLA position corrections in the VLA-centric frame, use caltype=’antposvla’, and gencal
will rotate them to ITRF before storing them in the output caltable.

The sign and scale convention for gencal corrections (indeed for all CASA caltables) is such that
the specified parameters (and as stored in caltables) are the factors that corrupt ideal data to yield
the observed data. Thus, when applied to correct the data, their effective inverse will automatically
be taken. I.e., amplitude factors will be divided into the data on correction. Phase-like parameters
adopt the convention that the complex factor for the second antenna in the baseline is conjugated,
and then both antenna factors are divided into the data on correction. (These conventions differ
from AIPS in that multiplying correction factors are stored in AIPS calibration tables; however,
the phase convention ends up being the same since AIPS conjugates the complex factor for the first
antenna in the baseline.)

The following series of examples illustrate the use of gencal.

For the dataset ’data.ms’, the following sequence of gencal runs introduces, into a single caltable
(’test.G’), (1) an antenna-based amplitude scale correction of 3.0 for all polarizations, antennas,
and spectral windows, (2) phase corrections for all spectral windows and polarizations of 45 and 120
degrees to antennas EA03 and EA04, respectively, (3) phase corrections for all spectral windows
of 63 and -34 in R (only) for antennas EA05 and EA06, respectively, and (4) phase corrections for
all spectral windows of 14, -23, -130, and 145 degrees for antenna/polarizations EA09/R, EA09/L,
EA10/R, and EA10/L, respectively:

gencal(vis=’data.ms’,caltable=’test.G’,caltype=’amp’, \

http://www.vla.nrao.edu/astro/archive/baselines/
http://www.vla.nrao.edu/astro/archive/baselines/
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spw=’’,antenna=’’,pol=’’, \
parameter=[3])

gencal(vis=’data.ms’,caltable=’test.G’,caltype=’ph’, \
spw=’’,antenna=’EA03,EA04’,pol=’’, \
parameter=[45,120])

gencal(vis=’data.ms’,caltable=’test.G’,caltype=’ph’, \
spw=’’,antenna=’EA05,EA06’,pol=’R’, \
parameter=[63,-34])

gencal(vis=’data.ms’,caltable=’test.G’,caltype=’ph’, \
spw=’’,antenna=’EA09,EA10’,pol=’R,L’, \
parameter=[14,-23,-130,145])

In the following example, delay corrections in both polarizations will be adjusted for antenna EA09
by 14 nsec in spw 2 and -130 nsec in spw 3, and for antenna EA10 by -23 nsec in spw 2 and 145
nsec in spw 3:

gencal(vis=’test.ms’,caltable=’test.sbd’,caltype=’sbd’, \
spw=’2,3’,antenna=’EA09,EA10’,pol=’’, \
parameter=[14,-23,-130,145])

In the following example, antenna position corrections in meters (in ITRF) for antenna EA09
(dBx=0.01, dBy=0.02, dBz=0.03) and for antenna EA10 (dBx=-0.03, dBy=-0.01, dBz=-0.02) are
introduced. Note that three parameters are required for each antenna. The antenna offsets can be
obtained for the ’Jansky VLA/ old VLA Baseline Corrections’ web page: http://www.vla.nrao.edu/astro/archive/baselines.
The table given on this webpage has a format like:

; 2010 BASELINE CORRECTIONS IN METERS
;ANT
;MOVED OBSDATE Put_In_ MC(IAT) ANT PAD Bx By Bz
;
JAN27 FEB12 FEB21 01:57 11 E04 0.0000 0.0000 0.0000
JAN27 FEB12 FEB21 01:57 26 W03 -0.0170 0.0204 0.0041
MAR24 MAR25 MAR26 18:28 17 W07 -0.0061 -0.0069 -0.0055
APR21 MAY02 MAY04 23:25 12 E08 -0.0072 0.0045 -0.0017

If your observations fall in between the ’Antenna Moved’ and ’Put In ’ dates of a given antenna,
you may choose to apply the offsets in that table; the ’Put In ’ time stamp marks the date where
the more accurate solution was introduced in the data stream directly and no correction is required
anymore. In gencal the offsets will be inserted as:

gencal(vis=’test.ms’,caltable=’test.antpos’,caltype=’antpos’, \
antenna=’EA09,EA10’, \
parameter=[0.01,0.02,0.03, -0.03,-0.01,-0.02])

h
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In the following example, antenna position corrections (in the traditional VLA-centric frame) will
be introduced in meters for antenna EA09 (dBx=0.01, dBy=0.02, dBz=0.03) and for antenna EA10
(dBx=-0.03, dBy=-0.01, dBz=-0.02) These offsets will be rotated to the ITRF frame before storing
them in the caltable.

gencal(vis=’test.ms’,caltable=’test.antposvla’,caltype=’antposvla’, \
antenna=’EA09,EA10’, \
parameter=[0.01,0.02,0.03, -0.03,-0.01,-0.02])

gencal is also the task to generate gaincurve, antenna efficiency, and opacity tables. The first two
items can be determined together with caltype=’gceff’ and the latter with caltype=’opac’.
These tables are treated just like any other calibration table and will be carried through the
calibration steps. This method replaces the older method where ’gaincurve’ and ’opacity’ keywords
were present in calibration tasks such as gaincal, bandpass, or applycal.

4.3.7 Applying Jansky VLA switched power or ALMA Tsys using gencal

Noise diodes in the Jansky VLA antennas can be used to pre-calibrate the data. The diodes follow
an ON-OFF cycle and the power for both states is measured and recorded. This is called the ’VLA
switched power’ calibration. To apply the switched power data, one needs to create a calibration
table with gencal using caltype=’evlagain’, like

gencal(vis=’test.ms’,caltable=’VLAswitchedpower.cal’,caltype=’evlagain’)

For ALMA the calibration of system temperature is done via hot loads and the data recorded
similar to the VLA in the Measurement Set (ALMA will provide Measurement Sets where these
data are available. To derive the calibration table from it, use caltype=’tsys’:

gencal(vis=’test.ms’,caltable=’ALMAtsys.cal’,caltype=’tsys’)

This calibration tables created for ALMA or VLA are then carried along all further calibration
steps in the gaintable parameter.

4.3.8 Generate a gain table based on Water Vapor Radiometer data wvrgcal

# wvrgcal :: Generate a gain table based on Water Vapour Radiometer data
vis = ’’ # Name of input visibility file
caltable = ’’ # Name of output gain calibration table
toffset = 0 # Time offset (sec) between interferometric and WVR data
segsource = True # Do a new coefficient calculation for each source

tie = [] # Prioritise tieing the phase of these sources as well as
# possible (requires segsource=True)

sourceflag = [] # Flag the WVR data for these source(s) as bad and do not
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# produce corrections for it (requires segsource=True)
disperse = False # Apply correction for dispersion
wvrflag = [’’] # Flag the WVR data for these antenna(s) as bad and replace

# its data with interpolated values
statfield = ’’ # Compute the statistics (Phase RMS, Disc) on this field only
statsource = ’’ # Compute the statistics (Phase RMS, Disc) on this source only
smooth = ’’ # Smooth calibration solution on the given timescale
scale = 1.0 # Scale the entire phase correction by this factor
spw = [] # List of the spectral window IDs for which solutions should

# be saved into the caltable
wvrspw = [] # List of the spectral window IDs from which the WVR data

# should be taken
reversespw = ’’ # Reverse the sign of the correction for the listed SPWs

# (only needed for early ALMA data before Cycle 0)
cont = False # Estimate the continuum (e.g., due to clouds) (experimental)
maxdistm = 500.0 # maximum distance (m) of an antenna used for interpolation

# for a flagged antenna
minnumants = 2 # minimum number of near antennas (up to 3) required for

# interpolation
mingoodfrac = 0.8 # If the fraction of unflagged data for an antenna is below

# this value (0. to 1.), the antenna is flagged.
usefieldtab = False # derive the antenna AZ/EL values from the FIELD rather than

# the POINTING table

The task wvrgcal generates a gain table based on Water Vapor Radiometer (WVR) data and is
used for ALMA data reduction. It is an interface to the executable “wvrgcal” which is part of the
CASA 4.3 distribution and can also be called from outside CASA. The wvrgcal software is based
on the libair and libbnmin libraries which were developed by Bojan Nikolic at the University of
Cambridge as part of EU FP6 ALMA Enhancement program.

CASA 4.3 contains version 2.0 of wvrgcal. Source code of the stand-alone package and links to
documentation up to version 1.2.1 can be found online1. In particular, there are three ALMA
memos (number 587, 588, and 593 (submitted)) which describe the algorithms implemented in the
software. They can be found at at the ALMA Memo Series2.

With wvrgcal version 2.0, maintenance of the tool has now fullt transitioned to ESO. Newly
added features include full support for flags, and the new parameters spw, wvrspw, maxdistm,
mingoodfrac, and usefieldtab.

Briefly, wvrgcal follows a Bayesian approach to calculate the coefficients that convert the outputs
of the ALMA 183 GHz water-vapor radiometers (mounted on each antenna) into estimates of path
fluctuations which can then be used to correct the observed interferometric visibilities.

The CASA task interface to wvrgcal follows closely the interface of the shell executable at the same
time staying within the CASA task parameter conventions.

In ALMA data, the WVR measurements belonging to a given observation are contained in the
ASDM for that observation. After conversion to an MS using importasdm, the WVR information

1http://www.mrao.cam.ac.uk/b̃n204/alma/wvrsoft.html
2http://www.alma.cl/almamemos
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can be found in separate spectral windows (as of November 2014, it is still spectral window id 0
only). This spectral window must be present in the MS for wvrgcal to work.

The various features of wvrgcal are then controlled by a number of task parameters (see the list
above). They have default values which will work for ALMA data. An example for a typical
wvrgcal call can be found in the ALMA CASA guide for the NGC 3256 analysis:

wvrgcal(vis=’uid___A002_X1d54a1_X5.ms’, caltable=’cal-wvr-uid___A002_X1d54a1_X5.W’,
toffset=-1, segsource=True, tie=["Titan,1037-295,NGC3256"], statsource="1037-295")

Here, vis is the name of input visibility file (which as mentioned above also contains the WVR
data in spectral window 0) and caltable is the name of the output gain calibration table.

toffset is the known time offset in seconds between the WVR measurements and the visibility
integrations they are valid for. For ALMA, this offset is presently -1 s (which is also the default
value).

The parameter segsource (segregate source) controls whether separate coefficients are calculated
for each source. The default value True is the recommended one for ALMA. When segsource is
True, the subparameter tie is available. It permits to form groups of sources for which common
coefficients are calculated as well as possible. The tie parameter ensures best possible phase
transfer between a group of sources. In general it is recommended to tie together all of the sources in
a single Science Goal (in ALMA speak) and their phase calibrator(s). The recommended maximum
angular distance up to which two sources can be tied is 15◦.

The parameter statsource controls for which sources statistics are calculated and displayed in the
logger. This has no influence on the generated calibration table.

wvrgcal respects the flags in the Main and ANTENNA table of the MS. The parameter mingood-
frac lets the user set a requirement on the minimum fraction of good measurements for accepting
the WVR data from an antenna. If antennas are flagged, their WVR solution is interpolated from
the three nearest neighbouring antennas. This process can be controlled with the new parameters
maxdistm and minnumants. The former sets the maximum distance an antenna used for interpo-
lation may have from the flagged one. And minnumants sets how many near antennas there have
to be for interpolation to take place.

For more details on the WVR Phase correction, see also the the ALMA Memo “Quality Control of
WVR Phase Correction Based on Differences Between WVR Channels” by B. Nikolic, R. C. Bolton
& J. S. Richer3, see also ALMA memo #5934.

4.3.8.1 Statistical parameters shown in the logger output of wvrgcal

wvrgcal writes out a variety of information to the logger, including various statistical measures
of the performance. This allows the user to judge whether WVR correction is appropriate for the

3http://www.casa.nrao.edu/Memos/memoqachannels.pdf
4https://science.nrao.edu/facilities/alma/aboutALMA/Technology/ALMA Memo Series/alma593/abs593
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ms, to check whether any antennas have problematic WVR values, and to examine the predicted
performance of the WVR correction when applied.

For each set of correction coefficients which are calculated (the number of coefficient sets are
controlled by the parameters nsol, segsource and tie), the wvrgcal output to the logger first of
all shows the time sample, the individual temperatures of each of the four WVR channels and the
elevation of the source in question at that time.

For each of these coefficient sets, it then gives the evidence of the bayesian parameter estimation,
the calculated precipitable water vapour (PWV) and its error in mm, and the correction coefficients
found for each WVR channel (dTdL).

The output then shows the statistical information about the observation. First of all it gives the
start and end times for the parts of the observation used to calculate these statistics (controlled
by segsource). It then shows a break down for each of the antennas in the data set. This gives
the antenna name and number; whether or not it has a WVR (column WVR); whether or not it has
been flagged (column FLAG); the RMS of the path length variation with time towards that antenna
(column RMS); and the discrepancy between the RMS path length calculated separately for different
WVR channels (column Disc.). These values allow the user to see if an individual WVR appears to
have been suffering from problems during the observation, and to flag that antenna using wvrflag
if necessary.

This discrepancy value, Disc., can in addition be used as a simple diagnostic tool to evaluate
whether or not the WVR correction caltable created by wvrgcal should be applied. In the event
of the WVR observations being contaminated by strong cloud emission in the atmosphere, the
attempt by wvrgcal to fit the water vapour line may not be successful, and applying the produced
calibration table can in extreme cases reduce the quality of the data. However, these weather
conditions should identified by a high value in the discrepancy column produced when running
wvrgcal.

Although there have not currently been enough cases checked to give definitive limits, the available
data sets as of summer 2012 suggest that discrepancy values of greater than a 1000 microns usually
indicate strong cloud contamination of the WVR data, and the output calibration table should
probably not be applied. If the values are between 100 and 1000 microns, then the user should
manually examine the phases before and after applying the caltable to decide if WVR correction
is appropriate.

After the antenna-by-antenna statistics, the output then displays some estimates of the performance
of the wvrgcal correction. These are the thermal contribution from the water vapour to the path
fluctuations per antenna (in microns), the largest path fluctuation found on a baseline (in microns),
and the expected error on the path length calculated for each baseline due to the error in the
coefficients (in microns).

4.3.8.2 Antenna position calculation

The information about antenna pointing direction is by default taken from the POINTING table.
Should this table not be present for some reason, the user can instead switch to determining the
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antenna positions from the phase directions in the FIELD table (under the assumption that all
antennas were pointing ideally). The switch is performed by setting the paramter usefieldtab to
True.

4.3.8.3 Spectral window selection

By default wvrgcal has traditionally put solutions for all spectral windows of the MS into the
output calibration table. Since usually only the spectral windows are of interest in which the
science target and the calibrators were observed, it is not necessary to store solutions for other
spectral windows.

The spectral windows for which solutions are stored can be selected with the parameter spw, e.g.
spw = [17,19,21,23] will make wvrgcal write only solutions for spectral windows 17, 19, 21, and
23.

Should ALMA in the future use other spectral windows than id 0 to store the WVR information,
then the input WVR spectral window can be selected using the parameter wvrspw. The syntax is
the same as for parameter spw.

4.3.9 Ionospheric corrections

CASA 4.3 introduces initial support for on-axis ionospheric corrections, using time- and direction-
dependent total electron content (TEC) information obtained from the internet. The correction
includes the dispersive delay (∝ ν−1) delay and Faraday rotation (∝ ν−2) terms. These corrections
are most relevant at observing frequencies less than ∼5 GHz. When relevant, the ionosphere correc-
tion table should be generated at the beginning of a reduction along with other calibration priors
(antenna position errors, gain curve, opacity, etc.), and carried through all subsequent calibration
steps. Formally, the idea is that the ionospheric effects (as a function of time and on-axis direction)
will be nominally accounted for by this calibration table, and thus not spuriously leak into gain
and bandpass solves, etc. In practice, the quality of the ionospheric correction is limited by the
relatively sparse sampling (in time and direction) of the available TEC information. Especially
active ionospheric conditions may not be corrected very well. Also, direction-dependent ionosphere
corrections are not yet supported. (Various improvements are under study for future releases.)

To generate the ionosphere correction table, first import a helper function from the casapy recipes
repository:

from recipes import tec_maps

Then, generate a TEC surface image:

tec_maps.create(vis=’mydata.ms’,doplot=T,imname=’iono’)
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This function goes to the web to obtain TEC information for the observing date and location,
and generates a time-dependent CASA image containing this information. The string specified
for imname is used as a prefix for two output images, with suffixes .IGS TEC.im (the actual TEC
image) and .IGS RMS TEC.im (a TEC error image). If imname is unspecified, the MS name (from
vis) will be used as the prefix.

The quality of the retrieved TEC information improves with time after the observing date, becoming
optimal 1-2 weeks later. Both images can be viewed as a movie in the CASA viewer. If doplot=T,
the function will also produce a plot of the TEC as a function of time in a vertical direction over
the observatory.

Finally, to generate the ionosphere correction caltable, pass the .IGS TEC.im image into gencal,
using caltype=’tecim’:

gencal(vis=’mydata.ms’,caltable=’tec.cal’,caltype=’tecim’,infile=’iono.IGS_TEC.im’)

This iterates through the dataset and samples the zenith angle-dependent projected line-of-sight
TEC for all times in the observation, storing the result in a standard CASA caltable. Plotting this
caltable will show how the TEC varies between observing directions for different fields and times,
in particular how it changes as zenith angle changes, and including the nominal difference between
science targets and calibrators.

This caltable should then be used as a prior in all subsequent calibration solves, and included in
the final applycal.

A few warnings:

• The TEC information obtained from the web is relatively poorly sampled in time and di-
rection, and so will not always describe the details of the ionospheric corruption, especially
during active periods.

• For instrumental polarization calibration, it is recommended that an unpolarized calibrator
be used; polarized calibrators may not yield as accurate a solution since the ionospheric
corrections are not yet used properly in the source polarization portion of the solve.

Special thanks are due to Jason Kooi (UIowa) for his contributions to ionospheric corrections in
CASA.

4.3.10 Other a priori Calibrations and Corrections

Other a priori calibrations will be added to the calibrater (cb) tool in the near future. These
will include instrumental line-length corrections, etc. Where appropriate, solving capabilities for
these effects will also be added.
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4.4 Solving for Calibration — Bandpass, Gain, Polarization

The gaincal, bandpass, polcal, and blcal tasks actually solve for the unknown calibration pa-
rameters from the visibility data obtained on calibrator sources, placing the results in a calibration
table. They take as input an MS, and a number of parameters that specify any prior calibration
or previous calibration tables to pre-apply before computing the solution. These are placed in the
proper sequence of the Measurement Equation automatically.

We first discuss the parameters that are in common between many of the calibration tasks. Then
we describe each solver in turn.

4.4.1 Common Calibration Solver Parameters

There are a number of parameters that are in common between the calibration “solver” tasks.
These also appear in some of the other calibration manipulation and application tasks.

4.4.1.1 Parameters for Specification : vis and caltable

The input Measurement Set and output table are controlled by the following parameters:

vis = ’’ # Name of input visibility file
caltable = ’’ # Name of output calibration table

The MS name is input in vis. If it is highlighted red in the inputs (§ 1.4.5.4) then it does not exist,
and the task will not execute. Check the name and path in this case.

The output table name is placed in caltable. Be sure to give a unique name to the output table,
or be careful. If the table exists, then what happens next will depend on the task and the values of
other parameters (e.g. § 4.4.1.6). The task may not execute giving a warning that the table already
exists, or will go ahead and overwrite the solutions in that table, or append them. Be careful.

4.4.1.2 Selection: field, spw, selectdata, intent, and observation

Selection is controlled by the parameters:

field = ’’ # field names or index of calibrators: ’’==>all
spw = ’’ # spectral window:channels: ’’==>all
intent = ’’ # Select observing intent
selectdata = False # Other data selection parameters

Field and spectral window selection are so often used, that we have made these standard parameters
field and spw respectively. intent is the scan intent that was specified when the observations
were set up. They typically describe what was intended with a specific scan, i.e. a flux or phase cal-
ibration, a bandpass, a pointing, an observation of your target, or something else or a combination.



CHAPTER 4. SYNTHESIS CALIBRATION 216

The format for the scan intents of your observations are listed in the logger when you run listobs.
Minimum matching with wildcards will work, like ’*BANDPASS*’. This is especially useful when
multiple intents are attached to scans. Finally, observation is an identifier to distinguish between
different observing runs, mainly used for ALMA.

The selectdata parameter expands as usual, uncovering other selection sub-parameters:

selectdata = True # data selection parameters
field = ’’ # field names or field index

# numbers (blank for all)
spw = ’’ # spectral windows:channels (blank for all)
timerange = ’’ # time range (blank for all)
uvrange = ’’ # uv range (blank for all)
antenna = ’’ # antenna/baselines (blank for all)
scan = ’’ # scan numbers (blank for all)
correlation = ’’ # correlations (blank for all)
array = ’’ # (sub)array numbers (blank for all)
observation = ’’ # Select by observation ID(s)
msselect = ’’ # MS selection (blank for all)

Note that if selectdata=False these parameters are not used when the task is executed, even if
set underneath.

The most common selectdata parameter to use is uvrange, which can be used to exclude longer
baselines if the calibrator is resolved, or short baselines of the calibrator contains extended flux not
accounted for in the model (e.g. § 4.3.5.1).

See § 2.3 for more on the selection parameters.

4.4.1.3 Prior Calibration and Correction: parang

These parameters control the on-the-fly application of various calibration or effect-based corrections
prior to the solving process.

The parang parameter turns on the application of the antenna-based parallactic angle correction
(’P’) in the measurement equation. This is necessary for polarization calibration and imaging, or for
cases where the parallactic angles are different for geographically spaced antennas and it is desired
that the ordinary gain calibration not absorb the inter-antenna parallactic angle phase. When
dealing with only the parallel-hand data (e.g. RR, LL, XX, YY), and an unpolarized calibrator
model for a co-located array (e.g. the VLA or ALMA), you can set parang=False and save some
computational effort. Otherwise, set parang=True to apply this correction.

See § 4.3 for more on Prior Calibration, including how to invoke gaincurve and opacity cor-
rection using gencal.

4.4.1.4 Previous Calibration: gaintable, gainfield, interp and spwmap

Calibration tables that have already been determined can also be applied before solving for the
new table:
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docallib = False # Use traditional cal apply parameters
gaintable = [] # Gain calibration table(s) to apply on the fly
gainfield = [] # Select a subset of calibrators from gaintable(s)
interp = [] # Interpolation mode (in time) to use for each gaintable
spwmap = [] # Spectral windows combinations to form for gaintable(s)

This is controlled by the gaintable parameter, which takes a string or list of strings giving one or
more calibration tables to pre-apply. For example,

gaintable = [’ngc5921.bcal’,’ngc5921.gcal’]

specifies two tables, in this case bandpass and gain calibration tables respectively.

The other parameters key off gaintable, taking single values or lists, with an entry for each table
in gaintable. The order is given by that in gaintable.

The gainfield parameter specifies which fields from the respective gaintable to select for apply.
This is a list, with each entry a string or list of strings. The default ’’ for an entry means to use
all in that table. For example,

gaintable = [’ngc5921.bcal’,’ngc5921.gcal’]
gainfield = [ ’1331+305’, [’1331+305’,’1445+099’] ]

or using indices

gainfield = [ ’0’, [’0’,’1’] ]

to specify the field ’1331+305’ from the table ’ngc5921.bcal’ and fields ’1331+305’ and ’1445+099’
from the second table ’ngc5921.gcal’. We could also have wildcarded the selection, e.g.

gainfield = [ ’0’, ’*’ ]

taking all fields from the second table. And of course we could have used the default

gainfield = [ ’0’, ’’ ]

or even

gainfield = [ ’0’ ]

which is to take all for the second table in gaintable. In addition, gainfield can be specified by

gainfield = [ ’nearest’ ]
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which selects the calibrator that is the spatially closest (in sky coordinates) to each of the selected
MS fields specified in the field parameter. This is particularly useful for running applycal with
a number of different sources to be calibrated in a single run.

The interp parameter chooses the interpolation scheme to be used when pre-applying the solu-
tion in the tables. Interpolation in both time and frequency (for channel-dependent calibrations)
are supported. The choices are currently ’nearest’ and ’linear’, and ’nearest’, ’linear’,
cubic, and spline for frequency-dependent interpolation. Frequency-dependent interpolation is
only relevant for channel-dependent calibration tables (like bandpasses) that are undersampled in
frequency relative to the data.

• ’nearest’ just picks the entry nearest in time or freq to the visibility in question;

• ’linear’ interpolation calibrates each datum with calibration phases and amplitudes linearly
interpolated from neighboring values. In the case of phase, this mode will assume that phase
never jumps more than 180◦ between neighboring points, and so undersampled cycle-slips
will not be corrected for. Solutions will not be extrapolated arbitrarily in time or frequency
for data before the first solution or after the last solution; such data will be calibrated using
’nearest’ to avoid unreasonable extrapolations.

• ’cubic’ interpolation forms a 3rd-order polynomial that passes through the nearest 4 cali-
bration samples (separately in phase and amplitude

• ’spline’ interpolation forms a cubic spline that passes through the nearest 4 calibration
samples (separately in phase and amplitude

For each gaintable, specify the interpolation style in quotes, with the frequency-dependent inter-
polation style specified after a comma, if relevant.

If the uncalibrated phase is changing rapidly, a ’nearest’ interpolation is not desirable. Usually,
interp=’linear’ is the best choice. For example,

gaintable=[’gain’,’bandpass’]
interp = [ ’nearest’, ’linear,spline’ ]

uses nearest “interpolation” on the first table, and linear (in time) and spline (in freq) on the
second.

The spwmap parameter sets the spectral window combinations to form for the gaintable(s). This
is a list, or a list of lists, of integers giving the spw IDs to map. There is one list for each table in
gaintable, with an entry for each ID in the MS. For example,

spwmap=[0,0,1,1] # apply from spw=0 to 0,1 and 1 to 2,3

for an MS with spw=0,1,2,3. For multiple gaintable, use lists of lists, e.g.

spwmap=[ [0,0,1,1], [0,1,0,1] ] # 2nd table spw=0 to 0,2 and 1 to 1,3
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4.4.1.5 Solving: solint, combine, preavg, refant, minblperant, minsnr

The parameters controlling common aspects of the solution are:

solint = ’inf’ # Solution interval: egs. ’inf’, ’60s’ (see help)
combine = ’scan’ # Data axes which to combine for solve (obs, scan,

# spw, and/or field)
preavg = -1.0 # Pre-averaging interval (sec) (rarely needed)
refant = ’’ # Reference antenna name(s)
minblperant = 4 # Minimum baselines _per antenna_ required for solve
minsnr = 3.0 # Reject solutions below this SNR

The time and frequency (if relevant) solution interval is given by solint. Optionally a frequency
interval for each solution can be added after a comma, e.g. solint=’60s,300Hz’. Time units
are in seconds unless specified differently. Frequency units can be either channels or Hz and only
make sense for bandpass of frequency dependent polarization calibration. The special values ’inf’
and -1 specify an “infinite” solution interval encompassing the entire dataset, while ’int’ or zero
specify a solution every integration. You can use time quanta in the string, e.g. solint=’1min’
and solint=’60s’ both specify solution intervals of one minute. Note that ’m’ is a unit of distance
(meters); ’min’ must be used to specify minutes. The solint parameter interacts with combine to
determine whether the solutions cross scan or field boundaries.

The parameter controlling the scope of the solution is combine. For the default combine=’’ solu-
tions will break at obsId, scan, field, and spw boundaries. Specification of any of these in combine
will extend the solutions over the boundaries (up to the solint). For example, combine=’spw’
will combine spectral windows together for solving, while combine=’scan’ will cross scans, and
combine=’obs,scan’ will use data across different observation IDs and scans (usually, obsIds con-
sist of many scans, so it is not meaningful to combine obsIds without also combining scans). Thus,
to do scan-based solutions (single solution for each scan), set

solint = ’inf’
combine = ’’

while

solint = ’inf’
combine = ’scan’

will make a single solution for the entire dataset (for a given field and spw).

solint = ’inf,30ch’

will calculate a bandpass solution for each scan, averaging over 30 channels.

You can specify multiple choices for combination:

combine = ’scan,spw’
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for example.

Alert: Care should be exercised when using combine=’spw’ in cases where multiple groups of
concurrent spectral windows are observed as a function of time. Currently, only one aggregate
spectral window can be generated in a single calibration solve execution, and the meta-information
for this spectral window is calculated from all selected MS spectral windows. To avoid incorrect
calibration meta-information, each spectral window group should be calibrated independently (also
without using append=True. Additional flexibility in this area will be supported in a future version.

The reference antenna is specified by the refant parameter. A list of antennas can be provided to
this parameter and if the first antenna is not present in the data, the next antenna in the list will
be used, etc. It is useful to “lock” the solutions with time, effectively rotating (after solving) the
phase of the gain solutions for all antennas such that the reference antenna’s phase is constant at
zero. If the selected antenna drops out, another antenna will be selected for ongoing consistency
in time (at its “current” value) until the refant returns, usually at a new value (not zero), which
will be kept fixed thenceforth. You can also run without a reference antenna, but in this case the
solutions will formally float with time; in practice, the first antenna will be approximately constant
near zero phase. It is usually prudent to select an antenna in the center of the array that is known
to be particularly stable, as any gain jumps or wanders in the refant will be transferred to the
other antenna solutions. Also, it is best to choose a reference antenna that never drops out.

Setting a preavg time (only needed in polcal) will let you average data over periods shorter than
the solution interval first before solving on longer timescales.

The minimum signal-to-noise ratio allowed for an acceptable solution is specified in the minsnr pa-
rameter. Default is minsnr=3. The minblperant parameter sets the minimum number of baselines
to other antennas that must be preset for each antenna to be included in a solution. This enables
control of the constraints that a solution will require for each antenna.

4.4.1.6 Action: append and solnorm

The following parameters control some things that happen after solutions are obtained:

solnorm = False # Normalize solution amplitudes post-solve.
append = False # Append solutions to (existing) table.

# False will overwrite.

The solnorm parameter toggles on the option to normalize the solution after the solutions are
obtained. The exact effect of this depends upon the type of solution. Not all tasks use this
parameter.

One should be aware when using solnorm that if this is done in the last stage of a chain of
calibration, then the part of the calibration that is “normalized” away will be lost. It is best to
use this in early stages (for example in a first bandpass calibration) so that later stages (such as
final gain calibration) can absorb the lost normalization scaling. It is not strictly necessary to
use solnorm=True at all, but is sometimes helpful if you want to have a normalized bandpass for
example.
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The append parameter, if set to True, will append the solutions from this run to existing solutions in
caltable. Of course, this only matters if the table already exists. If append=False and caltable
exists, it will overwrite.

The append parameter should be used with care, especially when also using combine in non-trivial
ways. E.g., calibration solves will currently (CASA 4.5) refuse to append incongruent aggregate
spectral windows (e.g., observations with more than one group of concurrent spectral windows).
This limitation arises from difficulty determining the appropriate spectral window fan-out on apply,
and will be relaxed in a future version.

4.4.2 Spectral Bandpass Calibration (bandpass)

For channelized data, it is usually desirable to solve for the gain variations in frequency as well as in
time. Variation in frequency arises as a result of non-uniform filter passbands or other frequency-
dependent effects in signal transmission. It is usually the case that these frequency-dependent
effects vary on timescales much longer than the time-dependent effects handled by the gain types
’G’ and ’T’. Thus, it makes sense to solve for them as a separate term: ’B’, using the bandpass
task.

The inputs to bandpass are:

# bandpass :: Calculates a bandpass calibration solution
vis = ’’ # Name of input visibility file
caltable = ’’ # Name of output gain calibration table
field = ’’ # Select field using field id(s) or field name(s)
spw = ’’ # Select spectral window/channels
intent = ’’ # Select observing intent
selectdata = True # Other data selection parameters

timerange = ’’ # Select data based on time range
uvrange = ’’ # Select data within uvrange (default units meters)
antenna = ’’ # Select data based on antenna/baseline
scan = ’’ # Scan number range
observation = ’’ # Select by observation ID(s)
msselect = ’’ # Optional complex data selection (ignore for now)

solint = ’inf’ # Solution interval in time[,freq]
combine = ’scan’ # Data axes which to combine

# for solve (obs, scan, spw, and/or field)
refant = ’’ # Reference antenna name(s)
minblperant = 4 # Minimum baselines _per

# antenna_ required for solve
minsnr = 3.0 # Reject solutions below this

# SNR (only applies for bandtype = B)
solnorm = False # Normalize average solution amplitudes to 1.0
bandtype = ’B’ # Type of bandpass solution (B or BPOLY)

fillgaps = 0 # Fill flagged solution channels by interpolation

smodel = [] # Point source Stokes parameters for source model.
append = False # Append solutions to the (existing) table
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docallib = False # Use callib or traditional cal apply parameters
gaintable = [] # Gain calibration table(s) to apply on the fly
gainfield = [] # Select a subset of calibrators from gaintable(s)
interp = [] # Interpolation mode (in

# time) to use for each gaintable
spwmap = [] # Spectral windows

# combinations to form for gaintable(s)

parang = False # Apply parallactic angle correction

Many of these parameters are in common with the other calibration tasks and are described above
in § 4.4.1.

The bandtype parameter selects the type of solution used for the bandpass. The choices are ’B’
and ’BPOLY’. The former solves for a complex gain in each channel in the selected part of the
MS. See § 4.4.2.2 for more on ’B’. The latter uses a polynomial as a function of channel to fit
the bandpass, and expands further to reveal a number of sub-parameters See § 4.4.2.3 for more on
’BPOLY’.

It is usually best to solve for the bandpass in channel data before solving for the gain as a function
of time. However, if the gains of the bandpass calibrator observations are fluctuating over the
timerange of those observations, then it can be helpful to first solve for the gains of that source
with gaincal , and input these to bandpass via gaintable. See more below on this strategy.

We now describe the issue of bandpass normalization, followed by a description of the options
bandtype=’B’ and bandtype=’BPOLY’.

4.4.2.1 Bandpass Normalization

The solnorm parameter (§ 4.4.1.6) deserves more explanation in the context of the bandpass. Most
users are used to seeing a normalized bandpass, where the mean amplitude is unity and fiducial
phase is zero. The toggle solnorm=True allows this. However, the parts of the bandpass solution
normalized away will be still left in the data, and thus you should not use solnorm=True if the
bandpass calibration is the end of your calibration sequence (e.g. you have already done all the
gain calibration you want to). Note that setting solnorm=True will NOT rescale any previous
calibration tables that the user may have supplied in gaintable.

You can safely use solnorm=True if you do the bandpass first (perhaps after a throw-away initial
gain calibration) as we suggest above in § 4.2, as later gain calibration stages will deal with this
remaining calibration term. This does have the benefit of isolating the overall (channel independent)
gains to the following gaincal stage. It is also recommended for the case where you have multiple
scans on possibly different bandpass calibrators. It may also be preferred when applying the
bandpass before doing gaincal and then fluxscale (§ 4.4.4), as significant variation of bandpass
among antennas could otherwise enter the gain solution and make (probably subtle) adjustments
to the flux scale.

We finally note that solnorm=False at the bandpass step in the calibration chain will still in the
end produce the correct results. It only means that there will be a part of what we usually think of
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the gain calibration inside the bandpass solution, particularly if bandpass is run as the first step.

4.4.2.2 B solutions

Calibration type ’B’ differs from ’G’ only in that it is determined for each channel in each spectral
window. It is possible to solve for it as a function of time, but it is most efficient to keep the ’B’
solving timescale as long as possible, and use ’G’ or ’T’ for frequency-independent rapid time-scale
variations.

The ’B’ solutions are limited by the signal-to-noise ratio available per channel, which may be quite
small. It is therefore important that the data be coherent over the time-range of the ’B’ solutions.
As a result, ’B’ solutions are almost always preceded by an initial ’G’ or ’T’ solve using gaincal
(§ 4.4.3). In turn, if the ’B’ solution improves the frequency domain coherence significantly, a ’G’
or ’T’ solution following it will be better than the original.

For example, to solve for a ’B’ bandpass using a single short scan on the calibrator, then

default(’bandpass’)

vis = ’n5921.ms’
caltable = ’n5921.bcal’
gaintable = ’’ # No gain tables yet
gainfield = ’’
interp = ’’
field = ’0’ # Calibrator 1331+305 = 3C286 (FIELD_ID 0)
spw = ’’ # all channels
selectdata = False # No other selection
bandtype = ’B’ # standard time-binned B (rather than BPOLY)
solint = ’inf’ # set solution interval arbitrarily long
refant = ’15’ # ref antenna 15 (=VLA:N2) (ID 14)

bandpass()

On the other hand, we might have a number of scans on the bandpass calibrator spread over time,
but we want a single bandpass solution. In this case, we could solve for and then pre-apply an
initial gain calibration, and let the bandpass solution cross scans:

gaintable = ’n5921.init.gcal’ # Our previously determined G table
gainfield = ’0’
interp = ’linear’ # Do linear interpolation
solint = ’inf’ # One interval over dataset
combine = ’scan’ # Solution crosses scans

Note that we obtained a bandpass solution for all channels in the MS. If explicit channel selection
is desired, for example some channels are useless and can be avoided entirely (e.g. edge channels
or those dominated by Gibbs ringing), then spw can be set to select only these channels, e.g.

spw = ’0:4~59’ # channels 4-59 of spw 0
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This is not so critical for ’B’ solutions as for ’BPOLY’, as each channel is solved for independently,
and poor solutions at edges can be ignored.

If you have multiple time solutions, then these will be applied using whatever time interpolation
scheme is specified in later tasks.

The combine parameter (§ 4.4.1.5) can be used to combine data across spectral windows, scans,
and fields.

4.4.2.3 BPOLY solutions

For some observations, it may be the case that the SNR per channel is insufficient to obtain a
usable per-channel ’B’ solution. In this case it is desirable to solve instead for a best-fit functional
form for each antenna using the bandtype=’BPOLY’ solver. The ’BPOLY’ solver naturally enough
fits (Chebychev) polynomials to the amplitude and phase of the calibrator visibilities as a function
of frequency. Unlike ordinary ’B’, a single common ’BPOLY’ solution will be determined for all
spectral windows specified (or implicit) in the selection. As such, it is usually most meaningful to
select individual spectral windows for ’BPOLY’ solves, unless groups of adjacent spectral windows
are known a priori to share a single continuous bandpass response over their combined frequency
range (e.g., PdBI data).

The ’BPOLY’ solver requires a number of unique sub-parameters:

bandtype = ’BPOLY’ # Type of bandpass solution (B or BPOLY)
degamp = 3 # Polynomial degree for BPOLY amplitude solution
degphase = 3 # Polynomial degree for BPOLY phase solution
visnorm = False # Normalize data prior to BPOLY solution
maskcenter = 0 # Number of channels in BPOLY to avoid in center of band
maskedge = 0 # Percent of channels in BPOLY to avoid at each band edge

The degamp and degphase parameters indicate the polynomial degree desired for the amplitude
and phase solutions. The maskcenter parameter is used to indicate the number of channels in the
center of the band to avoid passing to the solution (e.g., to avoid Gibbs ringing in central channels
for PdBI data). The maskedge drops beginning and end channels. The visnorm parameter turns
on normalization before the solution is obtained (rather than after for solnorm).

The combine parameter (§ 4.4.1.5) can be used to combine data across spectral windows, scans,
and fields.

Note that bandpass will allow you to use multiple fields, and can determine a single solution for
all specified fields using combine=’field’. If you want to use more than one field in the solution
it is prudent to use an initial gaincal using proper flux densities for all sources (not just 1Jy) and
use this table as an input to bandpass because in general the phase towards two (widely separated)
sources will not be sufficiently similar to combine them, and you want the same amplitude scale.
If you do not include amplitude in the initial gaincal, you probably want to set visnorm=True
also to take out the amplitude normalization change. Note also in the case of multiple fields,
that the ’BPOLY’ solution will be labeled with the field ID of the first field used in the ’BPOLY’
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solution, so if for example you point plotcal at the name or ID of one of the other fields used in
the solution, plotcal does not plot.

For example, to solve for a ’BPOLY’ (5th order in amplitude, 7th order in phase), using data from
field 2, with G corrections pre-applied:

bandpass(vis=’data.ms’, # input data set
caltable=’cal.BPOLY’, #
spw=’0:2~56’, # Use channels 3-57 (avoid end channels)
field=’0’, # Select bandpass calibrator (field 0)
bandtype=’BPOLY’, # Select bandpass polynomials
degamp=5, # 5th order amp
degphase=7, # 7th order phase

gaintable=’cal.G’, # Pre-apply gain solutions derived previously
refant=’14’) #

4.4.2.4 What if the bandpass calibrator has a significant slope?

The bandpass calibrator can have a spectral slope that will change the spectral properties of the
solutions. If the slope is significant, the best way is to model the slope and store that model in the
bandpass calibrator MS. To do so, go through the normal steps of bandpass and the gaincal runs
on the bandpass and flux calibrators, followed by setjy of the flux calibrator. The next step would
be to use fluxscale on the bandpass calibrator to derive the slope of it. fluxscale can store
this information in a python dictionary which is subsequently fed into a second setjy run, this
time using the bandpass calibrator as the source and the derived slope (the python dictionary) as
input. This step will create a source model with the correct overall spectral slope for the bandpass.
Finally, rerun bandpass and all other calibration steps again, making use of the newly created
internal bandpass model.

4.4.3 Complex Gain Calibration (gaincal)

The fundamental calibration to be done on your interferometer data is to calibrate the antenna-
based gains as a function of time. Some of these calibrations are known beforehand (“a priori”)
and others must be determined from observations of calibrators, or from observations of the target
itself (“self-calibration”).

It is best to have determined a (constant or slowly-varying) “bandpass” from the frequency channels
by solving for the bandpass (see above). Thus, the bandpass calibration table would be input to
gaincal via the gaintable parameter (see below).

The gaincal task has the following inputs:

# gaincal :: Determine temporal gains from calibrator observations
vis = ’’ # Name of input visibility file
caltable = ’’ # Name of output gain calibration table
field = ’’ # Select field using field id(s) or field name(s)
spw = ’’ # Select spectral window/channels
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intent = ’’ # Select observing intent
selectdata = True # Other data selection parameters

timerange = ’’ # Select data based on time range
uvrange = ’’ # Select data within uvrange (default units meters)
antenna = ’’ # Select data based on antenna/baseline
scan = ’’ # Scan number range
observation = ’’ # Select by observation ID(s)
msselect = ’’ # Optional complex data selection (ignore for now)

solint = ’inf’ # Solution interval: egs. ’inf’, ’60s’ (see help)
combine = ’’ # Data axes which to combine

# for solve (obs, scan, spw, and/or field)
preavg = -1.0 # Pre-averaging interval (sec) (rarely needed)
refant = ’’ # Reference antenna name(s)
minblperant = 4 # Minimum baselines _per antenna_ required for solve
minsnr = 3.0 # Reject solutions below this SNR
solnorm = False # Normalize average solution

# amplitudes to 1.0 (G, T only)
gaintype = ’G’ # Type of gain solution (G,T,GSPLINE,K,KCROSS)
smodel = [] # Point source Stokes parameters for source model.
calmode = ’ap’ # Type of solution: (’ap’, ’p’, ’a’)
append = False # Append solutions to the (existing) table
docallib = False # Use callib or traditional cal apply parameters

gaintable = [] # Gain calibration table(s) to apply on the fly
gainfield = [] # Select a subset of calibrators from gaintable(s)
interp = [] # Temporal interpolation for

# each gaintable (=linear)
spwmap = [] # Spectral windows

# combinations to form for gaintable(s)

parang = False # Apply parallactic angle correction on the fly

Data selection is done through the standard field, spw, intent, and selectdata expandable sub-
parameters (see § 2.3). The bulk of the other parameters are the standard solver parameters. See
§ 4.4.1 above for a description of these.

The gaintype parameter selects the type of gain solution to compute. The choices are ’T’, ’G’,
and ’GSPLINE’. The ’G’ and ’T’ options solve for independent complex gains in each solution
interval (classic AIPS style), with ’T’ enforcing a single polarization-independent gain for each
co-polar correlation (e.g. RR and LL, or XX and YY) and ’G’ having independent gains for these.
See § 4.4.3.1 for a more detailed description of ’G’ solutions, and § 4.4.3.2 for more on ’T’. The
’GSPLINE’ fits cubic splines to the gain as a function of time. See § 4.4.3.3 for more on this option.

4.4.3.1 Polarization-dependent Gain (G)

Systematic time-dependent complex gain errors are almost always the dominant calibration effect,
and a solution for them is almost always necessary before proceeding with any other calibration.
Traditionally, this calibration type has been a catch-all for a variety of similar effects, including: the
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relative amplitude and phase gain for each antenna, phase and amplitude drifts in the electronics
of each antenna, amplitude response as a function of elevation (gain curve), and tropospheric
amplitude and phase effects. In CASA, it is possible to handle many of these effects separately, as
available information and circumstances warrant, but it is still possible to solve for the net effect
using calibration type G.

Generally speaking, type G can represent any per-spectral window multiplicative polarization-
and time-dependent complex gain effect downstream of the polarizers. (Polarization- and time-
independent effects upstream of the polarizers may also be treated implicitly with G.) Multi-channel
data (per spectral window) will be averaged in frequency before solving (use calibration type B to
solve for frequency-dependent effects within each spectral window).

To solve for G on, say, fields 1 & 2, on a 90s timescale, and do so relative to gaincurve corrections:

gaincal(’data.ms’,
caltable=’cal.G’, # Write solutions to disk file ’cal.G’
field=’0,1’, # Restrict field selection
solint=90.0, # Solve for phase and amp on a 90s timescale
gaintable=[’cal.gc’] # a gain curve table from gencal
refant=’3’) #

plotcal(’cal.G’,’amp’) # Inspect solutions

These G solution will be referenced to antenna 4. Choose a well-behaved antenna that is located
near the center of the array and is ever-present for the reference antenna. For non-polarization
datasets, reference antennas need not be specified although you can if you want. If no reference
antenna is specified, an effective phase reference that is an average over the data will be calculated
and used. For data that requires polarization calibration, you must choose a reference antenna that
has a constant phase difference between the right and left polarizations (e.g. no phase jumps or
drifts). If no reference antenna (or a poor one) is specified, the phase reference may have jumps
in the R–L phase, and the resulting polarization angle response will vary during the observation,
thus corrupting the polarization imaging.

To apply this solution, along with the gain curve correction, to the calibrators (fields 0,1) and the
target source (field 2):

applycal(’data.ms’,
field=’0,1,2’, # Restrict field selection (cals + src)
gaintable=[’cal.gc’,’cal.G’]) # Apply gc and G solutions to correct data

The calibrated data is written to the CORRECTED DATA column, with calwt=True by default. This
parameter can also be a list of Boolean values for which each entry then controls the calculation of
weights based on each individual input calibration table. calwt=False will recompute the weights
form the SIGMA column, thus resetting the weights to their original value.

Alert: Current (as of February 2014) Jansky VLA data has no calibrated weights (unless they
are computed from switched power calibration). To avoid trouble, calwt=False should be set for
those data sets. Older, pre-upgrade VLA data should still be calibrated with calwt=True.
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4.4.3.2 Polarization-independent Gain (T)

At high frequencies, it is often the case that the most rapid time-dependent gain errors are intro-
duced by the troposphere, and are polarization-independent. It is therefore unnecessary to solve for
separate time-dependent solutions for both polarizations, as is the case for ’G’. Calibration type
’T’ is available to calibrate such tropospheric effects, differing from ’G’ only in that a single com-
mon solution for both polarizations is determined. In cases where only one polarization is observed,
type ’T’ is adequate to describe the time-dependent complex multiplicative gain calibration.

In the following example, we assume we have a ’G’ solution obtained on a longish timescale (longer
than a few minutes, say), and we want a residual ’T’ solution to track the polarization-independent
variations on a very short timescale:

gaincal(’data.ms’, # Visibility dataset
caltable=’cal.T’, # Specify output table name
gaintype=’T’, # Solve for T
field=’0,1’, # Restrict data selection to calibrators
solint=3.0, # Obtain solutions on a 3s timescale
gaintable=’cal120.G’) # Pre-apply prior G solution

For dual-polarization observations, it will always be necessary to obtain a ’G’ solution to account for
differences and drifts between the polarizations (which traverse different electronics), but solutions
for rapidly varying polarization-independent effects such as those introduced by the troposphere
will be optimized by using ’T’. Note that ’T’ can be used in this way for self-calibration purposes,
too.

4.4.3.3 GSPLINE solutions

At high radio frequencies, where tropospheric phase fluctuates rapidly, it is often the case that
there is insufficient signal-to-noise ratio to obtain robust ’G’ or ’T’ solutions on timescales short
enough to track the variation. In this case it is desirable to solve for a best-fit functional form for
each antenna using the ’GSPLINE’ solver. This fits a time-series of cubic B-splines to the phase
and/or amplitude of the calibrator visibilities.

The combine parameter (§ 4.4.1.5) can be used to combine data across spectral windows, scans, and
fields. Note that if you want to use combine=’field’, then all fields used to obtain a ’GSPLINE’
amplitude solution must have models with accurate relative flux densities. Use of incorrect relative
flux densities will introduce spurious variations in the ’GSPLINE’ amplitude solution.

The ’GSPLINE’ solver requires a number of unique additional parameters, compared to ordinary
’G’ and ’T’ solving. The sub-parameters are:

gaintype = ’GSPLINE’ # Type of solution (G, T, or GSPLINE)
splinetime = 3600.0 # Spline (smooth) timescale (sec), default=1 hours
npointaver = 3 # Points to average for phase wrap (okay)
phasewrap = 180 # Wrap phase when greater than this (okay)
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The duration of each spline segment is controlled by splinetime. The actual splinetime will be
adjusted such that an integral number of equal-length spline segments will fit within the overall
range of data.

Phase splines require that cycle ambiguities be resolved prior to the fit; this operation is controlled
by npointaver and phasewrap. The npointaver parameter controls how many contiguous points
in the time-series are used to predict the cycle ambiguity of the next point in the time-series, and
phasewrap sets the threshold phase jump (in degrees) that would indicate a cycle slip. Large values
of npointaver improve the SNR of the cycle estimate, but tend to frustrate ambiguity detection if
the phase rates are large. The phasewrap parameter may be adjusted to influence when cycles are
detected. Generally speaking, large values (> 180◦) are useful when SNR is high and phase rates
are low. Smaller values for phasewrap can force cycle slip detection when low SNR conspires to
obscure the jump, but the algorithm becomes significantly less robust. More robust algorithms for
phase-tracking are under development (including fringe-fitting).

For example, to solve for ’GSPLINE’ phase and amplitudes, with splines of duration 600 seconds,

gaincal(’data.ms’,
caltable=’cal.spline.ap’,
gaintype=’GSPLINE’ # Solve for GSPLINE
calmode=’ap’ # Solve for amp & phase
field=’0,1’, # Restrict data selection to calibrators
splinetime=600.) # Set spline timescale to 10min

ALERT’: The ’GSPLINE’ solutions cannot yet be used in fluxscale. You should do at least some
’G’ amplitude solutions to establish the flux scale, then do ’GSPLINE’ in phase before or after to
fix up the short timescale variations. Note that the “phase tracking” algorithm in ’GSPLINE’ needs
some improvement.

4.4.3.4 Antenna Delays — ’K’ solutions

gaintype=’K’ solves for simple antenna-based delays via Fourier transforms of the spectra on
baselines to the reference antenna. This is not a global fringe fit but will be useful for deriving
delays from data of reasonable snr. If combine includes ’spw’, multi-band delays solved jointly
from all selected spectral windows will be determined, and will be identified with the first spectral
window id in the output caltable. When applying a multi-band delay table, spwmap is required to
distribute the solutions to all spectral windows.

After solving for delays, a subsequent bandpass is recommended to describe higher-order channel-
dependent variation in the phase (and amplitude).

4.4.3.5 Cross-Hand Delays — ’KCROSS’ solutions

gaintype=’KCROSS’ solves for a global cross-hand delay. Use parang=T and apply prior gain and
bandpass solutions. Alert: Multi-band delays are not yet supported for KCROSS solutions.
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4.4.4 Establishing the Flux Density Scale (fluxscale)

The ’G’ or ’T’ solutions obtained from calibrators for which the flux density was unknown and
assumed to be 1 Jansky are correct in a time- and antenna- relative sense, but are mis-scaled by a
factor equal to the inverse of the square root of the true flux density. This scaling can be corrected
by enforcing the constraint that mean gain amplitudes determined from calibrators of unknown flux
density should be the same as determined from those with known flux densities. The fluxscale
task exists for this purpose.

The inputs for fluxscale are:

# fluxscale :: Bootstrap the flux density scale from standard calibrators
vis = ’’ # Name of input visibility file (MS)
caltable = ’’ # Name of input calibration table
fluxtable = ’’ # Name of output, flux-scaled calibration table
reference = [’’] # Reference field name(s) (transfer flux scale FROM)
transfer = [’’] # Transfer field name(s) (transfer flux scale TO), ’’ ->

# all
listfile = ’’ # Name of listfile that contains the fit information.

# Default is (no file).
append = False # Append solutions?
refspwmap = [-1] # Scale across spectral window boundaries. See help

# fluxscale
gainthreshold = -1.0 # Threshold (% deviation from the median) on gain

# amplitudes to be used in the flux scale calculation
antenna = ’’ # antennas to include/exclude
incremental = False # incremental caltable
fitorder = 1 # order of spectral fitting
display = False # display some statistics of flux scaling

Before running fluxscale, one must have first run setjy for the reference sources and run
a gaincal that includes reference and transfer fields. After running fluxscale the output
fluxtable caltable will have been scaled such that the correct scaling will be applied to the
transfer sources.

For example, given a ’G’ table, e.g. ’cal.G’, containing solutions for a flux density calibrator (in
this case ’3C286’) and for one or more gain calibrator sources with unknown flux densities (in this
example ’0234+285’ and ’0323+022’):

fluxscale(vis=’data.ms’,
caltable=’cal.G’, # Select input table
fluxtable= ’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286’, # 3C286 = flux calibrator
transfer=’0234+258, 0323+022’) # Select calibrators to scale

The output table, ’cal.Gflx’, contains either the scaling factors alone (incremental=T) to be used
alongside with the input gain table ’cal.G’, or a scaled version of the gain table (incremental=F),
that replaces it for the execution of applycal.
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Note that the assertion that the gain solutions are independent of the calibrator includes the
assumption that the gain amplitudes are strictly not systematically time-dependent in any way.
While synthesis antennas are designed as much as possible to achieve this goal, in practice, a
number of effects conspire to frustrate it. When relevant, it is advisable to pre-apply gaincurve
and opacity corrections when solving for the ’G’ solutions that will be flux-scaled (see § 4.3
and § 4.4.1.3). When the ’G’ solutions are essentially constant for each calibrator separately, the
fluxscale operation is likely to be robust.

fluxscale will report the fluxes of each spw for each source. In addition, it will attempt a fit across
the spws of each source and report a spectral index and curvature (S ∝ (ν/ν0)α+β∗log(ν/ν0))). This
information can be subsequently used to build up a model for the spectral slope of a calibrator
with the setjy task if required.

The fluxscale task can be executed on either ’G’ or ’T’ solutions, but it should only be used on
one of these types if solutions exist for both and one was solved relative to the other (use fluxscale
only on the first of the two).

ALERT: The ’GSPLINE’ option is not yet supported in fluxscale (see § 4.4.3.3).

If the reference and transfer fields were observed in different spectral windows, the refspwmap
parameter may be used to achieve the scaling calculation across spectral window boundaries.

The refspwmap parameter functions similarly to the standard spwmap parameter (§ 4.4.1.4), and
takes a list of indices indicating the spectral window mapping for the reference fields, such that
refspwmap[i]=j means that reference field amplitudes from spectral window j will be used for
spectral window i.

Note: You should be careful when you have a dataset with spectral windows with different band-
widths, and you have observed the calibrators differently in the different spw. The flux-scaling will
probably be different in windows with different bandwidths.

For example,

fluxscale(vis=’data.ms’,
caltable=’cal.G’, # Select input table
fluxtable= ’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286’, # 3C286 = flux calibrator
transfer=’0234+258,0323+022’ # Select calibrators to scale
refspwmap=[0,0,0]) # Use spwid 0 scaling for spwids 1 & 2

will use spw=0 to scale the others, while in

fluxscale(vis=’data.ms’,
caltable=’cal.G’, # Select input table
fluxtable=’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286’, # 3C286 = flux calibrator,
transfer=’0234+285, 0323+022’, # select calibrators to scale,
refspwmap=[0,0,1,1]) # select spwids for scaling,

the reference amplitudes from spectral window 0 will be used for spectral windows 0 and 1 and
reference amplitudes from spectral window 2 will be used for spectral windows 2 and 3.
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4.4.4.1 Using Resolved Calibrators

If the flux density calibrator is resolved, the assumption that it is a point source will cause solutions
on outlying antennas to be biased in amplitude. In turn, the fluxscale step will be biased on
these antennas as well. In general, it is best to use model for the calibrator, but if such a model is
not available, it is important to limit the solution on the flux density calibrator to only the subset
of antennas that have baselines short enough that the point-source assumption is valid. This can
be done by using antenna and uvrange selection when solving for the flux density calibrator. For
example, if antennas 1 through 8 are the antennas among which the baselines are short enough
that the point-source assumption is valid, and we want to be sure to limit the solutions to the use
of baselines shorter than 15000 wavelengths, then we can assemble properly scaled solutions for the
other calibrator as follows (note: specifying both an antenna and a uvrange constraint prevents
inclusion of antennas with only a small number of baselines within the specified uvrange from being
included in the solution; such antennas will have poorly constrained solutions):

As an example, we first solve for gain solutions for the flux density calibrator (3C286 observed in
field 0) using a subset of antennas

gaincal(vis=’data.ms’,
caltable=’cal.G’, # write solutions to cal.G
field=’0’ # Select the flux density calibrator
selectdata=True, # Expand other selectors
antenna=’0~7’, # antennas 0-7,
uvrange=’0~15klambda’, # limit uvrange to 0-15klambda
solint=90) # on 90s timescales, write solutions

# to table called cal.G

Now solve for other calibrator (0234+285 in field 1) using all antennas (implicitly) and append
these solutions to the same table

gaincal(vis=’data.ms’,
caltable=’cal.G’, # write solutions to cal.G
field=’1’,
solint=90,
append=T) # Set up to write to the same table

Finally, run fluxscale to adjust scaling

fluxscale(vis=’data.ms’,
caltable=’cal.G’, # Input table with unscaled cal solutions
fluxtable=’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286’, # Use 3c286 as ref with limited uvrange
transfer=’0234+285’) # Transfer scaling to 0234+285

The fluxscale calculation will be performed using only the antennas common to both fields, but
the result will be applied to all antennas on the transfer field. Note that one can nominally get by
only with the uvrange selection, but you may find that you get strange effects from some antennas
only having visibilities to a subset of the baselines and thus causing problems in the solving.
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4.4.5 Instrumental Polarization Calibration (D,X)

Full support for instrumental polarization calibration for the circular feed basis (e.g., VLA) is
provided in CASA. Support for the linear feed basis (e.g., ALMA) is now practical (as of v4.0)
and is also described below. The linear feed basis treatment will continue to be expanded and
streamlined for the v4.3 release.

The inputs to polcal are:

# polcal :: Determine instrumental polarization calibrations
vis = ’’ # Name of input visibility file
caltable = ’’ # Name of output gain calibration table
field = ’’ # Select field using field id(s) or field name(s)
spw = ’’ # Select spectral window/channels
intent = ’’ # Select observing intent
selectdata = True # Other data selection parameters

timerange = ’’ # Select data based on time range
uvrange = ’’ # Select data within uvrange (default units meters)
antenna = ’’ # Select data based on antenna/baseline
scan = ’’ # Scan number range
observation = ’’ # Select by observation ID(s)
msselect = ’’ # Optional complex data selection (ignore for now)

solint = ’inf’ # Solution interval
combine = ’obs,scan’ # Data axes which to combine

# for solve (obs, scan, spw, and/or field)
preavg = 300.0 # Pre-averaging interval (sec)
refant = ’’ # Reference antenna name(s)
minblperant = 4 # Minimum baselines _per antenna_ required for solve
minsnr = 3.0 # Reject solutions below this SNR
poltype = ’D+QU’ # Type of instrumental

# polarization solution (see help)
smodel = [] # Point source Stokes parameters for source model.
append = False # Append solutions to the (existing) table
docallib = False # Use callib or traditional cal apply parameters

gaintable = [] # Gain calibration table(s) to apply
gainfield = [] # Select a subset of calibrators from gaintable(s)
interp = [] # Interpolation mode (in

# time) to use for each gaintable
spwmap = [] # Spectral windows

# combinations to form for gaintable(s)

The polcal task uses many of the standard calibration parameters as described above in § 4.4.1.

The key parameter controlling polcal is poltype. The choices are:

’D’ — Solve for instrumental polarization (leakage D-terms), using the transform of an IQU
model; requires no parallactic angle coverage, but if the source polarization is non-zero, the
gain calibration must have the correct R-L phase registration. (Note: this is unlikely, so just
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use ’D+X’ to let the position angle registration float.) This will produce a calibration table
of type D.

’D+X’ — Solve for instrumental polarization D-terms and the polarization position angle correc-
tion, using the transform of an IQU model; this mode requires at least 2 distinct parallactic
angles to separate the net instrumental polarization and the PA. This will produce a calibra-
tion table of type ’D’. ALERT: no table of type ’X’ will be produced, so you must follow
this by a run of polcal with polmode=’X’ (see below).

’D+QU’ — Solve for instrumental polarization and source Q + iU ; requires at least 3 distinct
parallactic angles to separate the net instrumental polarization from the source Q and U.
Effectively sets the polarization PA to the value if the R-L phase difference were 0◦. This will
produce a calibration table of type ’D’.

’X’ — Solve only for the position angle correction; best to use this after getting the D-terms from
one of the above modes. Requires the observation of a calibrator with known Q + iU (or at
least known U/Q). This will produce a calibration table of type ’X’.

’Dflls’ — A specialized mode for instrumental polarization solving for the linear feed basis. This
will probably be consolidated with other options in a future release.

There are channelized solution modes for the above options. For example, substitute ’Df’ for ’D’
in the ’D*’ modes described above to get a channelized D-term solution; substitute ’Xf’ for ’X’
to get channelized position angle correction.

ALERT: polcal will obtain a separate D-term solution for each field supplied to it. This
limitation will be relaxed in the future, enabling more sensitive solutions.

4.4.5.1 Heuristics and Strategies for Polarization Calibration

ALERT: This section concentrates on polarization calibration for the circular feed basis. It will
be generalized to include the linear feed basis for the v4.3 release. See § 4.4.5.4 for the currently
supported processing steps for the linear feed basis.

Fundamentally, with good ordinary gain (and bandpass, if relevant) calibration already in hand,
good polarization calibration must deliver both the instrumental polarization and position angle
calibration. An unpolarized source can deliver only the first of these, but does not require paral-
lactic angle coverage. A polarized source can only deliver the position angle calibration also if its
polarization is known a priori. Sources that are polarized, but with unknown polarization, must
always be observed with sufficient parallactic angle coverage, where ”sufficient” is determined by
SNR and the details of the solving mode.

These principles are stated assuming the instrumental polarization solution is solved using the
”linear approximation” where cross-terms in more than a single product of the instrumental or
source polarizations are ignored in the Measurement Equation (see § E). A more general non-
linearized solution, with sufficient SNR, may enable some relaxation of the requirements indicated
here, and modes supporting such an approach are currently under development.
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For instrumental polarization calibration, there are 3 types of calibrator choice:

CASA Polarization Calibration Modes

Cal Polarization Parallactic Angles model polmode Result
unpolarized any set Q = U = 0 ’D’ or ’Df’ D-terms only
known non-zero 2+ scans set Q,U ’D+X’ or ’Df+X’ D-terms and PA
unknown 2+ scans ignored ’D+QU’ or ’Df+QU’ D-terms and source

Note that the parallactic angle ranges spanned by the scans in the modes that require this should
be large enough to give good separation between the components of the solution. In practice, 60◦

is a good target.

Each of these solutions should be followed with a ’X’ solution on a source with known polarization
position angle (and correct Q+ iU in the model). ALERT: polmode=’D+X’ will soon be enhanced
to deliver this automatically.

The polcal task will solve for the ’D’ or ’X’ terms using the model visibilities that are in the model
attached to the MS. Calibration of the parallel hands must have already been carried out using
gaincal and/or bandpass in order to align the phases over time and frequency. This calibration
must be supplied through the gaintable parameters, but any cal-tables to be used in polcal must
agree (e.g. have been derived from) the data in the DATA column and the FT of the model. Thus,
for example, one would not use the cal-table produced by fluxscale as the rescaled amplitudes
would no longer agree with the contents of the model.

Be careful when using resolved calibrators for polarization calibration. A particular problem is if
the structure in Q and U is offset from that in I. Use of a point model, or a resolved model for I
but point models for Q and U, can lead to errors in the ’X’ calibration. Use of a uvrange will
help here. The use of a full-Stokes model with the correct polarization is the only way to ensure a
correct calibration if these offsets are large.

4.4.5.2 A Note on channelized polarization calibration

When your data has more than one channel per spectral window, it is important to note that
the calibrator polarization estimate currently assumes the source polarization signal is coherent
across each spectral window. In this case, it is important to be sure there is no large cross-hand
delay still present in your data. Unless the online system has accounted for cross-hand delays
(typically intended, but not always achieved), the gain and bandpass calibration will only correct
for parallel-hand delay residuals since the two polarizations are referenced independently. Good
gain and bandpass calibration will typically leave a single cross-hand delay (and phase) residual
from the reference antenna. Plots of cross-hand phases as a function of frequency for a strongly
polarized source (i.e., that dominates the instrumental polarization) will show the cross-hand delay
as a phase slope with frequency. This slope will be the same magnitude on all baselines, but with
different sign in the two cross-hand correlations. This cross-hand delay can be estimated using the
gaintype=’KCROSS’ mode of gaincal (in this case, using the strongly polarized source 3C286):
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default(’gaincal’)
vis = ’polcal_20080224.cband.all.ms’
caltable = ’polcal.xdelcal’
field = ’3C286’
spw = ’’
solint = ’inf’
combine = ’scan’
refant = ’VA15’
smodel = [1.0,0.11,0.0,0.0]
gaintype = ’KCROSS’
gaintable = [’polcal.gcal’,’polcal.bcal’]
gaincal()

Note that smodel is used to specify that 3C286 is polarized; it is not important to specify this
polarization stokes parameters correctly, as only the delay will be solved for (not any absolute
position angle or amplitude scaling). The resulting solution should be carried forward and applied
along with the gain (.gcal) and bandpass (.bcal) solutions in subsequent polarization calibration
steps.

4.4.5.3 A Polarization Calibration Example - Circular Feed Basis (e.g., VLA ν > 1
GHz)

In the following example, we do a standard ’D+QU’ solution on the bright source BLLac (2202+422)
which has been tracked through a range in parallactic angle:

default(’polcal’)
vis = ’polcal_20080224.cband.all.ms’
caltable = ’polcal.pcal’
field = ’2202+422’
spw = ’’
solint = ’inf’
combine = ’scan’
preavg = 300.0
refant = ’VA15’
minsnr = 3
poltype = ’D+QU’
gaintable = [’polcal.gcal’,’polcal.bcal’,’polcal.xdelcal]
gainfield = [’’]
polcal()

This assumes setjy and gaincal have already been run. Note that the original gain-calibration
table is used in gaintable so that what is in the model is in agreement with what is in the
gaintable, rather than using the table resulting from fluxscale.

Now, we need to set the R-L phase using a scan on 3C48 (0137+331):

default(’polcal’)
vis = ’polcal_20080224.cband.all.ms’
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caltable = ’polcal.polx’
field = ’0137+331’
refant = ’VA15’
minsnr = 3
poltype = ’X’
smodel = [1.0,-0.0348,-0.0217,0.0] # the fractional Stokes for 3C48
gaintable = [’polcal.gcal’,’polcal.bcal’,’polcal.xdelcal’,’polcal.pcal’]
polcal()

Note that the fractional polarization of 3C48 has been properly specified in smodel here.

If, on the other hand, we had a scan on an unpolarized bright source, for example 3C84 (0319+415),
we could use this to calibrate the leakages:

default(’polcal’)
vis = ’polcal_20080224.cband.all.ms’
caltable = ’polcal.pcal’
field = ’0319+415’
refant = ’VA15’
poltype = ’D’
gaintable = [’polcal.gcal’,’polcal.bcal’,’polcal.xdelcal]
polcal()

We would then do the ’X’ calibration as before (but using this D-table in gaintable).

4.4.5.4 A Polarization Calibration Example - Linear Feed Basis (e.g., ALMA, VLA
ν < 1 GHz)

CASA v4.0.0 introduces supports for instrumental polarization calibration for the linear feed basis
at a level that is now practical for the general user. Some details remain to be implemented with
full flexibility, and much of what follows will be streamlined for the v4.1 release.

Calibrating the instrumental polarization for the linear feed basis is somewhat more complicated
than the circular feed basis because the polarization effects (source and instrument) appear in all
four correlations at first or zeroth order (whereas for circular feeds, the polarization information
only enters the parallel hand correlations at second order). As a result, e.g., the time-dependent
gain calibration will be distorted by any non-zero source polarization, and some degree of iteration
will be required to isolate the gain calibration if the source polarization is not initially known.
These complications can actually be used to advantage in solving for the instrumental calibration;
in can be shown, for example, that a significantly linearly polarized calibrator enables a better
instrumental polarization solution than an unpolarized calibrator.

In the following example, we show the processing steps for calibrating the instrumental polarization
using a strongly (> 5%) polarized point-source calibrator (which is also the time-dependent gain
calibrator) that has been observed over a range of parallactic angle (a single scan is not sufficient).
We assume that we have calibrated the gain, bandpass, and cross-hand delay as described above,
and that the gain calibration (polcal.gcal) was obtained assuming the calibrator was unpolarized.

First, we import some utility functions from the CASA recipes area:
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from recipes.almapolhelpers import *

Since the gain calibrator was assumed unpolarized, the time-dependent gain solutions contain
information about the source polarization. This can be seen by plotting the amp vs. time for this
table using poln=’/’. The antenna-based polarization amplitude ratios will reveal the sinusoidal
(in parallactic angle) of the source polarization. Run a utility method (qufromgain()) to extract
the apparent source polarization estimates for each spw:

qu=qufromgain(’polcal.gcal’)

The source polarization reported for all spws should be reasonably consistent. This estimate is not
as good as can be obtained from the cross-hands (see below) since it relies on the gain amplitude
polarization ratio being stable which may not be precisely true. However, this estimate will be
useful in resolving an ambiguity that occurs in the cross-hand estimates.

Next we estimate both the XY-phase offset and source polarization from the cross-hands. The
XY-phase offset is a spectral phase-only bandpass relating the X and Y systems of the reference
antenna. The cross-hand delay solved for above represents a systematic component (linear phase in
frequency). If the XY-phase is solved for in a channel-dependent manner (as below), it is strictly not
necessary to have solved for the cross-hand delay above, but it does not hurt (at it allows reasonably
coherent channel averages for data examination). The source polarization occurs in the cross-hands
as a sinusoidal function of parallactic angle that is common to both cross-hands on all baselines (for
a point-source). If the XY-phase bandpass is uniformly zero, then the source linear polarization
function will occur entirely in the real part of the cross-hand visibilities. Non-zero XY-phase has the
effect of rotating the source linear polarization signature partially into the imaginary part, where
circular (and instrumental) polarization occur (cf. the circular feed basis where the cross-hand
phase merely rotates the position angle of linear polarization). The following solve averages all
baselines together and first solves for a channelized XY-phase (the slope of the source polarization
function in the complex plane), then corrects the slope and solves for a channel-averaged source
polarization. This calibration is obtained using gaintype=’XYf+QU’ in gaincal:

default(’gaincal’)
vis = ’polcal_linfeed.ms’
caltable = ’polcal.xy0amb’ # possibly with 180deg ambiguity
field = ’1’ # the calibrator
solint = ’inf’
combine = ’scan’
preavg = 200.0 # minimal parang change
smodel = [1,0,1,0] # non-zero U assumed
gaintype = ’XYf+QU’
gaintable = [’polcal.gcal’,’polcal.bcal’,’polcal.xdelcal]
gaincal()

Note that we imply non-zero Stokes U in smodel; this is to enforce the assumption of non-zero
source polarization signature in the cross-hands in the ratio of data and model. This solve will
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report the center-channel XY-phase and apparent Q,U for each spw. The Q,U results should be
recognizable in comparison to that reported by qufromgain() above. However, since the XY-phase
has a 180 degree ambiguity (you can rotate the source polarization signature to lie entirely in the
visibility real part by rotating clockwise or counter-clockwise), some or all spw QU estimates may
have the wrong sign. We correct this using the xyamb() utility method, using the qu obtained from
qufromgain() above (which is not ambiguous):

S=xyamb(xy=’polcal.xy0amb’,qu=qu,xyout=’polcal.xy0’)

The python variable S now contains the mean source model (Stokes I = 1; fractional Q,U; V=0)
that can be used in a revision of the gain calibration and instrumental polarization calibration.

Next we revise the gain calibration using the full polarization source model:

default(’gaincal’)
vis = ’polcal_linfeed.ms’
caltable = ’polcal.gcal1’
field = ’1’
solint = ’int’ # or whatever was used previously
smodel = S # obtained from xyamb
gaintype = ’G’
gaintable = [’polcal.bcal’]
parang = T # so source poln properly rotated
gaincal()

Note that parang=T so that the supplied source linear polarization is properly rotated in the
parallel-hand visibility model. This new gain solution can be plotted with poln=’/’ as above to
show that the source polarization is no longer distorting it. Also, if qufromgain is run on this new
gain table, the reported source polarization should be statistically indistinguishable from zero.

Finally, we can now solve for the instrumental polarization:

default(’polcal’)
vis = ’polcal_linfeed.ms’
caltable = ’polcal.dcal’
field = ’1’
solint = ’inf’
combine = ’scan’
preavg = 200
poltype = ’Dflls’ # freq-dep LLS solver
refant = ’’ # no reference antenna
smodel = S
gaintable = [’polcal.gcal1’,’polcal.bcal’,’polcal.xdelcal’,’polcal.xy0’]
polcal()

Note that no reference antenna is used since this solve will produce an absolute instrumental po-
larization solution that is registered to the assumed source polarization (S) and prior calibrations.
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Applying a refant (referring all instrumental polarization terms to a reference antenna’s X feed,
which would then be assumed perfect) would, in fact, discard valid information about the imperfec-
tions in the reference antenna’s X feed. (Had we used an unpolarized calibrator, we would not have
a valid xy-phase solution, nor would we have had access to the absolute instrumental polarization
solution demonstrated here.)

A few points:

• Since the gain, bandpass, and XY-phase calibrations were obtained prior to the instrumental
polarization solution and maybe distorted by it, it is generally desirable to resolve for them
using the instrumental polarization solution. In effect, this means iterating the sequence of
calibration steps using all of the best of the available information at each stage, including the
source polarization (and parang=T). This is a generalization of traditional self-calibration.
For the CASA v4.1 release, we expect to provide utility methods for iteration.

• If the source linear polarization fraction and position angle is known a priori, the processing
steps outlined above can be amended to use that source polarization assertion in the gain and
instrumental calibration solves. The qufromgain() method is not needed (but can be used
to verify assumptions), the gaincal(...,gaintype=’XYf+QU’,...) should not be altered
(parallactic angle coverage is still required!), and the xyamb() run should use the a priori
polarization for qu. If there is likely to be a large systematic offset in the mean feed position
angle, iteration of the gain, bandpass, and instrumental polarization terms is required to
properly isolate the calibration effects.

• Note that the above process does not explicitly include a position angle calibration. In effect,
the estimated source polarization sets the mean feed position angle as the reference position
angle, and this is usually within a degree or so of optimal. If your mean X feed position angle
is not ∼ 0 degrees, and your MS does not account for the offset in its FEED subtable, be
careful in your interpretation of the final position angle. Currently, the circular feed-specific
position angle calibration modes of polcal (poltype=’X’ or ’Xf’) will not properly handle
the linear feed basis; this will be fixed in the CASA v4.1 release.

A full processing example for linear feed basis polarimetry is under development and will be dis-
tributed with an upcoming CASA release.

4.4.6 Baseline-based Calibration (blcal)

You can use the blcal task to solve for baseline-dependent (non-closing) errors. WARNING:
this is in general a very dangerous thing to do, since baseline-dependent errors once introduced are
difficult to remove. You must be sure you have an excellent model for the source (better than the
magnitude of the baseline-dependent errors).

The inputs are (note that blcal does not yet use the docallib parameter:

# blcal :: Calculate a baseline-based calibration solution (gain or bandpass)
vis = ’’ # Name of input visibility file
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caltable = ’’ # Name of output gain calibration table
field = ’’ # Select field using field id(s) or field name(s)
spw = ’’ # Select spectral window/channels
intent = ’’ # Select observing intent
selectdata = False # Other data selection parameters
solint = ’inf’ # Solution interval
combine = ’scan’ # Data axes which to combine for solve (scan, spw,

# and/or field)
freqdep = False # Solve for frequency dependent solutions
calmode = ’ap’ # Type of solution" (’ap’, ’p’, ’a’)
solnorm = False # Normalize average solution amplitudes to 1.0
gaintable = [’’] # Gain calibration table(s) to apply on the fly
gainfield = [’’] # Select a subset of

# calibrators from gaintable(s)
interp = [’’] # Interpolation mode (in

# time) to use for each gaintable
spwmap = [] # Spectral windows combinations to form for

# gaintable(s)
gaincurve = False # Apply internal VLA antenna

# gain curve correction
opacity = [] # Opacity correction to apply (nepers), per spw
parang = False # Apply parallactic angle correction

The freqdep parameter controls whether blcal solves for “gain” (freqdep=False) or “bandpass”
(freqdep=True) style non-closing calibration.

Other parameters are the same as in other calibration tasks. These common calibration parameters
are described in § 4.4.1.

4.5 Plotting and Manipulating Calibration Tables

At some point, the user should examine (plotting or listing) the calibration solutions. Calibra-
tion tables can also be manipulated in various ways, such as by interpolating between times (and
sources), smoothing of solutions, and accumulating various separate calibrations into a single table.

4.5.1 Plotting Calibration Solutions (plotcal)

The plotcal task is available for examining solutions of all of the basic solvable types (G, T, B,
D, M, MF, K). The inputs are:

# plotcal :: An all-purpose plotter for calibration results:

caltable = ’’ # Name of input calibration table
xaxis = ’’ # Value to plot along x axis (time,chan,amp,phase,real,imag,snr)
yaxis = ’’ # Value to plot along y axis (amp,phase,real,imag,snr)
poln = ’’ # Polarization to plot (RL,R,L,XY,X,Y,/)
field = ’’ # Field names or index: ’’=all, ’3C286,P1321*’, ’0~3’
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antenna = ’’ # Antenna selection. E.g., antenna=’3~5’
spw = ’’ # Spectral window: ’’=all, ’0,1’ means spw 0 and 1
timerange = ’’ # Time selection ’’=all
subplot = 111 # Panel number on display screen (yxn)
overplot = False # Overplot solutions on existing display
clearpanel = ’Auto’ # Specify if old plots are cleared or not
iteration = ’’ # Iterate on antenna,time,spw,field
plotrange = [] # plot axes ranges: [xmin,xmax,ymin,ymax]
showflags = False # If true, show flags
plotsymbol = ’.’ # pylab plot symbol
plotcolor = ’blue’ # initial plotting color
markersize = 5.0 # size of plot symbols
fontsize = 10.0 # size of label font
showgui = True # Show plot on gui
figfile = ’’ # ’’= no plot hardcopy, otherwise supply name

ALERT: Currently, plotcal needs to know the MS from which caltable was derived to get
indexing information. It does this using the name stored inside the table, which does not include
the full path, but assumes the MS is in the cwd. Thus if you are using a MS in a directory other
than the current one, it will not find it. You need to change directories using cd in IPython (or
os.chdir() inside a script) to the MS location.

The controls for the plotcal window are the same as for plotxy (see § 3.3.2.1).

The xaxis and yaxis plot options available are:

• ’amp’ — amplitude,

• ’phase’ — phase,

• ’real’ – the real part,

• ’imag’ — the imaginary part,

• ’snr’ – the signal-to-noise ratio,

of the calibration solutions that are in the caltable. The xaxis choices also include ’time’ and
’channel’ which will be used as the sensible defaults (if xaxis=’’) for gain and bandpass solutions
respectively.

The poln parameter determines what polarization or combination of polarization is being plotted.
The poln=’RL’ plots both R and L polarizations on the same plot. The respective XY options
do equivalent things. The poln=’/’ option plots amplitude ratios or phase differences between
whatever polarizations are in the MS (R and L. or X and Y).

The field, spw, and antenna selection parameters are available to obtain plots of subsets of
solutions. The syntax for selection is given in § 2.3.

The subplot parameter is particularly helpful in making multi-panel plots. The format is subplot=yxn
where yxn is an integer with digit y representing the number of plots in the y-axis, digit x the num-
ber of panels along the x-axis, and digit n giving the location of the plot in the panel array (where
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n = 1, ..., xy, in order upper left to right, then down). See § 3.3.2.8 for more details on this
option.

The iteration parameter allows you to select an identifier to iterate over when producing multi-
panel plots. The choices for iteration are: ’antenna’, ’time’, ’spw’, ’field’. For example, if
per-antenna solution plots are desired, use iteration=’antenna’. You can then use subplot to
specify the number of plots to appear on each page. In this case, set the n to 1 for subplot=yxn.
Use the Next button on the plotcal window to advance to the next set of plots. Note that if
there is more than one timestamp in a ’B’ table, the user will be queried to interactively advance
the plot to each timestamp, or if multiplot=True, the antennas plots will be cycled through for
each timestamp in turn. Note that iteration can take more than one iteration choice (as a single
string containing a comma-separated list of the options). ALERT: the iteration order is fixed
(independent of the order specified in the iteration string), for example:

iteration = ’antenna, time, field’
iteration = ’time, antenna, field’

will both iterate over each field (fastest) then time (next) and antenna (slowest). The order is:

iteration = ’antenna, time, field, spw’

from the slowest (outer loop) to fastest (inner loop).

The markersize and fontsize parameters are especially helpful in making the dot and label sizes
appropriate for the plot being made. The screen shots in this section used this feature to make the
plots more readable in the cookbook. Adjusting the fontsize can be tricky on multi-panel plots,
as the labels can run together if too large. You can also help yourself by manually resizing the
Plotter window to get better aspect ratios on the plots.

ALERT: Unfortunately, plotcal has many of the same problems that plotxy does, as they use
similar code underneath. An overhaul is underway, so stay tuned.

4.5.1.1 Examples for plotcal

For example, to plot amplitude or phase as a function of time for ’G’ solutions (after rescaling by
fluxscale can look like

default(’plotcal’)
fontsize = 14.0 # Make labels larger
markersize = 10.0 # Make dots bigger

caltable = ’ngc5921.usecase.fluxscale’
yaxis = ’amp’
subplot = 211
plotcal()

yaxis = ’phase’
subplot = 212
plotcal()
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The results are shown in Figure 4.4. This makes use of the subplot option to make multi-panel
displays.

Figure 4.4: Display of the amplitude (upper) and phase (lower) gain solutions for all antennas and
polarizations in the ngc5921 post-fluxscale table.

Similarly, to plot amplitude or phase as a function of channel for ’B’ solutions for NGC5921:

default(’plotcal’)
fontsize = 14.0 # Make labels larger
markersize = 10.0 # Make dots bigger

caltable = ’ngc5921.usecase.bcal’
antenna = ’1’
yaxis = ’amp’
subplot = 311
plotcal()

yaxis = ’phase’



CHAPTER 4. SYNTHESIS CALIBRATION 245

subplot = 312
plotcal()

yaxis = ’snr’
subplot = 313
plotcal()

The results are shown in Figure 4.5. This stacks three panels with amplitude, phase, and signal-
to-noise ratio. We have picked antenna=’1’ to show.

Figure 4.5: Display of the amplitude (upper), phase (middle), and signal-to-noise ratio (lower) of
the bandpass ’B’ solutions for antenna=’0’ and both polarizations for ngc5921. Note the falloff
of the SNR at the band edges in the lower panel.

For example, to show 6 plots per page of ’B’ amplitudes on a 3× 2 grid:

default(’plotcal’)
fontsize = 12.0 # Make labels just large enough
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markersize = 10.0 # Make dots bigger

caltable = ’ngc5921.usecase.bcal’
yaxis = ’amp’
subplot = 231
iteration = ’antenna’

plotcal()

See Figure 4.6 for this example. This uses the iteration parameter.

Figure 4.6: Display of the amplitude of the bandpass ’B’ solutions. Iteration over antennas was
turned on using iteration=’antenna’. The first page is shown. The user would use the Next
button to advance to the next set of antennas.

4.5.2 Listing calibration solutions with (listcal)

The listcal task will list the solutions in a specified calibration table.
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The inputs are:

# listcal :: List data set summary in the logger:

vis = ’’ # Name of input visibility file (MS)
caltable = ’’ # Input calibration table to list
field = ’’ # Select data based on field name or index
antenna = ’’ # Select data based on antenna name or index
spw = ’’ # Spectral window, channel to list
listfile = ’’ # Disk file to write, else to terminal
pagerows = 50 # Rows listed per page

An example listing is:

Listing CalTable: jupiter6cm.usecase.split.ms.smoothcal2 (G Jones)
---------------------------------------------------------------

SpwId = 0, channel = 0.
Time Field Ant : Amp Phase Amp Phase
--------------------- ---------- -------- --------------- ---------------
1999/04/16/14:10:43.5 ’JUPITER’ ’1’ : 1.016 -11.5 1.016 -9.2

’2’ : 1.013 -5.3 0.993 -3.1
’3’ : 0.993 -0.8 0.990 -5.1
’4’ : 0.997 -10.7 0.999 -8.3
’5’ : 0.985 -2.7 0.988 -4.0
’6’ : 1.005 -8.4 1.009 -5.3
’7’ : 0.894 -8.7 0.897 -6.8
’8’ : 1.001 -0.1 0.992 -0.7
’9’ : 0.989 -12.4 0.992 -13.5
’10’ : 1.000F -4.2F 1.000F -3.2F
’11’ : 0.896 -0.0 0.890 -0.0
’12’ : 0.996 -10.6 0.996 -4.2
’13’ : 1.009 -8.4 1.011 -6.1
’14’ : 0.993 -17.6 0.994 -16.1
’15’ : 1.002 -0.8 1.002 -1.1
’16’ : 1.010 -9.9 1.012 -8.6
’17’ : 1.014 -8.0 1.017 -7.1
’18’ : 0.998 -3.0 1.005 -1.0
’19’ : 0.997 -39.1 0.994 -38.9
’20’ : 0.984 -5.7 0.986 3.0
’21’ : 1.000F -4.2F 1.000F -3.2F
’22’ : 1.003 -11.8 1.004 -10.4
’23’ : 1.007 -13.8 1.009 -11.7
’24’ : 1.000F -4.2F 1.000F -3.2F
’25’ : 1.000F -4.2F 1.000F -3.2F
’26’ : 0.992 3.7 1.000 -0.2
’27’ : 0.994 -5.6 0.991 -4.3
’28’ : 0.993 -10.7 0.997 -3.8
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4.5.3 Calibration table statistics (calstat)

The calstat task will print the statistics of solutions in a specified calibration table.

The inputs are:

# calstat :: Displays statistical information on a calibration table
caltable = ’’ # Name of input calibration table
axis = ’amp’ # Which values to use

datacolumn = ’gain’ # Which data column to use

useflags = True # Take flagging into account?
# (not implemented)

For example:

CASA <3>: calstat(’ngc5921.demo.gcal’,axis=’amp’,datacolumn=’gain’)
Out[3]:

{’GAIN’: {’max’: 1.6031942367553711,
’mean’: 1.4448433067117419,
’medabsdevmed’: 0.0086394548416137695,
’median’: 1.5732669830322266,
’min’: 0.99916577339172363,
’npts’: 280.0,
’quartile’: 0.020265340805053711,
’rms’: 1.4650156497955322,
’stddev’: 0.24271160321065546,
’sum’: 404.55612587928772,
’sumsq’: 600.95579999685287,
’var’: 0.058908922333086665}}

CASA <4>: calstat(’ngc5921.demo.gcal’,axis=’phase’,datacolumn=’gain’)
Out[4]:

{’GAIN’: {’max’: 0.091214209794998169,
’mean’: -0.015221830284565011,
’medabsdevmed’: 0.012778861448168755,
’median’: -0.012778861448168755,
’min’: -0.15903720259666443,
’npts’: 280.0,
’quartile’: 0.02537553571164608,
’rms’: 0.031241731718182564,
’stddev’: 0.027331476552707856,
’sum’: -4.2621124796782031,
’sumsq’: 0.27329283416317834,
’var’: 0.00074700961055121926}}

The statistics can be captured as return variables from the task:

CASA <7>: mystat = calstat(’ngc5921.demo.gcal’,axis=’amp’,datacolumn=’gain’)
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CASA <8>: print ’Gain Amp = ’,mystat[’GAIN’][’mean’],’+/-’,mystat[’GAIN’][’stddev’]
Gain Amp = 1.44484330671 +/- 0.242711603211

ALERT: This task is still under development and currently offers no selection (e.g. by antenna)
for the statistics.

4.5.4 Calibration Smoothing (smoothcal)

The smoothcal task will smooth calibration solutions (most usefully G or T ) over a longer time
interval to reduce noise and outliers. The inputs are:

# smoothcal :: Smooth calibration solution(s) derived from one or more sources:

vis = ’’ # Name of input visibility file
tablein = ’’ # Input calibration table
caltable = ’’ # Output calibration table
field = ’’ # Field name list
smoothtype = ’median’ # Smoothing filter to use
smoothtime = 60.0 # Smoothing time (sec)

Note that if no caltable is specified as output, smoothcal will overwrite the input tablein
calibration table.

The smoothing will use the smoothtime and smoothtype parameters to determine the new data
points which will replace the previous points on the same time sampling grid as for the tablein
solutions. The currently supported smoothtype options:

• ’mean’ — use the mean of the points within the window defined by smoothtime (a “boxcar”
average),

• ’median’ — use the median of the points within the window defined by smoothtime (most
useful when many points lie in the interval).

Note that smoothtime defines the width of the time window that is used for the smoothing.

ALERT: Note that smoothcal currently smooths by field and spw, and thus you cannot smooth
solutions from different sources or bands together into one solution.

An example using the smoothcal task to smooth an existing table:

smoothcal(’n4826_16apr.ms’,
tablein=’n4826_16apr.gcal’,
caltable=’n4826_16apr.smoothcal’,
smoothtime=7200.,
smoothtype=’mean’)

# Plot up before and after tables
plotcal(’n4826_16apr.gcal’,’’,’amp’,antenna=’1’,subplot=211)
plotcal(’n4826_16apr.smoothcal’,’’,’amp’,antenna=’1’,subplot=212)
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Figure 4.7: The ’amp’ of gain solutions for NGC4826 before (top) and after (bottom) smoothing
with a 7200 sec smoothtime and smoothtype=’mean’. Note that the first solution is in a different
spw and on a different source, and is not smoothed together with the subsequent solutions.

This example uses 2 hours (7200 sec) for the smoothing time and smoothtype=’mean’. The plotcal
results are shown in Figure 4.7.

4.5.5 Calibration Interpolation and Accumulation (accum)

ALERT: The accum task is generally no longer recommended for most calibration scenarios. Please
write to the NRAO CASA helpdesk if you need support using accum.

The accum task is used to interpolate calibration solutions onto a different time grid, and to
accumulate incremental calibrations into a cumulative calibration table. The manual accumulation
of calibration is rarely required and can usually be achieved implicitly simply by running applycal
with all the calibration tables given as a list in the gaintable parameter (and using gainfield,
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spwmap, and interp appropriately. However, sometimes it is desirable to see the interpolated
calibration prior to application, and this section describes how this can be done.

Its inputs are:

# accum :: Accumulate incremental calibration solutions

vis = ’’ # Name of input visibility file
tablein = ’’ # Input (cumulative) calibration table; use ’’ on first run

accumtime = 1.0 # Timescale on which to create cumulative table

incrtable = ’’ # Input incremental calibration table to add
caltable = ’’ # Output (cumulative) calibration table
field = ’’ # List of field names to process from tablein.
calfield = ’’ # List of field names to use from incrtable.
interp = ’linear’ # Interpolation mode to use for resampling incrtable solutions
spwmap = [-1] # Spectral window combinations to apply

The mapping implied here is

tablein + incrtable => caltable

(mathematically the cal solutions are multiplied as complex numbers as per the Measurement
Equation). The tablein is optional (see below). You must specify an incrtable and a caltable.

The tablein parameter is used to specify the existing cumulative calibration table to which an
incremental table is to be applied. Initially, no such table exists, and if tablein=’’ then accu-
mulate will generate one from scratch (on-the-fly), using the timescale (in seconds) specified by
the sub-parameter accumtime. These nominal solutions will be unit-amplitude, zero-phase calibra-
tion, ready to be adjusted by accumulation according to the settings of other parameters. When
accumtime is negative (the default), the table name specified in tablein must exist and will be
used. If tablein is specified, then the entries in that table will be used.

The incrtable parameter is used to specify the incremental table that should be applied to
tablein. The calibration type of incrtable sets the type assumed in the operation, so tablein
(if specified) must be of the same type. If it is not, accum will exit with an error message. (Certain
combinations of types and subtypes will be supported by accum in the future.)

The caltable parameter is used to specify the name of the output table to write. If un-specified
(’’), then tablein will be overwritten. Use this feature with care, since an error here will require
building up the cumulative table from the most recent distinct version (if any).

The field parameter specifies those field names in tablein to which the incremental solution
should be applied. The solutions for other fields will be passed to caltable unaltered. If the
cumulative table was created from scratch in this run of accumulate, then the solutions for these
other fields will be unit-amplitude, zero-phase, as described above.

The calfield parameter is used to specify the fields to select from incrtable to use when applying
to tablein. Together, use of field and calfield permit completely flexible combinations of
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calibration accumulation with respect to fields. Multiple runs of accum can be used to generate a
single table with many combinations. In future, a ’self’ mode will be enabled that will simplify
the accumulation of field-specific solutions.

The spwmap parameter gives the mapping of the spectral windows in the incrtable onto those in
tablein and caltable. The syntax is described in § 4.4.1.4.

The interp parameter controls the method used for interpolation. The options are (currently):
’nearest’ and ’linear’ for time-dependent interpolation, and ’nearest’, ’linear’, cubic, and
spline for (optional) frequency-dependent interpolation. These are described in § 4.4.1.4. For
most purposes, the ’linear’ option should suffice.

We now describe the two uses of accum.

4.5.5.1 Interpolation using (accum)

ALERT: The accum task is generally no longer recommended for most calibration scenarios. Please
write to the NRAO CASA helpdesk if you need support using accum.

Calibration solutions (most notably G or T ) can be interpolated onto the timestamps of the science
target observations using accum.

The following example uses accum to interpolate an existing table onto a new time grid:

accum(vis=’n4826_16apr.ms’,
tablein=’’,
accumtime=20.0,
incrtable=’n4826_16apr.gcal’,
caltable=’n4826_16apr.20s.gcal’,
interp=’linear’,
spwmap=[0,1,1,1,1,1])

plotcal(’n4826_16apr.gcal’,’’,’phase’,antenna=’1’,subplot=211)
plotcal(’n4826_16apr.20s.gcal’,’’,’phase’,antenna=’1’,subplot=212)

See Figure 4.8 for the plotcal results. The data used in this example is BIMA data (single polar-
ization YY) where the calibrators were observed in single continuum spectral windows (spw=’0,1’)
and the target NGC4826 was observed in 64-channel line windows (spw=’2,3,4,5’). Thus, it is
necessary to use spwmap=[0,1,1,1,1,1] to map the bandpass calibrator in spw=’0’ onto itself,
and the phase calibrator in spw=’1’ onto the target source in spw=’2,3,4,5’.

4.5.5.2 Incremental Calibration using (accum)

It is occasionally desirable to solve for and apply calibration incrementally. This is the case when
a calibration table of a certain type already exists (from a previous solve), a solution of the same
type and incremental relative to the first is required, and it is not possible or convenient to recover
the cumulative solution by a single solve.
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Figure 4.8: The ’phase’ of gain solutions for NGC4826 before (top) and after (bottom) ’linear’
interpolation onto a 20 sec accumtime grid. The first scan was 3C273 in spw=’0’ while the calibrator
scans on 1331+305 were in spw=’1’. The use of spwmap was necessary to transfer the interpolation
correctly onto the NGC4826 scans.

Much of the time, it is, in fact, possible to recover the cumulative solution. This is because the
equation describing the solution for the incremental solution (using the original solution), and that
describing the solution for their product are fundamentally the same equation—the cumulative
solution, if unique, must always be the same no matter what initial solution is. One circumstance
where an incremental solution is necessary is the case of phase-only self-calibration relative to a full
amplitude and phase calibration already obtained (from a different field).

For example, a phase-only ’G’ self-calibration on a target source may be desired to tweak the full
amplitude and phase ’G’ calibration already obtained from a calibrator. The initial calibration
(from the calibrator) contains amplitude information, and so must be carried forward, yet the
phase-only solution itself cannot (by definition) recover this information, as a full amplitude and
phase self-calibration would. In this case, the initial solution must be applied while solving for the
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phase-only solution, then the two solutions combined to form a cumulative calibration embodying
the net effect of both. In terms of the Measurement Equation, the net calibration is the product
of the initial and incremental solutions.

Cumulative calibration tables also provide a means of generating carefully interpolated calibration,
on variable user-defined timescales, that can be examined prior to application to the data with
applycal. The solutions for different fields and/or spectral windows can be interpolated in different
ways, with all solutions stored in the same table.

Other Packages:
The analog of accum in classic AIPS
is the use of CLCAL to combine a se-
ries of (incremental) SN calibration
tables to form successive (cumula-
tive) CL calibration tables. AIPS
SN/CL tables are the analog of ’G’
tables in CASA.

The only difference between incremental and cumulative
calibration tables is that incremental tables are gener-
ated directly from the calibration solving tasks (gaincal,
bandpass, etc.), and cumulative tables are generated from
other cumulative and incremental tables via accum. In all
other respects (internal format, application to data with
applycal, plotting with plotcal, etc.), they are the same,
and therefore interchangeable. Thus, accumulate and cu-
mulative calibration tables need only be used when circum-
stances require it.

The accum task represents a generalization on the classic AIPS CLCAL (see sidebox) model of
cumulative calibration in that its application is not limited to accumulation of ’G’ solutions. In
principle, any basic calibration type can be accumulated (onto itself), as long as the result of the
accumulation (matrix product) is of the same type. This is true of all the basic types, except
’D’. Accumulation is currently supported for ’B’, ’G’, and ’T’, and, in future, ’F’ (ionospheric
Faraday rotation), delay-rate, and perhaps others. Accumulation of certain specialized types (e.g.,
’GSPLINE’, ’TOPAC’, etc.) onto the basic types will be supported in the near future. The treatment
of various calibration from ancillary data (e.g., system temperatures, weather data, WVR, etc.), as
they become available, will also make use of accumulate to achieve the net calibration.

Note that accumulation only makes sense if treatment of a uniquely incremental solution is required
(as described above), or if a careful interpolation or sampling of a solution is desired. In all other
cases, re-solving for the type in question will suffice to form the net calibration of that type. For
example, the product of an existing ’G’ solution and an amplitude and phase ’G’ self-cal (solved
with the existing solution applied), is equivalent to full amplitude and phase ’G’ self-cal (with no
prior solution applied), as long as the timescale of this solution is at least as short as that of the
existing solution.

One obvious application is to calibrate the amplitudes and phases on different timescales during
self-calibration. Here is an example:

# Add clean model
ft(vis=’jupiter6cm.usecase.split.ms’,

model=’jupiter6cm.usecase.clean1.model’)

# Phase only self-cal on 10s timescales
gaincal(vis=’jupiter6cm.usecase.split.ms’,

caltable=’jupiter6cm.usecase.phasecal1’,
gaintype=’G’,
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calmode=’p’,
refant=’6’,
solint=10.0,
minsnr=1.0)

# Plot up solution phase and SNR
plotcal(’jupiter6cm.usecase.phasecal1’,’’,’phase’,antenna=’1’,subplot=211)
plotcal(’jupiter6cm.usecase.phasecal1’,’’,’snr’,antenna=’1’,subplot=212)

# Amplitude and phase self-cal on scans
gaincal(vis=’jupiter6cm.usecase.split.ms’,

caltable=’jupiter6cm.usecase.scancal1’,
gaintable=’jupiter6cm.usecase.phasecal1’,
gaintype=’G’,
calmode=’ap’,
refant=’6’,
solint=’inf’,
minsnr=1.0)

# Plot up solution amp and SNR
plotcal(’jupiter6cm.usecase.scancal1’,’’,’amp’,antenna=’1’,subplot=211)
plotcal(’jupiter6cm.usecase.scancal1’,’’,’snr’,antenna=’1’,subplot=212)

# Now accumulate these - they will be on the 10s grid
accum(vis=’jupiter6cm.usecase.split.ms’,

tablein=’jupiter6cm.usecase.phasecal1’,
incrtable=’jupiter6cm.usecase.scancal1’,
caltable=’jupiter6cm.usecase.selfcal1’,
interp=’linear’)

# Plot this up
plotcal(’jupiter6cm.usecase.selfcal1’,’’,’amp’,antenna=’1’,subplot=211)
plotcal(’jupiter6cm.usecase.selfcal1’,’’,’phase’,antenna=’1’,subplot=212)

The final plot is shown in Figure 4.9

ALERT: Only interpolation is offered in accum, no smoothing (as in smoothcal).

4.6 Application of Calibration to the Data

After the calibration solutions are computed and written to one or more calibration tables, one
then needs to apply them to the data.

4.6.1 Application of Calibration (applycal)

Alert: This section is written using the traditional applycal parameters. Users are encouraged
to consult Appendix G for information on how to use the “Cal Library” to manage and apply
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Figure 4.9: The final ’amp’ (top) and ’phase’ (bottom) of the self-calibration gain solutions for
Jupiter. An initial phase calibration on 10s solint was followed by an incremental gain solution
on each scan. These were accumulated into the cumulative solution shown here.

calibration, which will ultimately provide more flexibility in calibration application, including in a
wider variety of applications.

After all relevant calibration types have been determined, they must be applied to the target
source(s) before splitting off to a new MS or before imaging. This is currently done by explicitly
taking the data in the DATA column in the MAIN table of the MS, applying the relevant calibration
tables, and creating the CORRECTED DATA scratch column. The original DATA column is untouched.

The applycal task does this. The inputs are:

# applycal :: Apply calibrations solutions(s) to data
vis = ’’ # Name of input visibility file
field = ’’ # Select field using field id(s) or field name(s)
spw = ’’ # Select spectral window/channels
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intent = ’’ # Select observing intent
selectdata = True # Other data selection parameters

timerange = ’’ # Select data based on time range
uvrange = ’’ # Select data within uvrange (default units meters)
antenna = ’’ # Select data based on antenna/baseline
scan = ’’ # Scan number range
observation = ’’ # Select by observation ID(s)
msselect = ’’ # Optional complex data selection (ignore for now)

docallib = False # Use callib or traditional cal apply parameters
gaintable = [] # Gain calibration table(s) to apply on the fly
gainfield = [] # Select a subset of calibrators from gaintable(s)
interp = [] # Interp type in time[,freq],

# per gaintable. default=linear,linear
spwmap = [] # Spectral windows

# combinations to form for gaintable(s)
calwt = [True] # Calibrate data weights per gaintable.

parang = False # Apply parallactic angle correction
applymode = ’’ # Calibration mode:

# ""="calflag","trial","flagonly", or "calonly"
flagbackup = True # Automatically back up the

# state of flags before the run?

As in other tasks, setting selectdata=True will open up the other selection sub-parameters (see
§ 2.3). In addition, you can also select data based on the scan intents that were set during the ob-
servations (find them through listobs). Many of the other parameters are the common calibration
parameters that are described in § 4.4.1.

The single non-standard parameter is the calwt option to toggle the ability to scale the visibility
weights by the inverse of the products of the scale factors applied to the amplitude of the antenna
gains (for the pair of antennas of a given visibility). This should in almost all cases be set to its
default (True). The weights should reflect the inverse noise variance of the visibility, and errors in
amplitude are usually also in the weights.

Alert: Current (as of February 2014) Jansky VLA data has no calibrated weights to the data
(unless they are created from switched power). To avoid trouble, calwt=False should be set for
those data sets. Older, pre-Jansky VLA data should still be calibrated with calwt=True.

For applycal, the list of final cumulative tables is given in gaintable. In this case you will have
run accum if you have done incremental calibration for any of the types, such as ’G’. You can also
feed gaintable the full sets and rely on use of gainfield, interp and spwmap to do the correct
interpolation and transfer. In particular, for frequency interpolation, the interpolation methods
ending in ’PD’, nearestPD and linearPD also scale the phase by the frequency ratio between
the measured and interpolated values. It is often more convenient to go through accumulation of
each type with accum as described above (see § 4.5.5.2), as this makes it easier to keep track of
the sequence of incremental calibration as it is solved and applied. You can also do any required
smoothing of tables using smoothcal (§ 4.5.4), as this is not yet available in accum or applycal.

applycal has different applymodes: ’calflag’ will apply all flags from a calibration table to the
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data and apply the calibration itself to the remaining visibilities. ’trial’ will only report on
the calibration table flags but not manipulate the data, ’flagonly’ applies the flags but not the
calibration itself, and ’calonly’ will apply the calibration and but not the solution table flags.
Data that would ’calflag’ would flag are thus passed through uncalibrated. This option can be
useful when applycal is executed in consecutive steps, one calibration table at a time. Portions
of the data that were not calibrated in the first run can then be calibrated in a second run with
a different calibration table. This option should be used with care such that no uncalibrated data
remains in the final data product.

applycal will flag all data that have no calibration solution. Flags will distribute into all of your
scratch columns, i.e. it will affect your uncalibrated visibilities, too. To be able to restore the flags
to the state before applycal is starting its duty, the task will make a backup of your current flags
by default (flagbackup=True). Restore them with flagmanager, if you are not happy with the
applycal results.

If you are not doing polarization calibration or imaging, then you can set parang=False to make
the calculations faster. If you are applying polarization calibration, or wish to make polarization
images, then set parang=True so that the parallactic angle rotation is applied to the appropriate
correlations. Currently, you must do this in applycal as this cannot be done on-the-fly in clean
or mosaic. See § 4.4.1.3 for more on parang.

For example, to apply the final bandpass and flux-scaled gain calibration tables solutions to the
NGC5921 data:

default(’applycal’)

vis=’ngc5921.usecase.ms’

# We want to correct the calibrators using themselves
# and transfer from 1445+099 to itself and the target N5921

# Start with the fluxscale/gain and bandpass tables
gaintable=[’ngc5921.usecase.fluxscale’,’ngc5921.usecase.bcal’]

# pick the 1445+099 (field 1) out of the gain table for transfer
# use all of the bandpass table
gainfield = [’1’,’*’]

# interpolation using linear for gain, nearest for bandpass
interp = [’linear’,’nearest’]

# only one spw, do not need mapping
spwmap = []

# all channels, no other selection
spw = ’’
selectdata = False

# no prior calibration
gaincurve = False
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opacity = 0.0

# select the fields for 1445+099 and N5921 (fields 1 and 2)
field = ’1,2’

applycal()

# Now for completeness apply 1331+305 (field 0) to itself

field = ’0’
gainfield = [’0’,’*’]

applycal()

# The CORRECTED_DATA column now contains the calibrated visibilities

In another example, we apply the final cumulative self-calibration of the Jupiter continuum data
obtained in the example of § 4.5.5.2:

applycal(vis=’jupiter6cm.usecase.split.ms’,
gaintable=’jupiter6cm.usecase.selfcal1’,
selectdata=False)

Again, it is important to remember the relative nature of each calibration term. A term solved for
in the presence of others is, in effect, residual to the others, and so must be used in combination
with them (or new versions of them) in subsequent processing. At the same time, it is important
to avoid isolating the same calibration effects in more than one term, e.g., by solving for both ’G’
and ’T’ separately (without applying the other), and then using them together.

It is always a good idea to examine the corrected data after calibration (using plotxy to compare
the raw (’data’) and corrected (’corrected’) visibilities), as we describe next.

4.6.2 Examine the Calibrated Data

Once the source data is calibrated using applycal, you should examine the uv data and flag
anything that looks bad. If you find source data that has not been flanked by calibration scans,
delete it (it will not be calibrated).

For example, to look at the calibrated Jupiter data in the last example given in the previous section:

plotxy(’jupiter6cm.usecase.split.ms’,’uvdist’,’amp’,’corrected’,
selectdata=True,correlation=’RR LL’,fontsize = 14.0)

will show the CORRECTED DATA column. See Figure 4.10.

See § 3.3 for a description of how to display and edit data using plotms or plotxy, and § 7.5 for
use of the viewer to visualize and edit a Measurement Set.
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Figure 4.10: The final ’amp’ versus ’uvdist’ plot of the self-calibrated Jupiter data, as shown in
plotxy. The ’RR LL’ correlations are selected. No outliers that need flagging are seen.

4.6.3 Resetting the Calibration Models (delmod and clearcal)

Whenever calibration tasks are run, the models associated with the MS will be overwritten. Some-
times, however, one would like to completely remove the model and the task delmod can perform
this functionality:

# delmod :: Deletes model representations in the MS
vis = ’’ # Name of input visibility file (MS)
otf = True # Delete the on-the-fly model data keywords

field = ’’ # Select field using field id(s) or field name(s)

scr = False # Delete the MODEL_DATA scr col (if it exists)

To do so, the parameter otf should be set to True. delmod can also be used if for any reason a MODEL column
was created and should be removed to avoid confusion between the on-the-fly model and the MODEL column
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(the MODEL DATA column was required in CASA 3.3 and earlier). This can be achieved with scr=T.

delmod generally replaces the functionality of the older clearcal task. If one still decides to use the
MODEL DATA columns, however, clearcal is still useful and will reset both the MODEL DATA and
CORRECTED DATA columns to DATA:

CASA <11>: inp clearcal
# clearcal :: Re-initializes the calibration for a visibility data set
vis = ’’ # Name of input visibility file (MS)
field = ’’ # Select field using field id(s) or field name(s)
spw = ’’ # Select spectral window/channel.
intent = ’’ # Select observing intent
addmodel = False # Add MODEL_DATA scratch column

with field, spw, and intent being data selection parameters. addmodel can be used to opt in/out
of formation of the MODEL DATA column.

With the introduction of the on-the-fly calculation of the MODEL visibilities, and the fact that
applycal overwrites any previously existing CORRECTED DATA column, clearcal is not re-
quired anymore unless usescratch=True is chosen in calibration tasks, and it is also not recom-
mended to use clearcal to create the scratch columns at the beginning of data calibration; all
benefits from the on-the-fly model would be made obsolete.

4.7 Other Calibration and UV-Plane Analysis Options

4.7.1 Splitting out Calibrated uv data (split)

The split task will apply calibration and output a new sub-MS containing a specified list of sources
(usually a single source). The inputs are:

# split :: Create a visibility subset from an existing visibility set:
vis = ’’ # Name of input measurement set
outputvis = ’’ # Name of output measurement set
datacolumn = ’corrected’ # Which data column(s) to split out
field = ’’ # Select field using field id(s) or field name(s)
spw = ’’ # Select spectral window/channels
width = 1 # Number of channels to average to form one output channel
antenna = ’’ # Select data based on antenna/baseline
timebin = ’0s’ # Value for timeaveraging
timerange = ’’ # Select data based on time range
scan = ’’ # Select data based on scan numbers
array = ’’ # Select (sub)array by array ID number(s)
uvrange = ’’ # Select data based on uv distance range

Usually you will run split with datacolumn=’corrected’ as previous operations (e.g. applycal)
will have placed the calibrated data in the CORRECTED DATA column of the MS. This will produce
a new MS with this corrected data in its DATA column. The modes available in datacolumn are:
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’data’, ’model’, ’corrected’, # produce MS with single DATA column
’data,model’, ’data,corrected’, ’model,corrected’, # pairs of columns
’all’ # all columns ’data,model,corrected’

We recommend sticking to the simple single-column modes (e.g. ’data’ or ’corrected’) or ’all’
if all columns are in the MS. Further processing may get confused by mismatched pairs of columns.

For example, to split out 46 channels (5-50) from spw 1 of our NGC5921 calibrated dataset:

split(vis=’ngc5921.usecase.ms’,
outputvis=’ngc5921.split.ms’,
field=’2’, # Output NGC5921 data (field 2)
spw=’0:5~50’, # Select 46 chans from spw 0
datacolumn=’corrected’) # Take the calibrated data column

4.7.1.1 Averaging in split

Time and channel averaging are available using the timebin and width parameters.

The timebin parameter gives the averaging interval. It takes a quantity, e.g.

timebin = ’30s’

and will combine scans during averaging.

When time averaging, the ignorables subparameter can be used to specify that the bins should
not be split by changes in SCAN NUMBER, (sub)ARRAY ID, and/or STATE ID.

The width parameter defines the number of channels to average to form a given output channel.
This can be specified globally for all spw, e.g.

width = 5

or specified per spw, e.g.

width = [2,3]

to average 2 channels of 1st spectral window selected and 3 in the second one.

ALERT: When averaging channels split will produce negative channel widths (as reported by
listobs) if frequency goes down with increasing channel number, whether or not the input channel
widths are negative. The bandwidths and channel resolutions will still be positive.”
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4.7.2 Recalculation of uvw values (fixvis)

Sometimes the u,v,w coordinates of a Measurement Set are not recorded correctly by the correlator.
In those cases, it may be necessary to recalculate them based on the antenna positions. fixvis
will perform this task.

# fixvis :: Recalculates (u, v, w) and/or changes Phase Center
vis = ’’ # Name of the input visibility set.
outputvis = ’’ # Name of the output visibility set. (Can be the same

# as vis.)
field = ’’ # Fields to operate on. = all.
refcode = ’’ # reference frame to convert UVW coordinates to
reuse = True # base UVW calculation on the old values?
phasecenter = ’’ # use this direction as phase center

A useful feature of fixvis is that it can also change the phase center of a Measurement Set. This
can be done with absolute coordinates or using offsets. An example is:

fixvis(vis=’Moon.ms’,outpuvis=’Moon-fixed.ms’,field=’Moon’, phasedir=’J2000 9h25m00s 05d12m00s’)

that will recalculate the u,v,w coordinates relative to the new phase center for the field ’Moon’.

4.7.3 Hanning smoothing of uv data (hanningsmooth)

For strong spectral line sources (like RFI sources), the Gibbs phenomenon may cause ringing across
the frequency channels of an observation. This is called the Gibbs phenomenon and a proven remedy
is the Hanning smoothing algorithm. Hanning smoothing is a running mean across the spectral axis
with a triangle as a smoothing kernel. The central channel is weighted by 0.5 and the two adjacent
channels by 0.25 to preserve the flux. Hanning smoothing significantly reduces Gibbs ringing but
there’s no gain without a penalty and here it is the loss of a factor of two in spectral resolution.

In CASA, the hanningsmooth task will apply Hanning smoothing to a spectral line uv data Mea-
surement Set. The inputs are:

# hanningsmooth :: Hanning smooth frequency channel data to remove Gibbs ringing
vis = ’’ # Name of input visibility file (MS)
datacolumn = ’all’ # the name of the MS column into which

# to write the smoothed data
outputvis = ’’ # name of the output visibility file

# (MS)

hanningsmooth will operate on the input Measurement Set if no outputvis file name is provided.
This option will keep the disk usage of large datasets under control. But one should be aware
that the data is overwritten. If outputvis is provided, the task will copy the input MS to a new
file with that name and operate there. The datacolumn parameter determines which of the data
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columns is to be Hanning smoothed: ’all’, ’corrected’ or ’data’. ’all’ refers to both, the
CORRECTED DATA and the DATA column. If ’corrected’ is specified but does not exist in the MS,
hanningsmooth will create this column for your convenience.

ALERT: We intend to make the kernel size a user supplied parameter. In the longer term we
intend to offer other varieties of spectral smoothing as well.

4.7.4 MStransform (mstransform)

mstransform is a multipurpose task that provides all the functionality of split, partition, cvel,
hanningsmooth and applycal with the possibility of applying each of these transformations sep-
arately or together in an in-memory pipeline, thus avoiding unnecessary I/O steps. The list of
transformations that mstransform can apply is as follows:

1. Data selection and re-indexing

2. Data partition (create output Multi-MS)

3. On-the-fly calibration (via “Cal Library”)

4. Time average (weighted and baseline dependent)

5. Channel average (weighted)

6. Hanning smooth

7. Combination of spectral windows

8. Spectral regridding and reference frame transformation

9. Separation of spectral windows

Notice that the order in the above list is not arbitrary. When various transformations are applied
on the data using mstransform the order in which the transformations are pipe one after the other
is the one shown in the above list.

Besides mstransform in itself, there are a series of tasks that mimic the old interfaces and are based
on the mstransform framework: split2, cvel2 and hanningsmooth2. These tasks will soon replace
the old tasks, and new features like spectral weight handling (see appendix F) are only incorporated
in the new tasks.

A complete functionality description is available at the following web site:

http://www.eso.org/~scastro/ALMA/casa/MST/MSTransformDocs/MSTransformDocs.html

http://www.eso.org/~scastro/ALMA/casa/MST/MSTransformDocs/MSTransformDocs.html
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4.7.4.1 Data selection and re-indexing

mstransform / split2 as the old split are able to create a new MS with a specific data selection,
for instance splitting a science target. The new MS contains only the selected data and also the
subtables are re-generated to contain only the metadata matching the data selection. The details
about pure split operation are described in section (§ 4.7.1)

vis = ’’ # Name of input Measurement set or Multi-MS.
outputvis = ’’ # Name of output Measurement Set or Multi-MS.
tileshape = [0] # List with 1 or 3 elements giving the

tile shape of the disk data columns.
field = ’’ # Select field using ID(s) or name(s).
spw = ’’ # Select spectral window/channels.
scan = ’’ # Select data by scan numbers.
antenna = ’’ # Select data based on antenna/baseline.
correlation = ’’ # Correlation: ’’ ==> all, correlation=’XX,YY’.
timerange = ’’ # Select data by time range.
intent = ’’ # Select data by scan intent.
array = ’’ # Select (sub)array(s) by array ID number.
uvrange = ’’ # Select data by baseline length.
observation = ’’ # Select by observation ID(s).
feed = ’’ # Multi-feed numbers: Not yet implemented.
datacolumn = ’corrected’ # Which data column(s) to process.
keepflags = True # Keep *completely flagged rows* or

drop them from the output.
usewtspectrum = False # Create a WEIGHT_SPECTRUM column in the output MS.

The new features related with data election and re-indexing contained in mstransform / split2
but not in the old split are the following:

• Spectral weight initialization: mstransform can initialize the output WEIGHT/SIGMA SPECTRUM
columns by specifying usewtspectrum = True. The details about spectral weights initializa-
tion are described in section (§ 4.3.1)

• Tile shape specification for the data columns: mstransform also allows to specify a custom
default tile shape for the output data columns, namely a list of 3 elements specifying the
number of correlations, channels and rows to be contained in each tile, for instance tileshape
= [4,128,351] would specify a tile with shape (4 correlations)x(128 channels)x(351 rows).
This can be used to optimize the access pattern of subsequent tasks, for instance imaging
tasks.

• Support for SPWs with different sets of correlation products: mstransform / split2 are
both able to work when a given SPW is associated with several correlation products (like in
some EVLA correlation setups). This is transparent for the user and simply works by using the
spw data selection parameter normally. It also works in conjunction with the polarization
parameter, so for instance if a given MS has separated RR and LL data associated with spw
0 the following data selection would work flawlessly: spw = ’0’ polarization = ’LL’
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• Support for multiple channel selection: Both mstransform / split2 are also capable of
working with multiple channel selection. This support also goes transparently for the user,
by simply following the SPW syntax specified by the MSSelection section (§ 2.3.3.1). For
example spw = ’4 7:4 59,8:4 13;18 594’

4.7.4.2 Data partition

MSTransform is the framework used by the partition task, and even though it can be used directly
to produce an MMS by specifying createmms = True it is highly recommended to use directly the
partition task as explained in chapter (§ 10). Nevertheless, for the sake of completeness this is the
list of expandable parameters shown when createmms = True

createmms = True # Create a multi-MS output
from an input MS.

separationaxis = ’auto’ # Axis to do parallelization across
(scan,spw,auto)

numsubms = 9 # The number of Sub-MSs to create
(auto or any number)

• separationaxis: Specifies the partition axis, across scan, spw or auto. The default mode is
auto, which parts the data across both scan and spw distributing the data of each scan and
spw across all sub-MS in the most balanced way possible.

• numsubms: When this parameter is assigned to an integer it refers to the number of sub-MSs
that the output MMS would have. The default is auto which means producing as many
sub-MSs as processing engine/servers (in cluster mode).

4.7.4.3 On-the-fly calibration

As of CASA 4.5 mstransform incorporates the possibility of applying on the-the-fly (OTF) calibra-
tion by specifying docallib = True, which in turns allows to specify the “Cal Library” filename
(callib parameter) whose format is described in Appendix G. This transformation is the first one
applied to the data, producing effectively a corrected data column on-the-fly, which can be further
transformed.

docallib = True # Enable OTF calibration
callib = ’’ # Cal Library filename

• callib: Filename pointing to the calibration specification file whose format is described in
Appendix G, where conventions and current limitations are also described.
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4.7.4.4 Time average

mstransform / split2 are both able to perform a regular (weighted) time average like split (in
mstransform by specifying timeaverage = True and in split2 by default). However, there are
some differences listed below. Additionally, mstransform it is able to perform a baseline dependent
timeaverage as described in the paper Effects of Baseline Dependent Time Averaging of UV Data
by W.D. Cotton (OBIT No. 13, 2008).

timeaverage = True # Average data in time.
timebin = ’0s’ # Bin width for time averaging.
timespan = ’’ # Span the timebin across scan, state or both.
maxuvwdistance = 0.0 # Maximum separation of start-to-end baselines

that can be included in an average(meters)

• Whereas split uses exclusively the WEIGHT column to perform the weighted average, mstransform
/ split2 use both FLAG and spectral weights (when present). To be specific WEIGHT SPECTRUM
is used when averaring CORRECTED DATA, and SIGMA SPECTRUM is used when averaging the
DATA column.

• Also mstransform / split2 are able to transform the input WEIGHT/SIGMA SPECTRUM ac-
cording to the rules of error propagation that apply to a weighted average, which result in
an output weight equals to the sum of the input weights. For a detailed reference see, Data
Reduction and Error Analysis by Bevington & Robinson (3rd Ed., McGraw Hill, 2003).

• When mstransform / split2 process an ALMA MS, and timebin is greater than 30s,
timespan is automatically set to state, to overcome a limitation of the ALMA ASDM binary
dumps.

• As of 4.5 mstransform / split2 both allow timespan field in addition to scan and state.

• maxuvdistance: In the case of mstransform, when maxuvdistance is greater than 0 this
parameter controls the maximum uv distance allowed when averaging data from the same
baseline. It works in conjunction with the timebin parameter in the sense that the averaging
process is finalized when either timebin is completed or maxuvdistance is reached. The
details of the baseline dependent averaging algorithm are available here:

ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/BLAverage.pdf

4.7.4.5 Channel average

Both mstransform / split2 are able to perform a regular (weighted) channel average (in mstransform
by specifying chanaverage =T rue and in split2 by default). The differences w.r.t. the channel
average algorithm of the old split listed in the list below.

chanaverage = True # Average data in channels.
chanbin = 1 # Width (bin) of input channels

to average to form an output channel.

ftp://ftp.cv.nrao.edu/NRAO-staff/bcotton/Obit/BLAverage.pdf
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• The old split performs a flat average taking into account only the FLAG column, whereas
mstransform / split2 use both FLAG and spectral weights (when present), resulting in a
weighted average. To be specific WEIGHT SPECTRUM is used when averaging CORRECTED DATA,
and SIGMA SPECTRUM is used when averaging the DATA column.

• Also mstransform / split2 are able to transform the input WEIGHT/SIGMA SPECTRUM ac-
cording to the rules of error propagation that apply to a weighted average, which result in
an output weight equals to the sum of the input weights. For a detailed reference see, Data
Reduction and Error Analysis by Bevington & Robinson (3rd Ed., McGraw Hill, 2003).

• Both mstransform / split2 drop the last output channel bin when there are not enough
contributors to fully populate it. For instance, if the input SPW has 128 channels and chanbin
is 10, the resulting averaged SPW would have 12 channels and not 13 channels.

4.7.4.6 Hanning smooth

Both mstransform / hanningsmooth2 are able to perform hannining smooth (in mstransform by
specifying hanning = True and in hanningsmooth2 by default). The only difference w.r.t. the old
hanningsmooth is that a new MS is created.

4.7.4.7 Combination of spectral windows

Both mstransform / cvel2 are able combine SPWs (in mstransform by specifying combinespws
= True and in cvel2 by default). The algorithm is in general the same as the old cvel, however,
there are two significant differences in the new framework:

• mstransform Is able to only combine SPWs, only regrid each SPW separately or to combine
all SPWs and regrid them together. The details about independent regridding operation are
explained in the following sections.

• mstransform / cvel2 Automatically detect combination of SPWs with different exposure,
and use the WEIGHT column (or WEIGHT SPECTRUM if available) in addition of the geometrical
factors to calculate the combined visibility in the overlapping regions.

4.7.4.8 Spectral regridding and reference frame transformation

Both mstransform / cvel2 are able to perform spectral regridding / reference frame transfor-
mation (in mstransform by specifying regridms = True and in cvel2 by default). However
mstransform is able to perform spectral regridding / reference frame transformation on each se-
lected SPW separately, that is w/o combining the selected SPWs. As of CASA 4.5 both algorithms
are fully aligned including the latest developments to take into account ephemerides and radial
velocity correction.
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regridms = True # Regrid the MS to a new spw,
channel structure or frame.

mode = ’channel’ # Regridding mode
(channel/velocity/frequency/channel_b).

nchan = -1 # Number of channels in the output spw (-1=all).
start = 0 # First channel to use in the output spw

(mode-dependant)
width = 1 # Number of input channels that are

used to create an output channel.
nspw = 1 # Number of output spws to create in output MS.
interpolation = ’linear’ # Spectral interpolation method.
phasecenter = ’’ # Image phase center: position or field index.
restfreq = ’’ # Rest frequency to use for output.
outframe = ’’ # Output reference frame (’’=keep input frame).
veltype = ’radio’ # Velocity definition.

4.7.4.9 Separation of spectral windows

A completely new feature in mstransform is the ability to separate an input SPW into several ones,
or to combine various input SPWs into a single one with a uniform grid (resolving overlaps/gaps)
to then separate it in several output SPWs. This option is activated under the regridding section
(therefore by specifying regridms = True), together with the nspw) parameter which when bigger
than 1 implies that the input SPW / combination of input SPWs should be separated:

regridms = True # Regrid the MS to a new spw,
nspw = 1 # Number of output spws to create in output MS.

4.7.5 Model subtraction from uv data (uvsub)

The uvsub task will subtract the Fourier transform of the associated model of the MS (added to
the MS with the tasks ft or setjy) from that in the CORRECTED DATA column in the input MS and
store the result in that same CORRECTED DATA column.

The reverse operation is achieved by specifying reverse = True: in that case uvsub will add the
value of the Fourier transform of the associated model to that in the CORRECTED DATA column in
the input MS and store the result in that same CORRECTED DATA column.

The inputs are:

# uvsub :: Subtract/add model from/to the corrected visibility data.

vis = ’’ # Name of input visibility file (MS)
reverse = False # reverse the operation (add rather than subtract)

For example:
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uvsub(’ngc5921.split.ms’)

ALERT: Currently, uvsub operates on the CORRECTED DATA column in the MS vis. Eventually
we will provide the option to write out a new MS.

4.7.6 UV-Plane Continuum Subtraction (uvcontsub)

At this point, consider whether you are likely to need continuum subtraction. If there is significant
continuum emission present in what is intended as a spectral line observation, continuum subtrac-
tion may be desirable. You can estimate and subtract continuum emission in the uv-plane prior
to imaging or wait and subtract an estimate of it in the image-plane. Note that neither method is
ideal, and the choice depends primarily upon the distribution and strength of the continuum emis-
sion. Subtraction in the uv-plane is desirable if continuum emission dominates the source, since
deconvolution of the line emission will be more robust if it not subject to the deconvolution errors
of the brighter continuum. There is also a performance benefit since the continuum is nearly the
same in each channel of the observation, and it is desirable to avoid repeating its deconvolution in
each channel. However, doing the continuum estimation in the uv-plane has the serious drawback
that interpolating visibilities between channels is only a good approximation for emission from
near the phase center. Thus, uvcontsub will do an increasingly poor job for emission distributed
further from the phase center. If the continuum emission is relatively weak, it is usually adequate
to subtract it in the image plane; this is described in the Image Analysis section of this cookbook.
Here, we describe how to do continuum subtraction in the uv-plane.

The uv-plane continuum subtraction is performed by the uvcontsub task. First, determine which
channels in your data cube do not have line emission, perhaps by forming a preliminary image as
described in the next chapter. This image will also help you decide whether or not you need to
come back and do uv-plane continuum subtraction at all.

The inputs to uvcontsub are:

# uvcontsub :: Continuum fitting and subtraction in the uv plane
vis = ’’ # Name of input MS. Output goes to vis + ".contsub"

# (will be overwritten if already exists)
field = ’’ # Select field(s) using id(s) or name(s)
fitspw = ’’ # Spectral window:channel selection for fitting the

# continuum
combine = ’’ # Data axes to combine for the continuum estimation

# (none, or spw and/or scan)
solint = ’int’ # Continuum fit timescale (int recommended!)
fitorder = 0 # Polynomial order for the fits
spw = ’’ # Spectral window selection for output
want_cont = False # Create vis + ".cont" to hold the continuum estimate.

For each baseline, and over the timescale specified in solint, uvcontsub will provide a polynomial
fit to the real and imaginary parts of the (continuum-only) channels specified in fitspw (using
the standard spw selection syntax), and then subtract this model from all channels specified in
spw, or from all channels in spectral windows of fitspw if spw=’’. By setting the subparameter
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excludechannels=True, the channel selection in fitspw will be inverted. In that case one can
select the line channels themselves and/or corrupted channels that are not used in the continuum
fit to the data. fitspw can also take frequency ranges, e.g.

fitspw=’*:113.767~114.528GHz;114.744~115.447GHz’

where ’*’ indicates to go across all spws.

Typically, low orders for the polynomial work best, like 0th (a constant), or 1st order (a linear fit).
Use higher orders with caution and check your results carefully.

Usually, one should set solint=’int’ which does no averaging and fits each integration. However,
if the continuum emission comes from a small region around the phase center and fitorder =
0, then you can set solint larger (as long as it is shorter than the timescale for changes in the
visibility function of the continuum). If your scans are short enough you can also use scan averaging
with combine=’scan’ and solint=’inf’. Be warned, setting solint too large will introduce “time
smearing” in the estimated continuum and thus not properly subtract emission not at the phase
center. Increasing solint speeds up the calculation but it does not improve the overall result quality
of uvcontsub - although the continuum estimates of each baseline may be noisy (just like each
visibility in a continuum MS may be noisy), it is better to use the ensemble of individual fits than
to average the ensemble before fitting. Note that plotms can do time and baseline averaging on
the fly to help you examine noisy data.

So, the recommended procedure is as follows:

• Finish calibration as described in the previous chapter.

• Use the invert or clean task on the split result to form an exploratory image that is useful for
determining the line-free channels.

• Use uvcontsub with as low fit orders as possible to estimate and subtract the continuum
from vis, and write the continuum-subtracted dataset to vis + ’.contsub’.

• Use clean with vis + ’.contsub’ to make an image cube of the line emission.

• If a continuum image is desired, clean the line-free channels of the original MS with mode=’mfs’
and spw=fitspw. Note that using the line free channels directly is preferred over the imaging
the ’continuum’ model fitted by uvcontsub. The fitting procedure will also fit noise and
artifacts which produce a nice line cube when subtracted, but the model may not represent
the true underlying continuum.

For example, we perform uv-plane continuum subtraction on our NGC5921 dataset:

# Want to use channels 4-6 and 50-59 for continuum
uvcontsub(vis=’ngc5921.usecase.ms’,
field=’N5921’,
spw=’’, # all spw (only 0 in this data)
fitspw=’0:4~7;50~59’ # channels 4-6 and 50-59
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solint=’int’, # leave it at the default
fitorder=0) # mean only

# You will see it made a new MS:
# ngc5921.usecase.ms.contsub"

4.7.7 Spectral regridding of the MS (cvel)

Although not strictly a calibration operation, spectral regridding of a MS is available to aid in
calibration operations (e.g. continuum subtraction) and preparation for imaging. For this purpose,
the cvel task has been developed.

The inputs are:

# cvel :: regrid an MS to a new spectral window / channel structure or frame
vis = ’’ # Name of input measurement set
outputvis = ’’ # Name of output measurement set
passall = False # Pass through (write to output MS) non-selected data with

# no change
field = ’’ # Select field using field id(s) or field name(s)
spw = ’’ # Select spectral window/channels
selectdata = True # Other data selection parameters

timerange = ’’ # Range of time to select from data
array = ’’ # (sub)array indices
antenna = ’’ # Select data based on antenna/baseline
scan = ’’ # scan number range

mode = ’channel’ # Regridding mode
nchan = -1 # Number of channels in output spw (-1=all)
start = 0 # first input channel to use
width = 1 # Number of input channels to average
interpolation = ’linear’ # Spectral interpolation method

phasecenter = ’’ # Image phase center: position or field index
restfreq = ’’ # rest frequency (see help)
outframe = ’’ # Output frame (not case-sensitive, ’’=keep input frame)
veltype = ’radio’ # velocity definition
hanning = False # If true, Hanning smooth data before regridding to remove

# Gibbs ringing.

The key parameters for the operation of cvel are the regridding mode, the output reference
outframe, veltype, restfreq (which may be a list of rest frequencies to match the different
spws) and the standard selection parameters (in particular spw and field).

The syntax for mode options (’channel’,’velocity’,’frequency’,’channel b’) has been made
compatible with the respective modes of clean (§ 5.2.5). The combination of selected spw and
mode will determine the output channels and spw(s):

spw = ’0,1’; mode = ’channel’
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# will produce a single spw containing all channels in spw 0 and 1
spw=’0:5~28^2’; mode = ’channel’

# will produce a single spw made with channels (5,7,9,...,25,27)
spw = ’0’; mode = ’channel’: nchan=3; start=5; width=4

# will produce an spw with 3 output channels
# new channel 1 contains data from channels (5+6+7+8)
# new channel 2 contains data from channels (9+10+11+12)
# new channel 3 contains data from channels (13+14+15+16)

spw = ’0:0~63^3’; mode=’channel’; nchan=21; start = 0; width = 1
# will produce an spw with 21 channels
# new channel 1 contains data from channel 0
# new channel 2 contains data from channel 2
# new channel 21 contains data from channel 61

spw = ’0:0~40^2’; mode = ’channel’; nchan = 3; start = 5; width = 4
# will produce an spw with three output channels
# new channel 1 contains channels (5,7)
# new channel 2 contains channels (13,15)
# new channel 3 contains channels (21,23)

The simplest use of cvel is to shift a single spectral window into an output frame without regridding.
This is done with mode=’channel’. For example:

cvel(vis=’test_w3oh_nohann.ms’,
outputvis =’test_w3oh_nohann_chanbary.ms’,
mode=’channel’,nchan=-1,start=0,width=1,
interpolation=’linear’,
phasecenter=’’,
spw=’’,
restfreq=’1665.4018MHz’,
outframe=’BARY’)

does this for an observation of the OH line.

There is also a special mode=’channel b’ that does not force a linear output frequency grid, e.g. for
irregularly spaced/overlapping spectral windows), but is nominally faster. This is not equivalent
to a clean output gridding mode, although clean will work on this spectral lattice.

Mode channel is intended to not interpolate between channels. It will perform binning if needed.
For most scientific applications we recommend using the mode=’velocity’’ and mode=’frequency’
options, as it is easiest to determine what the resulting channelization will be. For example:

cvel(vis=’test_w3oh_nohann.ms’,
outputvis =’test_w3oh_nohann_cvellsrk.ms’,
mode=’velocity’,nchan=45,start=’-35.0km/s’,width=’-0.55km/s’,
interpolation=’linear’,
phasecenter=’’,
spw=’’,
restfreq=’1665.4018MHz’,
outframe=’LSRK’)
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cvel(vis=’test_w3oh_nohann.ms’,
outputvis =’test_w3oh_nohann_cvelbary.ms’,
mode=’velocity’,nchan=45,start=’-35.0km/s’,width=’-0.55km/s’,
interpolation=’linear’,
phasecenter=’’,
spw=’’,
restfreq=’1665.4018MHz’,
outframe=’BARY’)

will transform a MS into the LSRK and BARYcenter frames respectively.

The sign of the width parameter determines whether the channels run along increasing or decreasing
values of frequency or velocity (i.e. if the cube is reversed or not).

The intent of cvel regridding is to transform channel labels and the visibilities to a spectral reference
frame which is appropriate for the science analysis, e.g. from TOPO to LSRK, e.g. to correct for
Doppler shifts throughout the time of the observation. Naturally, this will change the shape of
the spectral features to some extent. According to the Nyquist theorem you should oversample a
spectrum with twice the numbers of channels to retain the shape. Based on some tests, however, we
recommend to observe with at least 3-4 times the number of channels for each significant spectral
feature (like 3-4 channels per linewidth). This will minimize regridding artifacts in cvel.

If cvel has already established the grid that is desired for the imaging, clean should be run with
the default channel mode (> width=1) or with exactly the same frequency/velocity parameters as
was used in cvel. This will avoid additional regridding in clean. Hanning smoothing is optionally
offered in cvel, but tests have shown that already the regridding process itself, if it involved a
transformation from TOPO to a non-terrestrial reference frame, implies some smoothing (due to
channel interpolation) such that Hanning smoothing may not be necessary.

The interpolation method fftshift calculates the transformed visibilities by applying a FFT, then
a phase ramp, and then an inverse FFT. It will also perform pre-averaging, if necessary (this will
increas the S/N). Note that if you want to use this interpolation method, your frequency grid needs
to be equidistant, i.e. it only works in mode velocity with veltype=radio, in mode frequency,
and in mode channel (in the latter only if the input grid is itself equidistant in frequency). Note also
that, as opposed to all other interpolation methods, this method will apply a constant (frequency-
independent) shift in frequency which is not fully correct in the case of large fractional bandwidth
of the given spectral window.

4.7.8 UV-Plane Model Fitting (uvmodelfit)

It is often desirable to fit simple analytic source component models directly to visibility data. Such
fitting has its origins in early interferometry, especially VLBI, where arrays consisted of only a few
antennas and the calibration and deconvolution problems were poorly constrained. These methods
overcame the calibration uncertainties by fitting the models to calibration-independent closure
quantities and the deconvolution problem by drastically limiting the number of free parameters
required to describe the visibilities. Today, even with larger and better calibrated arrays, it is still
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desirable to use visibility model fitting in order to extract geometric properties such as the positions
and sizes of discrete components in radio sources. Fits for physically meaningful component shapes
such as disks, rings, and optically thin spheres, though idealized, enable connecting source geometry
directly to the physics of the emission regions.

Visibility model fitting is carried out by the uvmodelfit task. The inputs are:

# uvmodelfit :: Fit a single component source model to the uv data:

vis = ’’ # Name of input visibility file
field = ’’ # field name or index
spw = ’’ # spectral window
selectdata = False # Activate data selection details
niter = 5 # Number of fitting iterations to execute
comptype = ’P’ # Component type (P=pt source,G=ell. gauss,D=ell. disk)
sourcepar = [1, 0, 0] # Starting guess (flux,xoff,yoff,bmajaxrat,bpa)
varypar = [] # Which parameters can vary in fit
outfile = ’’ # Optional output component list table

ALERT: This task currently only fits a single component.

The user specifies the number of non-linear solution iterations (niter), the component type (comptype),
an initial guess for the component parameters (sourcepar), and optionally, a vector of Booleans
selecting which component parameters should be allowed to vary (varypar), and a filename in
which to store a CASA componentlist for use in other applications (file). Allowed comptypes are
currently point ’P’ or Gaussian ’G’.

The function returns a vector containing the resulting parameter list. This vector can be edited at
the command line, and specified as input (sourcepar) for another round of fitting.

The sourcepar parameter is currently the only way to specify the starting parameters for the fit.
For points, there are three parameters: I (total flux density), and relative direction (RA, Dec)
offsets (in arcsec) from the observation’s phase center. For Gaussians, there are three additional
parameters: the Gaussian’s semi-major axis width (arcsec), the aspect ratio, and position angle
(degrees). It should be understood that the quality of the result is very sensitive to the starting
parameters provided by the user. If this first guess is not sufficiently close to the global χ2 mini-
mum, the algorithm will happily converge to an incorrect local minimum. In fact, the χ2 surface,
as a function of the component’s relative direction parameters, has a shape very much like the
inverse of the absolute value of the dirty image of the field. Any peak in this image (positive or
negative) corresponds to a local χ2 minimum that could conceivable capture the fit. It is the user’s
responsibility to ensure that the correct minimum does the capturing.

Currently, uvmodelfit relies on the likelihood that the source is very near the phase center (within
a beamwidth) and/or the user’s savvy in specifying the starting parameters. This fairly serious
constraint will soon be relieved somewhat by enabling a rudimentary form of uv-plane weighting
to increase the likelihood that the starting guess is on a slope in the correct χ2 valley.

Improvements in the works for visibility model fitting include:

• User-specifiable uv-plane weighting
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• Additional component shapes, including elliptical disks, rings, and optically thin spheroids.

• Optional calibration pre-application

• Multiple components. The handling of more than one component depends mostly on efficient
means of managing the list itself (not easy in command line options), which are currently
under development.

• Combined component and calibration fitting.

Example (see Figure 4.11):

#
# Note: It’s best to channel average the data if many channels
# before running a modelfit
#
split(’ngc5921.ms’,’1445+099_avg.ms’,

datacolumn=’corrected’,field=’1445*’,width=’63’)

# Initial guess is that it’s close to the phase center
# and has a flux of 2.0 (a priori we know it’s 2.47)
uvmodelfit(’1445+099_avg.ms’, # use averaged data

niter=5, # Do 5 iterations
comptype=’P’, # P=Point source, G=Gaussian, D=Disk
sourcepar=[2.0,.1,.1], # Source parameters for a point source
spw=’0’, #
outfile=’gcal.cl’) # Output component list file

# Output looks like:
There are 19656 - 3 = 19653 degrees of freedom.
iter=0: reduced chi2=0.0418509: I=2, dir=[0.1, 0.1] arcsec
iter=1: reduced chi2=0.003382: I=2.48562, dir=[-0.020069, -0.0268826] arcsec
iter=2: reduced chi2=0.00338012: I=2.48614, dir=[0.00323428, -0.00232235] arcsec
iter=3: reduced chi2=0.00338012: I=2.48614, dir=[0.00325324, -0.00228963] arcsec
iter=4: reduced chi2=0.00338012: I=2.48614, dir=[0.00325324, -0.00228963] arcsec
iter=5: reduced chi2=0.00338012: I=2.48614, dir=[0.00325324, -0.00228963] arcsec

If data weights are arbitrarily scaled, the following formal errors
will be underestimated by at least a factor sqrt(reduced chi2). If
the fit is systematically poor, the errors are much worse.

I = 2.48614 +/- 0.0176859
x = 0.00325324 +/- 0.163019 arcsec
y = -0.00228963 +/- 0.174458 arcsec
Writing componentlist to file: /home/sandrock/smyers/Testing/Patch2/N5921/gcal.cl

# Fourier transform the component list to a model of the MS
ft(’1445+099_avg.ms’, complist=’gcal.cl’)

# Plot data versus uv distance
plotxy(’1445+099_avg.ms’, xaxis=’uvdist’, datacolumn=’corrected’)



CHAPTER 4. SYNTHESIS CALIBRATION 277

# Specify green circles for model data (overplotted)
plotxy(’1445+099_avg.ms’, xaxis=’uvdist’, datacolumn=’model’,

overplot=True, plotsymbol=’go’)

Figure 4.11: Use of plotxy to display corrected data (red and blue points) and uv model fit data
(green circles).

4.7.9 Reweighing visibilities based on their scatter (statwt)

Alert: statwt is still an experimental task. Please check the results carefully and report any
problems to the NRAO CASA helpdesk.

In most cases, the data that comes from the telescopes have the correct absolute or relative weights
associated (absolute weights will be supplied once the VLA switched power application becomes
standard; for ALMA the Tsys application is already in place). However, there are data sets where
one would like to adjust the weights based on the scatter of the visibilities (typically as a function
of time, antenna, and/or baseline). This calculation is performed by the task statwt that updates
the WEIGHT and SIGMA columns of the Measurement Set. statwt inputs are:
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# statwt :: Reweight visibilities according to their scatter
vis = ’’ # Name of measurement set
dorms = False # Use rms instead of stddev?
byantenna = False # Estimate the noise per antenna -not

# implemented (vs. per baseline)
fitspw = ’’ # The signal-free spectral window:channels

# to estimate the scatter from
fitcorr = ’’ # The signal-free correlation(s) to estimate

# the scatter from (not implemented)
combine = ’’ # Let estimates span changes in spw, corr,

# scan and/or state
timebin = ’0s’ # Bin length for estimates (not implemented)
minsamp = 2 # Minimum number of unflagged visibilities

# for estimating the scatter
field = ’’ # Select field using ID(s) or name(s)
spw = ’’ # Select spectral window/channels
antenna = ’’ # Select data based on antenna/baseline
timerange = ’’ # Select data by time range
scan = ’’ # Select data by scan numbers
intent = ’’ # Select data by scan intents
array = ’’ # Select (sub)array(s) by array ID number
correlation = ’’ # Select correlations to reweight (DEPRECATED in CASA v4.5)
observation = ’’ # Select by observation ID(s)
datacolumn = ’corrected’ # Which data column to calculate the scatter

# from

statwt should only be run after all calibration steps have been performed. The parameter dorms switches
from a scatter standard deviation to a root mean square scatter estimator. datacolumn specifies the column
on which the task operates and the usual data selection parameters apply. Channels with strong RFI or a
spectral line should be avoided for the calculation and good channel range should be specified via fitspw.
In its current implementation, statwt uses data samples of an integration time interval but eventually wider
sample intervals can be specified by the timebin parameter. Those samples are contained within a scan,
spw, and polarization product but using the combine can relax this restriction. minsamp sets the minimum
number of unflagged visibilities used for the calculation.

Alert: As of CASA 4.5, selection using correlation has been deprecated in statwt; in prior versions, this
was not working correctly, and it is unlikely setting weights in a correlation-dependent manner is advisable.

4.7.10 Change the signs of visibility phases (conjugatevis)

conjugatevis is an easy task to flip the signs of the phases of visibilities, thus creating the complex conjugate
numbers. The inputs are like:

# conjugatevis :: Change the sign of the phases in all visibility columns.
vis = ’’ # Name of input visibility file.
spwlist = ’’ # Spectral window selection
outputvis = ’’ # Name of output visibility file
overwrite = False # Overwrite the outputvis if it exists.
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The task works on all scratch columns.

(This task was added early in JVLA commissioning, when some data suffered from a phase sign
error.)

4.7.11 Manipulation of Ephemeris Objects

When an astronomical object has a proper motion, in particular objects in our solar system, a static
(RA,Dec) position in the FIELD table of the MeasurementSet will not accurately describe the time-
dependent position. Prior to CASA 4.2, there was no support for ephemeris objects other than the
built-in reference frames for the Sun, the Moon, and the planets out to PLUTO. With CASA 4.2,
several new features were introduced which help the user to attach an arbitrary ephemeris to a
given field and work with the object from calibration to imaging.

4.7.11.1 Ephemeris tables

The CASA format for ephemeris tables has been defined was introduced in the early development
stages of CASA in connection with the Measures module. The me tool permits position calculations
based on ephemerides in this format. Two examples for such tables can be found in the distribution
directory in subdirectory data/ephemerides: VGEO is an ephemeris of Venus in the geocentric
reference frame while VTOP is an ephemeris for the same object in the TOPO reference fame for the
observatory location of the VLA. With the introduction of solar system source models (Butler) in
the setjy task, a nearly complete set of ephemerides for the larger bodies in our solar system had
to be made available. These are stored in nearly the same format as the above examples VGEO
and VTOP (but with a few enhancements) in directory data/ephemerides/JPL-Horizons. If your
object’s ephemeris is among those stored in data/ephemerides/JPL-Horizons, you can simply
copy the ephemeris from there. Otherwise, you can request the ephemeris from the JPL-Horizons
using the CASA commands (for example)

import recipes.ephemerides.request as jplreq
jplreq.request_from_JPL(objnam=’Mars’,startdate=’2012-01-01’,enddate=’2013-12-31’,
date_incr=’0.1 d’, get_axis_orientation=False,
get_axis_ang_orientation=True,
get_sub_long=True, use_apparent=False, get_sep=False,
return_address=’YOUR_EMAIL_ADDESS’,
mailserver=’YOUR_MAIL_SERVER_ADDRESS’)

where you need to fill in the parameters objnam, startdate, enddate,date incr (the time interval
between individual ephemeris table entries), return address (your email address where you want
to receive the ephemeris), and mailserver (the smtp server through which you want to send the
request email). The other parameters should be set as shown. Within a short time, you should
receive the requested ephemeris as an email from NASA’s JPL-Horizonssystem. Save the email
into a file with the “save as” function of your mail client. See the next section on how to attach it
to your dataset.
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4.7.11.2 Using fixplanets to attach ephemerides to a field of a Measurement Set

In order to set the ephemeris of a given field in a Measurement Set, you can use the task fixplanets
as in the following example:

fixplanets(vis=’uid___A002_X1c6e54_X223.ms’,
field=’Titan’, fixuvw=True, direction=’mytitanephemeris’)

where you need to set the parameters vis to the name of your MS and the parameter field to the
name of the field to which you want to attach the ephemeris. The parameter direction must be set
to the name of your ephemeris table. Accepted formats are (a) the CASA format (as in VGEO or the
ephemerides in data/ephemerides/JPL-Horizons as described above) and (b) the JPL-Horizons
mail format which you obtain by saving an ephemeris email you received from JPL-Horizons. The
parameter fixuvw should be set to True in order to trigger a recalculation of the UVW coordinates
in your MS based on the new ephemeris. The task fixplanets can also be used for other field
direction modifications. Please refer to the help text of the task.

Note that among the ephemerides in the directory data /ephemerides/JPL-Horizons/ you should
only use those ending in ’ J2000.tab’. They are the ones in J2000 coordinates.

4.7.11.3 Use of the ephemeris after attachment

Once you have attached the ephemeris to a field of an MS, it will automatically be handled in tasks
like split and concat which need to hand on the ephemeris to their output MSs. In particular
concat recognizes when fields of the MSs to be concatenated use the same ephemeris and merges
these fields if the time coverage of the provided ephemeris in the first MS also covers the observation
time of the second MS. The ephemeris of the field in the first MS will then be used for the merged
field. In order to inspect the ephemeris attached to a field, you can find it inside the FIELD
subdirectory of your MS. The optional column EPHEMERIS ID in the FIELD table points to the
running number of the ephemeris table. A value of −1 indicates that no ephemeris is attached.
Note that in case an ephemeris is attached to a field, the direction column entries for that field in
the FIELD table will be interpreted as an offset to the ephemeris direction and are therefore set to
(0.,0.) by default. This offset feature is used in mosaic observations where several fields share the
same ephemeris with different offsets. The TIME column in the FIELD table should be set to the
beginning of the observation for that field and serves as the nominal time for ephemeris queries.

4.7.11.4 Spectral frame transformation to the rest frame of the ephemeris object in
task cvel

The ephemerides contain radial velocity information. The task cvel can be used to transform
spectral windows into the rest frame of the ephemeris object by setting the parameter outframe
to “SOURCE” as in the following example:
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cvel(vis=’europa.ms’,
outputvis=’cvel_europa.ms’, outframe=’SOURCE’, mode = ’velocity’,
width = ’0.3km/s’, restfreq = ’354.50547GHz’)

This will make cvel perform a transformation to the GEO reference frame followed by an additional
Doppler correction for the radial velocity given by the ephemeris for the each field. (Typically,
this should happen after calibration and after splitting out the spectral widows and the target of
interest). The result is an MS with a single combined spectral window in reference frame REST.
From this frame, further transformations to other reference frames are not possible.

4.7.11.5 Ephemerides in ALMA datasets

The ALMA Science Data Model (the raw data format for ALMA data) now foresees an ephemeris
table. However, this feature is not yet used in ALMA Cycle 1. Once this table will be filled at the
observatory, the task importasdm will automatically translate it into an ephemeris table in CASA
format and attach it to the respective fields.

4.8 Examples of Calibration

The data reduction tutorials on casaguides.nrao.edu provide walkthroughs for high and low
frequency, spectral line and polarization calibration techniques.

casaguides.nrao.edu


Chapter 5

Synthesis Imaging

Inside the Toolkit:
The im tool handles synthesis imag-
ing operations.

This chapter describes how to make and deconvolve images
starting from calibrated interferometric data, possibly sup-
plemented with single-dish data or an image made from
single-dish data. This data must be available in CASA
(see § 2 on importing data). See § 4 for information on
calibrating synthesis data. In the following sections, the
user will learn how to make various types of images from synthesis data, reconstruct images of the
sky using the available deconvolution techniques, include single-dish information in the imaging
process, and to prepare to use the results of imaging for improvement of the calibration process
(“self-calibration”).

5.1 Imaging Tasks Overview

The current imaging and deconvolution tasks are:

• clean — calculate a deconvolved image with a selected clean algorithm, including mosaicing,
or make a dirty image (§ 5.3),

• feather — combine a single dish and synthesis image in the Fourier plane (§ 5.6),

• deconvolve — image-plane only deconvolution based on the dirty image and beam, using
one of several algorithms (§ 5.9),

• pclean — an experimental task for clean to work in a parallelized way for multi-node and
core computing systems (§ 5.11)

There are also tasks that help you set up the imaging or interface imaging with calibration:

• boxit - create “cleanbox” deconvolution regions automatically from an image (§ 5.7.1),

282
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• ft - add a source model to the MS (§ 5.8).

The full “tool kit” that allows expert-level imaging must still be used if you do not find enough
functionality within the tasks above.

Information on other useful tasks and parameter setting can be found in:

• listobs — list what’s in a MS (§ 2.2.7),

• split— Write out new MS containing calibrated data from a subset of the original MS
(§ section:cal.split),

• cvel — regrid a spectral MS onto a new frequency channel system (§ 4.7.7),

• data selection — general data selection syntax (§ 2.3),

• viewer — image display including region statistics and image cube slice and profile capabil-
ities (§ 7).

5.2 Common Imaging Task Parameters

Inside the Toolkit:
The im.setimage method is used to
set many of the common image pa-
rameters. The im.advise method
gives helpful advice for setting up for
imaging.

We now describe some parameters that are common to the
imaging tasks. These should behave the same way in any
imaging task that they are found in. These are in alpha-
betical order.

ALERT: clean tries to use up to four cores on the computer that it is running on. If this is not
desired, the environment variable OMP NUM THREAD can be set to a lower value.

5.2.1 Parameter cell

The cell parameter defines the pixel size in the x and y
axes for the output image. If given as floats or integers, this is the cell size in arc seconds, e.g.

cell=[0.5,0.5]

make 0.5′′ pixels. You can also give the cell size in quantities, e.g.

cell=[’1arcmin’, ’1arcmin’]

If a single value is given, then square pixels of that size are assumed.
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5.2.2 Parameter field

The field parameter selects the field indexes or names to be used in imaging. Unless you are
making a mosaic, this is usually a single index or name:

field = ’0’ # First field (index 0)
field = ’1331+305’ # 3c286
field = ’*’ # all fields in dataset

The syntax for field selection is given in § 2.3.2.

5.2.3 Parameter imagename

The value of the imagename parameter is used as the root name of the output image. Depending
on the particular task and the options chosen, one or more images with names built from that root
will be created. For example, the clean task run with imagename=’ngc5921 a series of output
images will be created with the names ngc5921.clean, ngc5921.residual, ngc5921.model, etc.

If an image with that name already exists, it will in general be overwritten. Be-
ware using names of existing images however. If the clean is run using an imagename
where <imagename>.residual and <imagename>.model already exist then clean will con-
tinue starting from these (effectively restarting from the end of the previous clean).
Thus, if multiple runs of clean are run consecutively with the same imagename, then the cleaning
is incremental (as in the difmap package).

The output image may also have a different beam per plane. For datasets with very large fractional
bandwidth, clean will use a different PSF for each channel when the PSF changes by more than
half a pixel as a function of frequency. To smooth to a common resolution, one can either use the
parameter resmooth (§ 5.2.6) to smooth to the smallest common possible beam, restoringbeam for
an arbitrary, larger beam, (§ 5.3.11), or the task imsmooth (§ 6.17) after cleaning. Data analysis
tasks such as immoments in CASA support changing beams per plane.

5.2.4 Parameter imsize

The image size in numbers of pixels on the x and y axes is set by imsize. For example,

imsize = [640, 640]

makes a square image 640 pixels on a side. If a single value is given, then a square image of that
dimension is made. The underlying algorithms work best for certain image sizes. If you pick a size
where that algorithm will be particularly slow, the logger will send a warning message, suggesting
the nearest optimal values. In general, the best performance is obtained with image sizes that are
even and factorizable to 2,3,5,7 only. An easy rule of thumb would be 2n× 10 where n is an integer
number, like 160, 320, 640, 1280, 2560, etc.
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5.2.5 Parameter mode

The mode parameter defines how the frequency channels in the synthesis MS are mapped onto
the image. The allowed values are: mfs, channel, velocity, frequency. The mode parameter is
expandable, with some options uncovering a number of sub-parameters, depending upon its value.

5.2.5.1 Mode mfs

mode = ’mfs’ # Spectral gridding type (mfs, channel,
# velocity, frequency)

nterms = 1 # Number of terms used to model the sky
# frequency dependence (Note: nterms>1
# is under development)

reffreq = ’’ # Reference frequency for MFS (relevant
# only if nterms > 1),’’ defaults to
# central data-frequency

The default mode=’mfs’ emulates multi-frequency synthesis in that each visibility-channel datum
k with baseline vector Bk at wavelength λk is gridded into the uv-plane at uk = Bk/λk. The
result is one or more images (depending on nterms), regardless of how many channels are in the
input dataset. The first image plane is at the frequency given by the midpoint between the highest
and lowest frequency channels in the input spw(s). Currently, there is no way to choose the center
frequency of the output image plane independently.

WideBand imaging (mfs with nterms> 1) is now available in CASA. This algorithm models the
wide-band sky brightness as a linear combination of Gaussian-like functions whose amplitudes follow
a Taylor-polynomial in frequency. The output images are a set of Taylor-coefficient images, from
which spectral index and curvature maps are derived. The reffreq parameter sets the reference
frequency ν0 about which the Taylor expansion is done. The Taylor expansion is a polynomial in
frequency:

Isky
ν =

∑
t

Isky
t

(
ν − ν0

ν0

)t

(5.1)

Isky
t an image of the tth coefficient of the Taylor-polynomial expansion.

When Eq. 5.1 is applied on a source with a spectral index

Isky
ν = Isky

ν0

(
ν

ν0

)α+β log(ν/ν0)

(5.2)

The Taylor terms Isky
t can be used to constrain the sky brightness, α, and β through

Isky
ν0

= Isky
0 (5.3)
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2

(5.5)

For more information, please see Rau, U. & Cornwell, T. J. 2011, “A multi-scale multi-frequency
deconvolution algorithm for synthesis imaging in radio interferometry”, A&A, 532, 71

Alert: The MS-MFS (multiscale-multifrequency) algorithm in the current release is new and is
still being developed/tested/debugged. Its basic operation has been tested on wide-band JVLA
data for Stokes I imaging.

Explanation of the Parameters:
nterms: The number of terms in the Taylor polynomial used to model the frequency structure.
nterms> 1 triggers MS-MFS. nterms= 1 triggers standard point-source clean or multi-scale-clean.
Note: The choice of nterms follows the same rules used while fitting a polynomial to a 1D set
of noisy data points. To prevent overfitting, the order of the polynomial needs to depend on the
available signal-to-noise in the data. A very rough rule-of-thumb is as follows: For high SNR data
(single channel SNR>100), and fields dominated by point-sources with spectral indices around
−1.0 across a 2:1 bandwidth, choose nterms= 3 or 4. For lower SNR data (5 <SNR< 100), flatter
spectra, or when there is significant extended emission, nterms= 2 is a much safer option. For very
low SNR data (SNR< 5), choose nterms= 1).

reffreq: The reference frequency used to compute Taylor functions [(freq− reffreq)/(reffreq)]i. If
left blank (reffreq=”), it defaults to the middle frequency of the selected data. Note : For the
current release, the use of reffreq=” is recommended.

multiscale: The MS-MFS algorithm always uses scale sizes set via the multiscale parameter.
For point-source deconvolution, set multiscale=[0] (also the default). Note: Unlike standard
msclean (multiscale = [0,6,10,....] with nterms=1), with higher nterms the largest specified scale
size must lie within the sampled range of the interferometer. If not, there can be an ambiguity in
the spectral reconstruction at very large spatial scales.

gridmode: Wideband W-Projection is supported, and can be triggered via gridmode=’widefield’.

modelimage: Supply a list of Taylor-coefficient images, to start the deconvolution from. If only one
image is specified, it will be used as the model for the ’tt0’ image.

Output images: [xxx.image.tt0, xxx.image.tt1,... ] : Images of Taylor coefficients that describe
the frequency-structure. The ”tt0” image is the total-intensity image at the reference frequency,
and is equivalent to ”xxx.image” obtained via standard imaging.

[xxx.image.alpha, xxx.image.beta] : Spectral index and spectral curvature at the reference-frequency.
These are computed from tt0, tt1, tt2 only for regions of the image where there is sufficient signal-
to-noise to compute them. These regions are chosen via a threshold on the intensity image (tt0)
computed as MAX( userthreshold*5 , peakresidual/10 ) ). This threshold is reported in the logger.
Elsewhere, the values are currently set to zero.
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[xxx.image.alpha.error] contains the errors of the spectral index solutions.

The following is a list of differences between MS-MFS (nterms> 1) and standard imaging, in the
current CASA release.

1. Iterations always proceed as cs-clean major/minor cycles, and uses the full psf during minor
cycle iterations. There are currently no user-controls on the cyclespeedup, and the flux-limit
per major cycle is chosen as 10% of the peak residual. In future releases, this will be made
more adaptive/controllable.

2. Currently, the following options are not supported for nterms> 1: psfmode, pbcorr, minpb,
imagermode=’mosaic’, gridmode=’aprojection’, cyclespeedup, and allowed are one of Stokes
I, Q, U, V, RR, LL, XX, YY at a time. More options and combinations are currently
under development and testing. Under ’Using CASA’ → ’Other Documentation’ → ’Imaging
Algorithms in CASA’ you can find the latest implementations.

5.2.5.2 Mode channel

ALERT: Note that mode=’channel’ is intended as a shortcut to produce a cube based on the
input MS channelization. It will be in the frame of the input MS. We recommend that users
instead use the ’velocity’ and ’frequency’ modes which will produce cubes in other frames
with more control of the cube spacing. These modes have defaults that will work from the MS
spacing, reproducing the action of mode=’channel’.

If mode=’channel’ is chosen, then an image cube will be created. This is an expandable parameter,
with dependent parameters:

mode = ’channel’ # Spectral image definition(mfs,
# channel, velocity,frequency)

nchan = -1 # Number of channels (planes) in output image
start = 0 # first input channel to use
width = 1 # Number of input channels to average
interpolation = ’nearest’ # Spectral interpolation(nearest, linear, cubic)

The default nchan=-1 will automatically produce a cube with the number of channels needed to
span the (regridded) spectral windows of the MS. If multiple MSs are used, the spectral frames
of these need to be identical, e.g. LSRK1. ALERT: This often results in extra blank channels
at the beginning and end of the image cube, so it is usually more precise to specify nchan and
start to get what you want. For best results, we also recommend ’nearest’ interpolation for the
mode=channel.

The channelization of the resulting image is determined by the channelization in the MS of vis
of the first spw specified (the “reference spw”). The actual channels to be gridded and used in

1Note that when TOPO is used, it refers to a time stamp at a given observation date. If more than one observation
in TOPO is specified, this may lead to vastly erroneous values. Any conversion from TOPO to other frames such as
BARY and LSRK should be performed for each individual observation, prior to clean or concatenation
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the clean are selected via the spw parameter as usual. The resulting image cube will have nchan
channels spaced evenly in frequency. The first output channel will be located at the frequency of
channel start in the (first) reference spw (independent of what channels are selected using spw).
If width> 1, then input MS channels with centers within a frequency range given by (width+1)/2
times the reference spw spacing will be gridded together (as in mode = ’mfs’ above) into the
channels of the output image cube. The output channel spacing is thus given by width channels
in the reference spw of the MS.

The interpolation sub-parameter (§ 5.2.5.5) sets how channels are gridded into the image cube
planes. For ’nearest’, the channels in spw beyond the first are mapped into the nearest output
image channel within half a channel (if any). Otherwise, the chosen interpolation scheme will be
used. Image channels that lie outside the MS frequency range or have no data mapped to them
will be blank in the output image, but will be in the cube.

Example:

mode = ’channel’
nchan = 46
start = 5
width = 1

which will produce a 46-channel cube starting with channel 5 of the MS with the same channel
width as the MS. Note: the start channel is in reference to the channels in the MS, not the subset
selected by spw.

5.2.5.3 Mode frequency

For mode=’frequency’, an output image cube is created with nchan channels spaced evenly in
frequency.

mode = ’frequency’ # Spectral image definition(mfs,
# channel, velocity,frequency)

nchan = -1 # Number of channels (planes) in output image
start = ’’ # Frequency of first image channel:

# e.q. ’1.4GHz’(’’=default)
width = ’’ # Image channel frequency width:

# e.g ’1.0kHz’(’’=default)
interpolation = ’linear’ # Spectral interpolation(nearest, linear, cubic)
outframe = ’’ # velocity frame of output image

The frequency of the first output channel is given by start and spacing by width. Output channels
have width also given by width. The sign of width determines whether the output channels ascend
or descend in frequency. Data from the input MS with centers that lie within one-half an input
channel overlap of the frequency range of ±width/2 centered on the output channels are gridded
together.

The defaults are designed to safely choose output cube channels to span the input MS(s). The
default nchan=-1 will choose the number of channels needed to span the frequencies of the channels
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in the MS. The defaults start=’’ and width=’’ will use the channel frequency and width of the
first channel of the first specified spectral window selected in spw. ALERT: As in “channel” mode,
this is currently the first channel of the first spw, not the first channel selected from that spw.

The interpolation sub-parameter (§ 5.2.5.5) sets how channels are gridded into the image cube
planes.

Using the NGC5921 dataset as an example:

mode = ’frequency’
nchan = 21
start = ’1412.830MHz’
width = ’50kHz’
outframe = ’LSRK’

would produce a 21-channel output cube with 50 kHz wide channels rather than the default chan-
nelization of the MS (24.4 kHz).

5.2.5.4 Mode velocity

If mode=’velocity’ is chosen, then an output image cube with nchan channels will be created,
with channels spaced evenly in velocity. Parameters are:

mode = ’velocity’ # Spectral image definition(mfs,
# channel, velocity,frequency)

nchan = -1 # Number of channels (planes) in output image
start = ’’ # Velocity of first image channel:

# e.g ’0.0km/s’(’’=default)
width = ’’ # Image channel velocity width: e.g

# ’-1.0km/s’(’’=default)
interpolation = ’linear’ # Spectral interpolation(nearest,

# linear, cubic)
outframe = ’’ # velocity reference frame of output

# image; ’’ =input
veltype = ’radio’ # velocity definition

Note that velocities are calculated with respect to the rest frequency in the MS or specified through
the restfreq parameter (§ 5.2.8).

The velocity of the first output channel is given by start and spacing by width. Averaging is as in
mode=’frequency’. The interpolation sub-parameter (§ 5.2.5.5) sets how channels are gridded
into the image cube planes.

The defaults are designed to safely choose output cube channels to span the input MS(s). The
default nchan=-1 will choose the number of channels needed to span the velocities of the channels
in the MS. The defaults start=’’ and width=’’ will use the channel velocity and width of the
first channel of the first specified spectral window selected in spw. ALERT: As in “channel” mode,
this is currently the first channel of the first spw, not the first channel selected from that spw.

Again, using the NGC5921 dataset as an example:
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mode = ’velocity’
nchan = 21
start = ’1383.0km/s’
width = ’10km/s’
outframe = ’LSRK’

Note that in this case the velocity axis runs forward, as opposed to the default channelization for
’channel’ or ’frequency’.

5.2.5.5 Sub-parameter interpolation

The interpolation sub-parameter controls how spectral channels in the MS are gridded into the
output image cube. This is available in all modes except ’mfs’. The options are: ’nearest’,
’linear’, ’cubic’.

For ’nearest’, the channels in spw beyond the first are mapped into the nearest output image
channel within half a channel (if any).

For ’linear’, the channels are gridded into the planes using weights given by a linear function of
the frequency of the MS channel versus the plane. Each input channel will be mapped to 1 or 2
output planes. For most users, this is the best choice.

For ’cubic’, the channels are gridded using a cubic interpolation function.

’Linear’ and ’cubic’ interpolation methods require that there are two datapoints that sandwich your
new, regridded bin. This can introduce edge effects like in the first or last channel or adjacent to
flagged channels where data is only available on one side of the spectrum. interpolation=’nearest’
will avoid such edge effects but may not work so well for data with spws that overlap. For
mode=’velocity’ or ’frequency’, ’linear’ interpolation usually works best and for mode=’channel’
the ’nearest’ interpolation method is superior. But this could be different for your dataset and you
should carefully check your results.

5.2.6 Parameter resmooth

For large cubes, the psf will change as a function of frequency. clean will produce cubes with
different synthesized beams per plane. All CASA analysis tasks can deal with such cubes. If one
would like a common psf for all planes, typically the smallest possible beam, one can invoke the
resmooth Boolean parameter. Alternatively, the cube can be convolved to the smallest common
beam in a separate step vis imsmooth (see Sect. 6.17).

5.2.7 Parameter phasecenter

The phasecenter parameter indicates which of the field IDs should be used to define the phase
center of the mosaic image, or what that phase center is in RA and Dec. The default action is to
use the first one given in the field list.

For example:
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phasecenter=’5’ # field 5 in multi-src ms
phasecenter=’J2000 19h30m00 -40d00m00’ # specify position

Note that the format for angles prefers to use hm for RA/time units and dm for Dec/Angle units as
separators. The colon :: separator is interpreted as RA/time even if its used for the Dec, so be
careful not to copy/paste from other sources.

5.2.8 Parameter restfreq

The value of the restfreq parameter, if set, will over-ride the rest frequency in the header of the
first input MS to define the velocity frame of the output image.

ALERT: The restfreq parameter takes the options of transitions and frequencies as in the cor-
responding plotxy parameter (§ 3.3.2.12), but the frame information is controlled under the mode
parameter (§ 5.2.5).

For example:

restfreq=’115.2712GHz’,

will set the rest frequency to that of the CO 1-0 line.

ALERT: Setting restfreq explicitly here in clean is good practice, and may be necessary if your
MS has been concatenated from different files for different spectral windows (§ 2.2.12).

5.2.9 Parameter spw

The spw parameter selects the spectral windows that will be used to form the image, and possibly
a subset of channels within these windows.

The spw parameter is a string with an integer, list of integers, or a range, e.g.

spw = ’1’ # select spw 1
spw = ’0,1,2,3’ # select spw 0,1,2,3
spw = ’0~3’ # same thing using ranges

You can select channels in the same string with a : separator, for example

spw = ’1:10~30’ # select channels 10-30 of spw 1
spw = ’0:5~55,3:5;6;7’ # chans 5-55 of spw 0 and 5,6,7 of spw 3

This uses the standard syntax for spw selection is given in § 2.3.3. See that section for more options.

Note that the order in which multiple spws are given is important for mode = ’channel’, as this
defines the origin for the channelization of the resulting image.
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5.2.10 Parameter stokes

The stokes parameter specifies the Stokes parameters for the resulting images. Note that forming
Stokes Q and U images requires the presence of cross-hand polarizations (e.g. RL and LR for circularly
polarized systems such as the VLA) in the data. Stokes V requires both parallel hands (RR and
:LL) for circularly polarized systems or the cross-hands (XY and YX) for linearly polarized systems
such as ALMA and ATCA.

This parameter is specified as a string of up to four letters and can indicate stokes parameters
themselves, Right/Left hand polarization products, or linear polarization products (X/Y). For
example,

stokes = ’I’ # Intensity only
stokes = ’IQU’ # Intensity and linear polarization
stokes = ’IV’ # Intensity and circular polarization
stokes = ’IQUV’ # All Stokes imaging
stokes = ’RR’ # Right hand polarization only
stokes = ’XXYY’ # Both linear polarizations

are common choices (see the inline help of clean for a full range of possible options). The out-
put image will have planes (along the “polarization axis”) corresponding to the chosen Stokes
parameters.

If as input to deconvolution tasks such as clean, the stokes parameter includes polarization planes
other than I, then choosing psfmode=’hogbom’ (§ 5.3.1.2) or psfmode=’clarkstokes’ (§ 5.3.1.3)
will clean (search for components) each plane sequentially, while psfmode=’clark’ (§ 5.3.1.1) will
deconvolve jointly.

Alert: As of Release 3.2, clean expects that all input polarizations are present. E.g. if you have
RR and LL dual polarization data and you flagged parts of RR but not LL, clean will ignore
both polarizations in slice. It is possible to split out a polarization product with split and image
separately. But you will not be able to combine these part-flagged data in the uv-domain. We will
remove that restriction in a future CASA release.

5.2.11 Parameter uvtaper

This controls the radial weighting of visibilities in the uv-plane (see § 5.2.12 below) through the
multiplication of the visibilities by the Fourier transform of an elliptical Gaussian. This is itself a
Gaussian, and thus the visibilities are “tapered” with weights decreasing as a function of uv-radius.

The uvtaper parameter expands the menu upon setting uvtaper=True to reveal the following
sub-parameters:

uvtaper = True # Apply additional uv tapering of visibilities.
outertaper = [] # uv-taper on outer baselines in uv-plane
innertaper = [] # uv-taper in center of uv-plane (not

implemented)
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The sub-parameters specify the size and optionally shape and orientation of this Gaussian in the
uv-plane or optionally the sky plane. The outertaper refers to a Gaussian centered on the origin
of the uv-plane.

Some examples:

outertaper=[] # no outer taper applied
outertaper=[’5klambda’] # circular uv taper FWHM=5 kilo-lambda
outertaper=[’5klambda’,’3klambda’,’45.0deg’] # elliptical Gaussian
outertaper=[’10arcsec’] # on-sky FWHM 10"
outertaper=[’300.0’] # 300m in aperture plane

Note that if no units are given on the taper, then the default units are assumed to be meters in
aperture plane.

ALERT: The innertaper option is not yet implemented.

5.2.12 Parameter weighting

Inside the Toolkit:
The im.weight method has more
weighting options than available in
the imaging tasks. See the User
Reference Manual for more infor-
mation on imaging weights.

In order to image your data, we must have a map from
the visibilities to the image. Part of that map, which is
effectively a convolution, is the weights by which each vis-
ibility is multiplied before gridding. The first factor in the
weighting is the “noise” in that visibility, represented by
the data weights in the MS (which is calibrated along with
the visibility data). The weighting function can also de-
pend upon the uv locus of that visibility (e.g. a “taper”
to change resolution). This is actually controlled by the
uvtaper parameter (see § 5.2.11). The weighting matrix also includes the convolution kernel that
distributes that visibility onto the uv-plane during gridding before Fourier transforming to make
the image of the sky. This depends upon the density of visibilities in the uv-plane (e.g. “natural”,
“uniform”, “robust” weighting).

The user has control over all of these.

ALERT: You can find a weighting description in the online User Reference Manual at:

http://casa.nrao.edu/docs/casaref/imager.weight.html

The weighting parameter expands the menu to include various sub-parameters depending upon
the mode chosen:

5.2.12.1 ’natural’ weighting

For weighting=’natural’, visibilities are weighted only by the data weights, which are calculated
during filling and calibration and should be equal to the inverse noise variance on that visibility.

http://casa.nrao.edu/docs/casaref/imager.weight.html
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Imaging weight wi of sample i is given by

wi = ωi =
1
σ2

k

(5.6)

where the data weight ωi is determined from σi is the rms noise on visibility i. When data is gridded
into the same uv-cell for imaging, the weights are summed, and thus a higher uv density results in
higher imaging weights. No sub-parameters are linked to this mode choice. It is the default imaging
weight mode, and it should produce “optimum” image with the lowest noise (highest signal-to-noise
ratio). Note that this generally produces images with the poorest angular resolution, since the
density of visibilities falls radially in the uv-plane

5.2.12.2 ’uniform’ weighting

For weighting = ’uniform’, the data weights are calculated as in ’natural’ weighting. The
data is then gridded to a number of cells in the uv-plane, and after all data is gridded the uv-cells
are re-weighted to have “uniform” imaging weights. This pumps up the influence on the image of
data with low weights (they are multiplied up to be the same as for the highest weighted data),
which sharpens resolution and reduces the sidelobe level in the field-of-view, but increases the rms
image noise. No sub-parameters are linked to this mode choice.

For uniform weighting, we first grid the inverse variance ωi for all selected data onto a grid with
uv cell-size given by 2/FOV where FOV is the specified field of view (defaults to the image field
of view). This forms the gridded weights Wk. The weight of the i-th sample is then:

wi =
ωi

Wk
. (5.7)

5.2.12.3 ’superuniform’ weighting

The weighting = ’superuniform’ mode is similar to the ’uniform’ weighting mode but there is
now an additional npixels sub-parameter that specifies a change to the number of cells on a side
(with respect to uniform weighting) to define a uv-plane patch for the weighting renormalization.
If npixels=0 you get uniform weighting.

5.2.12.4 ’radial’ weighting

The weighting = ’radial’ mode is a seldom-used option that increases the weight by the radius
in the uv-plane, i.e.

wi = ωi ·
√

u2
i + v2

i . (5.8)

Technically, I would call that an inverse uv-taper since it depends on uv-coordinates and not on the
data per-se. Its effect is to reduce the rms sidelobes for an east-west synthesis array. This option
has limited utility.
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5.2.12.5 ’briggs’ weighting

The weighting = ’briggs’ mode is an implementation of the flexible weighting scheme developed
by Dan Briggs in his PhD thesis. See:

http://www.aoc.nrao.edu/dissertations/dbriggs/

This choice brings up the sub-parameters:

weighting = ’briggs’ # Weighting to apply to visibilities
robust = 0.0 # Briggs robustness parameter
npixels = 0 # number of pixels to determine uv-cell size 0=> field of view

The actual weighting scheme used is:

wi =
ωi

1 + Wkf2
(5.9)

where Wk is defined as in uniform and superuniform weighting, and

f2 =
(5 ∗ 10−R)2∑

k
W 2

k∑
i
ωi

(5.10)

and R is the robust parameter.

The key parameter is the robust parameter, which sets R in the Briggs equations. The scaling of
R is such that R = 0 gives a good trade-off between resolution and sensitivity. The robust R takes
value between −2.0 (close to uniform weighting) to 2.0 (close to natural).

Superuniform weighting can be combined with Briggs weighting using the npixels sub-parameter.
This works as in ’superuniform’ weighting (§ 5.2.12.3).

5.2.12.6 ’briggsabs’ weighting

For weighting=’briggsabs’, a slightly different Briggs weighting is used, with

wi =
ωi

WkR2 + 2σ2
R

(5.11)

where R is the robust parameter and σR is the noise parameter.

This choice brings up the sub-parameters:

weighting = ’briggsabs’ # Weighting to apply to visibilities
robust = 0.0 # Briggs robustness parameter
noise = ’0.0Jy’ # noise parameter for briggs weighting when rmode=’abs’
npixels = 0 # number of pixels to determine uv-cell size 0=> field of view

Otherwise, this works as weighting=’briggs’ above (§ 5.2.12.5).

http://www.aoc.nrao.edu/dissertations/dbriggs/
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5.2.13 Parameter vis

The value of the vis parameter is either the name of a single MS, or a list of strings containing
the names of multiple MSs, that should be processed to produce the image. The MS referred to by
the first name in the list (if more than one) is used to determine properties of the image such as
channelization and rest frequency.

For example,

vis = ’ngc5921.ms’

set a single input MS, while

vis = [’ngc5921_day1.ms’, ’ngc5921_day2.ms’, ’ngc5921_day3.ms’]

points to three separate measurement sets that will be gridded together to form the image. This
means that you do not have to concatenate datasets, for example from different configurations,
before imaging.

For the multiple MS case, all selection commands like field, spw, etc. are lists that refer to the
list of input MSs, like

spw=[’1:2~9’,’0:10~22’,’<2’]
field=[’0’,’ngc5921’,’12’]

will use the first entry of each selection criterion and apply it to the first dataset (spw=’1:2~9’
and field=’0’ to ’ngc5921_day1.ms’), the second selection criterion to the second dataset etc.

5.2.14 Primary beams in imaging

The CASA imaging task and tools use primary beams based on models for each observatory’s
antenna types. In addition to different antenna diameters, different functions may be used.

The voltage patterns are based on the following antenna primary beams, based on the TELESCOPE NAME
keyword in the OBSERVATION table:

VLA — Airy disk fitted to measurement. Note that a R/L beam squint is also included with feed
dependent angle;

ALMA — Airy disk for 12m dish with a blockage of 1m;

ATA — Airy disk for 6m dish;

ATCA — polynomial fitted to measurement of main lobe;

BIMA, HATCREEK — Gaussian with halfwidth of λ/2D;
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CARMA — Airy patterns for the BIMA or OVRO dish sizes as appropriate;

GBT — polynomial fitted to measurement of main lobe;

GMRT — VLA Airy disk scaled to 45.0m;

IRAMPDB — Airy disk for dish of 15m with a blockage of 1m;

NRAO12M — VLA beam scaled to 12m;

OVRO — VLA Airy disk scaled to 10.4m;

SMA — Spheroidal function fit to FWHM;

WSRT — polynomial fitted to measurement of main lobe;

If the telescope name is unknown, or is CARMA or ALMA, then the DISH DIAMETER in the ANTENNA
table is used with a scaled VLA pattern.

In mosaicking mode, clean will use frequency-dependent primary beams. It also appears that Airy
or spheroidal beams are best behaved for mosaics (see § 5.3.15).

5.3 Deconvolution using CLEAN (clean)

To create an image and then deconvolve it with the CLEAN algorithm, use the clean task. This
task will work for single-field data, or for multi-field mosaics (§ 5.3.15), in both narrow and wide-field
imaging modes.

ALERT: For large fractional bandwidths the psf in clean may vary considerably with frequency
in data cubes. To accommodate this fact we have introduced a per-plane psf (dirty beam) when
the change is larger than half the size of a pixel. Analysis tasks in CASA can deal with such beam
variation. If a single beam size is requested, imsmooth can be invoked on the clean products to
smooth to a common, uniform beam for all channels.

Toolkit Note: MEM is not included in clean, but is available in the toolkit.

clean will use the CORRECTED DATA column from your measurement set if it exists. If that column
is not available, it will use DATA. The clean task utilizes many of the common imaging parameters.
These are described above in § 5.2. There are also a number of parameters specific to clean. These
are listed and described below.

The default inputs to clean are:

# clean :: Deconvolve an image with selected algorithm
vis = ’’ # name of input visibility file
imagename = [’’] # Pre-name of output images
outlierfile = ’’ # Text file with image names, sizes, centers
field = ’’ # Field Name
spw = ’’ # Spectral windows:channels: ’’ is all
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selectdata = False # Other data selection parameters
mode = ’mfs’ # Type of selection (mfs, channel, velocity,frequency)

nterms = 1 # Number of taylor terms to use
# for modeling the sky frequency dependence

reffreq = ’’ # Reference frequency for MFS
# (relevant only if nterms > 1)

gridmode = ’’ # The kind gridding kernel to be
# used for FFT-based transforms

niter = 500 # Maximum number of iterations
gain = 0.1 # Loop gain for cleaning
threshold = ’0.0mJy’ # Flux level to stop cleaning. Must include units
psfmode = ’clark’ # method of PSF calculation to use during minor cycles
imagermode = ’’ # Use csclean or mosaic. If ’’, use psfmode
multiscale = [] # deconvolution scales (pixels);

# [] = default standard clean
interactive = False # use interactive clean (with GUI viewer)
mask = [] # cleanbox(es), mask image(s),

# and/or region(s) used in cleaning
imsize = [256, 256] # x and y image size in pixels,

# symmetric for single value
cell = [’1.0arcsec’, ’1.0arcsec’] # x and y cell size. default unit arcsec
phasecenter = ’’ # Image phase center: position or field index
restfreq = ’’ # rest frequency to assign to image (see help)
stokes = ’I’ # Stokes params to image (eg I,IV, QU,IQUV)
weighting = ’natural’ # Weighting of uv (natural, uniform, briggs, ...)
uvtaper = False # Apply additional uv tapering of visibilities.
modelimage = ’’ # Name of model image(s) to initialize cleaning
restoringbeam = [’’] # Output Gaussian restoring beam for CLEAN image
pbcor = False # Output primary beam-corrected image
minpb = 0.1 # Minimum PB level to use
usescratch = False # True if to save model

# visibilities in MODEL_DATA column

The clean task will produce a number of output images based on the root name given in imagename.
These include:

<imagename>.clean.image # the restored image
<imagename>.clean.flux # the effective response (e.g. for pbcor)
<imagename>.clean.flux.pbcoverage # the PB coverage (ftmachine=’mosaic’ only)
<imagename>.clean.model # the model image
<imagename>.clean.residual # the residual image
<imagename>.clean.psf # the synthesized (dirty) beam

The mode, psfmode, imagermode, and weighting parameters open up other sub-parameters. These are
detailed in the common imaging task parameters section (§ 5.2). The gridmode parameter (§ 5.3.13) is
available to select more advanced imaging options such as widefield imaging and beam squint correction.

A typical setup for clean on the NGC5921 dataset, after setting parameter values, might look like:

vis = ’ngc5921.usecase.ms.contsub’ # Name of input visibility file
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imagename = ’ngc5921.usecase.clean’ # Pre-name of output images
field = ’0’ # Field Name
spw = ’’ # Spectral windows:channels: ’’ is all
selectdata = False # Other data selection parameters
mode = ’channel’ # Type of selection (mfs, channel, velocity, frequency)

nchan = 46 # Number of channels (planes) in output image
start = 5 # first input channel to use
width = 1 # Number of input channels to average

interpolation = ’linear’ # Spectral interpolation (nearest, linear, cubic)

gridmode = ’’ # The kind gridding kernel to be used for
# FFT-based transforms

niter = 6000 # Maximum number of iterations
gain = 0.1 # Loop gain for cleaning
threshold = 8.0 # Flux level to stop cleaning. Must include units
psfmode = ’clark’ # method of PSF calculation to use during minor cycles
imagermode = ’’ # Use csclean or mosaic, or image-plane only if ’’
multiscale = [] # set deconvolution scales (pixels)
interactive = False # use interactive clean (with GUI viewer)
mask = [108, 108, 148, 148] # cleanbox(es), mask image(s),

# and/or region(s)
imsize = [256, 256] # x and y image size in pixels
cell = [15.0, 15.0] # x and y cell size. default unit arcsec
phasecenter = ’’ # Image phase center: position or field index
restfreq = ’’ # rest frequency to assign to image (see help)
stokes = ’I’ # Stokes params to image (eg I,IV, QU,IQUV)
weighting = ’briggs’ # Weighting to apply to visibilities

robust = 0.5 # Briggs robustness parameter
npixels = 0 # uv-cell size in pixels 0=> field of view

uvtaper = False # Apply additional uv tapering of visibilities.
modelimage = ’’ # Name of model image(s) to initialize cleaning
restoringbeam = [’’] # Output Gaussian restoring beam for CLEAN image
pbcor = False # Output primary beam-corrected image
minpb = 0.1 # Minimum PB level to use

An example of the clean task to create a continuum image from many channels is given below:

clean(vis=’ggtau.1mm.split.ms’, # Use data in ggtau.1mm.split.ms
imagename=’ggtau.1mm’, # Name output images ’ggtau.1mm.*’ on disk
psfmode=’clark’, # Use the Clark CLEAN algorithm
imagermode=’’, # Do not mosaic or use csclean
mask=’’, # Do not use clean box or mask
niter=500, gain=0.1, # Iterate 500 times using gain of 0.1
mode=’mfs’, # multi-frequency synthesis (combine channels)
spw=’0~2:2~57’, # Combine channels from 3 spectral windows
field=’0’, #
stokes=’I’, # Image stokes I polarization
weighting=’briggs’, # Use Briggs robust weighting
rmode=’norm’,robust=0.5, # with robustness parameter of 0.5
cell=[0.1,0.1], # Using 0.1 arcsec pixels
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imsize=[256,256]) # Set image size = 256x256 pixels

This example will clean the entire inner quarter of the primary beam. However, if you want to
limit the region over which you allow the algorithm to find clean components then you can make
a deconvolution region (or mask). To use a deconvolution region, box, or mask, set the mask
parameter (§ 5.3.6).

Inside the Toolkit:
The im.clean method is used for
CLEANing data. There are a num-
ber of methods used to set up the
clean, including im.setoptions.

For example, you can set up a simple ’cleanbox’ region. To
do this, make a first cut at the image and clean the inner
quarter. Then use the viewer to look at the image and
get an idea of where the emission is located. You can use
the viewer adjustment panel to view the image in pixel
coordinates and read out the pixel locations of your cursor.

Then, you can use those pixel read-outs you just go to
define a clean box region with the CASA region format
described in ChapterD. For example, say you have a continuum source near the center of your
image between the pixel coordinates [80,80] and [120,120], you may use the rectangular region:

mask=’box[[80pix,80pix],[120pix,120pix]]’

For more complicated and multiple clean regions, it will be best to use the viewer to create them
interactively or to create a region file (Chapter D) and use that file as an input like:

mask=’myregions.txt’

The following are the clean specific parameters and their allowed values, followed by a description
of carrying out interactive cleaning.

5.3.1 Parameter psfmode

The psfmode parameter chooses the “algorithm” that will be used to calculate the synthesized
beam for use during the minor cycles in the image plane. The value types are strings. Allowed
choices are ’clark’ (default) and ’hogbom’.

5.3.1.1 The clark algorithm

In the ’clark’ algorithm, the cleaning is split into minor and major cycles. In the minor cycles only
the brightest points are cleaned, using a subset of the point spread function. In the major cycle,
the points thus found are subtracted correctly by using an FFT-based convolution. This algorithm
is reasonably fast. Also, for polarization imaging, Clark searches for the peak in I2 +Q2 +U2 +V 2.
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5.3.1.2 The hogbom algorithm

The hogbom algorithm is the “Classic” image-plane CLEAN, where model pixels are found itera-
tively by searching for the peak. Each point is subtracted from the full residual image using the
shifted and scaled point spread function. In general, this is not a good choice for most imaging
problems (clark or csclean are preferred) as it does not calculate the residuals accurately. But in
some cases, with poor uv-coverage and/or a PSF with bad sidelobes, the Hogbom algorithm will
do better as it uses a smaller beam patch. For polarization cleaning, Hogbom searches for clean
peak in I, Q, U , and V independently.

5.3.1.3 The clarkstokes algorithm

In the ’clarkstokes’ algorithm, the Clark psf (§ 5.3.1.1) is used, but for polarization imaging the
Stokes planes are cleaned sequentially for components instead of jointly as in ’clark’. This means
that this is the same as ’clark’ for Stokes I imaging only. This option can also be combined with
imagermode=’csclean’ (§ 5.3.4).

5.3.2 The multiscale parameter

Inside the Toolkit:
The im.setscales method sets the
multi-scale Gaussian widths. In ad-
dition to choosing a list of sizes in
pixels, you can just pick a number of
scales and get a geometric series of
sizes.

To activate multi-scale mode, specify a non-blank list
of scales in the multiscale parameter. A good rule
of thumb for starters is [ 0, 2xbeam, 5xbeam ], and
maybe adding larger scales up to the maximum scale
the interferometer can image. E.g. for a 2 arcsecond
beam

multiscale = [0,6,10,30] # Four scales including point sources

These are given in numbers of pixels, and specify FWHM
of the Gaussians used to compute the filtered images.

Setting the multiscale parameter to a non-empty list opens up the sub-parameter:

multiscale = [0, 6, 10, 30] # set deconvolution scales (pixels)
negcomponent = -1 # Stop cleaning if the

# largest scale finds this number of neg
# components

smallscalebias = 0.6 # a bias to give more weight
# toward smaller scales

The negcomponent sub-parameter is here to set the point at which the clean terminates because of
negative components. For negcomponent > 0, component search will cease when this number of
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negative components are found at the largest scale. If negcomponent = -1 then component search
will continue even if the largest component is negative.

Increasing smallscalebias gives more weight to small scales. A value of 1.0 weighs the largest
scale to zero and a value < 0.2 weighs all scales nearly equally. The default of 0.6 is usually a good
number as it corresponds to a weighting that approximates the normalization of each component
by its area. Depending on the image, however, it may be necessary to tweak the smallscalebias
for a better convergence of the algorithm. Note that currently, this parameter is ignored by the
MS-MFS algorithm. It will be available in a future release.

Multi-scale cleaning is also not as sensitive to the loop gain as regular cleaning algorithms. A loop
gain of 0.3 may still work fine and will considerably speed up the processing time. Increasing the
cyclefactor by a few (e.g. 5) may provide better stability in the solution, in particular when the
data exhibit a severely non-Gaussian dirty beam.

The CASA multi-scale algorithm uses “Multi-scale CLEAN” to deconvolve using delta-functions
and circular Gaussians as the basis functions for the model, instead of just delta-functions or pixels
as in the other clean algorithms. This algorithm is still in the experimental stage, mostly because
we are working on better algorithms for setting the scales for the Gaussians. The sizes of the
Gaussians are set using the scales sub-parameter.

We are working on defining a better algorithm for scale setting. In the toolkit, there is an nscale
argument which sets scales

θi = θbmin 10(i−N/2)/2 (5.12)

where N =nscales and θbmin is the fitted FWHM of the minor axis of the CLEAN beam.

5.3.3 Parameter gain

The gain parameter sets the fraction of the flux density in the residual image that is removed and
placed into the clean model at each minor cycle iteration. The default value is gain = 0.1 and is
suitable for a wide-range of imaging problems. Setting it to a smaller gain per cycle, such as gain
= 0.05, can sometimes help when cleaning images with lots of diffuse emission. Larger values, up
to gain=1, are probably too aggressive and are not recommended.

5.3.4 Parameter imagermode

This choose the mode of operation of clean, either as single-field deconvolution using image-plane
major and minor cycles only (imagermode=’’), single-field deconvolution using Cotton-Schwab
(CS) residual visibilities for major cycles (imagermode=’csclean’), or multi-field mosaics using
CS major cycles (imagermode=’mosaic’).

The default imagermode=’csclean’ choice specifies the Cotton-Schwab algorithm. This opens up
the sub-parameters

imagermode = ’csclean’ # Options: ’csclean’ or
# ’mosaic’, ’’, uses psfmode
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Figure 5.1: Close-up of the top of the interactive clean window. Note the boxes at the left (where
the iterations, cycles, and threshold can be changed), the buttons that control add/erase, the
application of mask to channels, and whether to stop, complete, or continue cleaning, and the row
of Mouse-button tool assignment icons.

cyclefactor = 1.5 # Controls how often major
# cycles are done. (e.g. 5 for
# frequently)

cyclespeedup = -1 # Cycle threshold doubles in
# this number of iterations

These options are explained below. In the CS mode, cleaning is split into minor and major cycles.
For each field, a minor cycle is performed using the PSF algorithm specified in psfmode (§ 5.3.1).
At major-cycle breakpoints, the points thus found are subtracted from the original visibilities. A
fast variant does a convolution using a FFT. This will be faster for large numbers of visibilities. If
you want to be extra careful, double the image size from that used for the Clark clean and set a
mask to clean only the inner quarter or less (this is not done by default). This is probably the best
choice for high-fidelity deconvolution of images without lots of large-scale structure.

Note that when using the Cotton-Schwab algorithm with a threshold (§ 5.3.12), there may be
strange behavior when you hit the threshold with a major cycle. In particular, it may be above
threshold again at the start of the next major cycle. This is particularly noticeable when cleaning
a cube, where different channels will hit the threshold at different times.

In the empty mode (imagermode=’’), the major and minor clean cycles work off of the gridded
FFT dirty image, with residuals updated using the PSF calculation algorithm set by the psfmode
parameter (§ 5.3.1). This method is not recommended for high dynamic range or high fidelity
imaging applications, but can be significantly faster than CS clean (the default). Note that for this
option only, if mask=’’ (no mask or box set) then it will clean the inner quarter of the image by
default.
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ALERT: You will see a warning message in the logger, similar to this:

Zero Pixels selected with a Flux limit of 0.000551377 and a maximum Residual of 0.00751239

whenever it find 0 pixels above the threshold. This is normal, and not a problem, if you’ve specified
a non-zero threshold. On the other hand, if you get this warning with the threshold set to the default
of ’0Jy’, then you should look carefully at your inputs or your data, since this usually means that
the masking is bad.

The option imagermode=’mosaic’ is for multi-field mosaics. This choice opens up the sub-
parameters

imagermode = ’mosaic’ # Use csclean or mosaic. If ’’, use psfmode
mosweight = False # Individually weight the fields of the mosaic
ftmachine = ’mosaic’ # Gridding method for the image
scaletype = ’SAULT’ # Controls scaling of pixels in the image plane.
cyclefactor = 1.5 # change depth in between of csclean cycle
cyclespeedup = -1 # Cycle threshold doubles in this number of iteration

These options are explained below.

5.3.4.1 Sub-parameter cyclefactor

Inside the Toolkit:
The im.setmfcontrol method sets
the parameters that control the cy-
cles and primary beam used in mo-
saicing.

This sub-parameter is activated for imagermode=’csclean’
and ’mosaic’.

The cyclefactor parameter allows the user to change the
threshold at which the deconvolution cycle will stop and
then degrid and subtract the model from the visibilities
to form the residual. This is with respect to the breaks
between minor and major cycles that the clean part would
normally force. Larger values force a major cycle more
often.

This parameter in effect controls the threshold used by CLEAN to test whether a major cycle break
and reconciliation occurs:

cycle threshold = cyclefactor * max sidelobe * max residual

If mosaic or csclean diverges on your data, try a larger cyclefactor. A larger value typically
increases the robustness of your deconvolution. The price, however, will be a slower algorithm. On
the other hand, if you find that the cleaning is slow due to taking too many major cycle breaks,
then reduce cyclefactor.

Note that currently the cycle threshold will saturate at a maximum value of 0.80 even when you
set cyclefactor to a very high value or you have very high PSF sidelobes. This means that with
a gain = 0.1 you will get 3 minor cycles per major cycle when hitting the limit.
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Some rules of thumb:

If you have data taken with a small number of antennas, for example from ALMA in the commis-
sioning and early-science phase, then you will have high sidelobes in the PSF. In this case, you will
have to reduce cyclefactor considerably, likely into the range 0.25 to 0.5, if you want efficient
cleaning of simple source structures (e.g. point sources). You can use the viewer to look at your
PSF image and see what the maximum sidelobe level is and judge accordingly.

However, if your uv-coverage results in a poor PSF and you have complex source structure, then
you should reconcile often (a cyclefactor of 4 or 5). For reasonable PSFs, use cyclefactor in the
range 1.5 to 2.0. For good PSFs, or for faster cleaning at the expense of some fidelity, we recommend
trying a lower value, e.g. cyclefactor = 0.25, which at least in some of our mosaicing tests led
to a speedup of around a factor of two with little change in residuals.

5.3.4.2 Sub-parameter cyclespeedup

This sub-parameter is activated for imagermode=’csclean’ and ’mosaic’.

The cyclespeedup parameter allows the user to let clean to raise the threshold at which a major
cycle is forced if it is not converging to that threshold. To do this, set cyclespeedup to an integer
number of iterations at which if the threshold is not reached, the threshold will be doubled. See
cyclefactor above for more details. By default this is turned off (cyclespeedup = -1). In our
tests, a value like cyclespeedup = 50 has been used successfully.

5.3.4.3 Sub-parameter ftmachine

This sub-parameter is activated for imagermode=’mosaic’. Note: The actual “ftmachine” used
may be overridden by choices made to other parameters, such as gridmode.

The ftmachine parameter controls the gridding method and kernel to be used to make the image.
A string value type is expected. Choices are: ’ft’, ’sd’, ’both’, or ’mosaic’ (the default).

The ’ft’ option uses the standard gridding kernel (as used in clean).

The ’sd’ option forces gridding as in single-dish data.

For combining single-dish and interferometer MS in the imaging, the ’both’ option will allow
clean to choose the ‘ft’ or ’sd’ machines as appropriate for the data.

Inside the Toolkit:
The im.setoptions method sets the
parameters relevant to mosaic imag-
ing, such as the ftmachine.

The ’mosaic’ option (the default) uses the Fourier trans-
form of the frequency-dependent primary beam (the aper-
ture cross-correlation function in the uv-plane) as the grid-
ding kernel. This allows the data from the multiple fields
to be gridded down to a single uv-plane, with a signifi-
cant speed-up in performance in most (non-memory lim-
ited) cases. The effect of this extra convolution is an addi-
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tional multiplication (apodization) by the primary beam in the image plane. This can be corrected
for, but does result in an image with optimal signal to noise ratio across it.

The primary beams used in CASA are described in § 5.2.14.

ALERT: Note that making a non-square image (e.g. using unequal values in imsize) for ftmachine=’mosaic’
will grid the data into a uv-plane with correspondingly non-square cells. This has not been ex-
tensively tested, and may results in undesired image artifacts. We recommend that the user make
square mosaic images when possible, but in principle non-square images should work.

5.3.4.4 Sub-parameter mosweight

If mosweight=False (default) then the data will be weighted for optimal signal to noise ratio across
the mosaic image. This should be used for most cases.

If mosweight=True then individual mosaic field relative weights will be readjusted on a per visibility
basis (much like uniform gridding weights). This may give better performance in cases where one
or a few fields in the mosaic have drastically different weights and/or integration time, and it is
desired that the noise be more “uniform” across the mosaic image. Use this with care, we have not
explored its use fully.

5.3.4.5 Sub-parameter scaletype

Inside the Toolkit:
The im.setmfcontrol method gives
more options for controlling the pri-
mary beam and noise across the im-
age.

The scaletype parameter controls weighting of pixels in
the image plane. This sub-parameter is activated for
imagermode=’mosaic’.

The default scaletype=’PBCOR’ scales the image to have
the correct flux scale across it (out to the beam level cutoff
minpb). This means that the noise level will vary across
the image, being increased by the inverse of the weighted
primary beam responses that are used to rescale the fluxes.
This option should be used with care, particularly if your data has very different exposure times
(and hence intrinsic noise levels) between the mosaic fields.

If scaletype=’SAULT’ then the image will be scaled so as to have constant noise across it. This
means that the point source response function varies across the image attenuated by the weighted
primary beam(s). However, this response is output in the .flux image and can be later used to
correct this.

Note that this scaling as a function of position in the image occurs after the weighting of mosaic
fields specified by mosweight and implied by the gridding weights (ftmachine and weighting).

5.3.4.6 The threshold revisited

For mosaics, the specification of the threshold is not straightforward, as it is in the single field case.
This is because the different fields can be observed to different depths, and get different weights in
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the mosaic. We now provide internal rescaling (based on scaletype) so clean does its component
search on a properly weighted and scaled version of the sky.

For ftmachine=’ft’, the minor cycles of the deconvolution are performed on an image that has
been weighted to have constant noise, as in ’SAULT’ weighting (see § 5.3.4.5). This is equivalent
to making a dirty mosaic by coadding dirty images made from the individual pointings with a
sum of the mosaic contributions to a given pixel weighted by so as to give constant noise across
the image. This means that the flux scale can vary across the mosaic depending on the effective
noise (higher weighted regions have lower noise, and thus will have higher “fluxes” in the ’SAULT’
map). Effectively, the flux scale that threshold applies to is that at the center of the highest-
weighted mosaic field, with higher-noise regions down-scaled accordingly. Compared to the true
sky, this image has a factor of the PB, plus a scaling map (returned in the .flux image). You will
preferentially find components in the low-noise regions near mosaic centers.

When ftmachine=’mosaic’ and scaletype=’SAULT’, the deconvolution is also performed on a
“constant noise image”, as detailed above for ’ft’.

ALERT: The intrinsic image made using ftmachine=’mosaic’ is equivalent to a dirty mosaic that
is formed by coadding dirty images made from the individual fields after apodizing each by the
PB function. Thus compared to the true sky, this has a factor of the PB2 in it. You would thus
preferentially find components in the centers of the mosaic fields (even more so than in the ’ft’
mosaics). We now rescale this image internally at major-cycle (and interactive) boundaries based
on scaletype, and do not have a way to clean on the raw unscaled dirty image (as was done in
previous released versions).

5.3.5 Parameter interactive

If interactive=True is set, then an interactive window will appear at various “cycle” stages while
you clean, so you can set and change mask regions. These breakpoints are controlled by the
npercycle sub-parameter which sets the number of iterations of clean before stopping.

interactive = True # use interactive clean (with GUI viewer)
npercycle = 100 # Number of iterations before interactive prompt

Note that npercycle is currently the only way to control the breakpoints in interactive clean.

For spectral cube imaging, it is often easier to deal with each channel in turn, rather than cleaning
all channels in each cycle. We therefore provide the chaniter=True option under ’mode’, where it
will clean a channel fully before moving to the next one. You will set masks for each channel.

See the example of interactive cleaning in § 5.3.14.

5.3.6 Parameter mask

The mask parameter takes a list of elements, each of which can be a list of coordinates specifying a
box, or a string pointing to the name of a cleanbox file, mask image, or region file. These are used
by CLEAN to define a region to search for components.
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Note that for imagermode=’’ (§ 5.3.4) the default with mask=’’ is to restrict clean to the inner
quarter of the image.

5.3.6.1 Setting clean boxes

mask can be a list of CASA regions. For example,

mask = ’box[[80pix, 80pix],[120pix,120pix]],circle[[150pix,150pix],10pix]’

defines a box and a circle. They will be applied to all channels. To define different regions for
different channel ranges, it will be best to use interactive mode in clean, the viewer (note that
the viewer still created old format regions - they are still supported in CASA 3.3) or to create
a CASA region file that contain the different regions. ChapterD describes the syntax of CASA
regions. They can be specified by;

mask = ’regionfile.rgn, regionfile2.rgn’

5.3.6.2 Using clean mask images

You can give the mask parameter a string containing the name of a mask image to be used for
CLEAN to search for components. You can use interactive=True to create such a mask for your
image (§ 5.3.5).

5.3.7 Parameter minpb

The minpb parameter sets the level down to which the primary beam (or more correctly the voltage
patterns in the array) can go and have a given pixel included in the image. This is important as
it defines where the edge of the visible image or mosaic is. The default is 0.1 or equivalent to the
10% response level. If there is a lot of emission near the edge, then set this lower if you want to be
able to clean it out.

NOTE: The minpb parameter is the level in the “primary beam” (PB) at which the cut is made. If
you are using ftmachine=’mosaic’ (§ 5.3.4.3), this will show up in the .flux.pbcoverage image
(new in version 2.4.0). See the discussion of threshold (§ 5.3.4.6) for related issues.

5.3.8 Parameter modelimage

The modelimage parameter specifies the name(s) of one or more input starting image(s) to use to
calculate the first residual before cleaning. These are used in addition to any image with a name
defaulting from the imagename root (e.g. on a restart). The output model will contain this model
plus clean components found during deconvolution.

If the units of the image are Jy/pixel, then this is treated as a model image.
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If the units of the image are Jy/beam or Jy per solid angle, then this is treated as a “single-dish”
image and rescaled by the resolution (in the ’beam’ image header keyword). Inclusion of the SD
image here is superior to feathering it in later. See § 5.6 for more information on feathering.

5.3.9 Parameter niter

The niter parameter sets the maximum total number of minor-cycle CLEAN iterations to be
performed during this run of clean. If restarting from a previous state, it will carry on from where
it was. Note that the threshold parameter can cause the CLEAN to be terminated before the
requested number of iterations is reached.

5.3.10 Parameter pbcor

The pbcor parameter controls whether the final .image is scaled to correct for the Primary Beam
of the array or not.

If pbcor=False (the default), then no such scaling is done and the image is in whatever “raw” scaling
used by the imagermode algorithm underneath. For single-field cleaning with imagermode=’’ or
’csclean’, this is the standard constant-noise image. If imagermode=’mosaic’, then this is the
’SAULT’ scaled image (regardless of what scaletype is set to).

If pbcor=True, the at the end of deconvolution and imaging the “raw” image is rescaled by dividing
by the noise and PB correction image. This is what is output by clean as the .flux image.

Note that regardless of what you set pbcor to, you can recover the other option using immath
(§ 6.6) to either multiply or divide by the .flux image.

5.3.11 Parameter restoringbeam

The restoringbeam parameter allows the user to set a specific Gaussian restoring beam to make
the final restored .image from the final .model and residuals.

If restoringbeam=’’ (the default), then the restoring beam is calculated by fitting to the PSF
(e.g. the .psf image). For a mosaic, this is at the center of the field closest to the phasecenter.

The restoring beam can also be used to establish a single beam for large fractional bandwidths. If
the PSF changes more than half a pixel across all channels in a cube, the PSF itself will be stored in
the form of a cube, changing size from channel to channel. A specified restoring beam will output
all planes at the same resolution and thus collapse to a single PSF (note that this can also be done
in hindsight using imsmooth).

To specify a restoring beam, provide restoringbeam a list of [bmaj, bmin, bpa] which are the pa-
rameters of an elliptical Gaussian. The default units are in arc-seconds for bmaj, bmin components
and degrees for the bpa component.

For example,
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restoringbeam=[’10arcsec’] # circular Gaussian FWHM 10"
restoringbeam=[’10.0’,’5.0’,’45.0deg’] # 10"x5" at PA=45 degrees

5.3.12 Parameter threshold

The threshold parameter instructs clean to terminate when the maximum absolute residual
reaches this level or below. Note that it may not reach this residual level due to the value of the
niter parameter which may cause it to terminate early.

If threshold is given a floating-point number, then this is the threshold in milli-Jansky.

You can also supply a flux density quanta to threshold, e.g.

threshold = ’8.0mJy’
threshold = ’0.008Jy’

(these do the same thing).

5.3.13 Parameter gridmode

The gridmode parameter is now provided to access more advanced deconvolution capabilities. The
default gridmode=’’ is recommended for most cases.

The gridmode=’widefield’ option allows imaging in the wide-field regime where the W-term is
not negligible. The CASA implementation allows both standard uv-plane faceting as well as the
W-Projection algorithm 2 or a combination of the two. Its sub-parameters are:

gridmode = ’widefield’ # Gridding kernel for FFT-based
# transforms, default=’’ None

wprojplanes = 1 # Number of w-projection planes for convolution
facets = 1 # Number of facets along each axis (main image only)

The wprojplanes parameter sets the number of pre-computed w-planes used for the W-Projection
algorithm (wprojplanes=1 disables w-projection). The facets parameter sets the number of facets
used. W-Projection, if used, is done for each facet. See § 5.3.18 below for more on wide-field imaging.

gridmode=’aprojection’: A-Projection is an algorithm to account for the effects of the antenna
primary beam (PB) during imaging. The time-dependent effects of the PB are projected-out
during the imaging phase and the PB is included in the prediction phase of the iterative image
deconvolution (see Bhatnagar, Cornwell, Golap & Uson 2008, A&A, 487, 419) for more details.
Please also refer to this publication in your papers if this algorithm is used for imaging. The
narrow-band A-Projection can be used by setting the gridmode=’aprojection’ in the clean task.
This opens up the following new parameters:

2Cornwell et al. IEEE JSTSP (2008).
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gridmode = ’aprojection’ # Gridding kernel for FFT-based
# transforms, default=’’ None

cfcache = ’cfcache.dir’ # Convolution function cache directory
rotpainc = 5.0 # Parallactic angle increment

# (degrees) for OTF A-term rotation
painc = 360.0 # Parallactic angle increment

# (degrees) for computing A-term

cfcache is used to cache functions required in the A-Projection algorithm. The PB is rotated
on-the-fly when a change of greater than rotpainc is detected. Alternatively, PB is re-computed
if the P.A. changes by greater than painc.

Note that this code is still in the development and testing stage and should be used on shared-risk
basis. Note also that the cost of imaging will be higher when using A-Projection. Therefore make
a careful evaluation of whether you need to invoke it.

5.3.14 Interactive Cleaning — Example

If interactive=True is set, then an interactive window will appear at various “cycle” stages while
you clean, so you can set and change mask regions. These breakpoints are controlled by the
npercycle sub-parameter which sets the number of iterations of clean before stopping.

The window controls are fairly self-explanatory. It is basically a form of the viewer. A close-up of
the controls are shown in Figure 5.1, and an example can be found in Figures 5.2–5.4. You assign
one of the drawing functions (rectangle or polygon, default is rectangle) to the right-mouse button
(usually), then use it to mark out regions on the image. Zoom in if necessary (standard with the
left-mouse button assignment). Double-click inside the marked region to add it to the mask. If you
want to reduce the mask, click the Erase radio button (rather than Add), then mark and select as
normal. When finished setting or changing your mask, click the green clockwise arrow “Continue
Cleaning” Next Action button. If you want to finish your clean with no more changes to the mask,
hit the blue right arrow “Apply mask edits and proceed with non-interactive clean” button. If you
want to terminate the clean, click the red X “Stop deconvolving now” button.

While stopped in an interactive step, you can change a number of control parameters in the boxes
provided at the left of the menu bar. The main use of this is to control how many iterations
before the next breakpoint (initially set to npercycle), how many cycles before completion (initially
equal to niter/npercycle), and to change the threshold for ending cleaning. Typically, the user
would start with a relatively small number of iterations (50 or 100) to clean the bright emission
in tight mask regions, and then increase this as you get deeper and the masking covers more of
the emission region. For extended sources, you may end up needing to clean a large number of
components (10000 or more) and thus it is useful to set niter to a large number to begin with
— you can always terminate the clean interactively when you think it is done. Note that if you
change iterations you may also want to change cycles or your clean may terminate before you
expect it to.

For strangely shaped emission regions, you may find using the polygon region marking tool (the
second from the right in the button assignment toolbar) the most useful.
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Figure 5.2: Screen-shots of the interactive clean window during deconvolution of the VLA 6m
Jupiter dataset. We start from the calibrated data, but before any self-calibration. In the initial
stage (left), the window pops up and you can see it dominated by a bright source in the center.
Next (right), we zoom in and draw a box around this emission. We have also at this stage dismissed
the tape deck and Position Tracking parts of the display (§ 7.2) as they are not used here. We
have also changed the iterations to 30 for this boxed clean. We will now hit the Next Action
Continue Cleaning button (the green clockwise arrow) to start cleaning.

The sequence of cleaning starting with the “raw” externally calibrated data is shown in Figures 5.2
– 5.4.

The final result of all this cleaning for Jupiter is shown in Figure 5.5. The viewer (§ 7) was used
to overplot the polarized intensity contours and linear polarization vectors calculated using immath
(§ 6.6) on the total intensity. See the following chapters on how to make the most of your imaging
results.

For spectral cube images you can use the tapedeck to move through the channels. You also use the
panel with radio buttons for choosing whether the mask you draw applies to the Displayed Plane
or to All Channels. See Figure 5.6 for an example. Note that currently the Displayed Plane
option is set by default. This toggle is unimportant for single-channel images or mode=’mfs’.

Advanced Tip: Note that while in interactive clean, you are using the viewer. Thus, you have
the ability to open and register other images in order to help you set up the clean mask. For
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Figure 5.3: We continue in our interactive cleaning of Jupiter from where Figure 5.2 left off. In the
first (left) panel, we have cleaned 30 iterations in the region previously marked, and are zoomed in
again ready to extend the mask to pick up the newly revealed emission. Next (right), we have used
the Polygon tool to redraw the mask around the emission, and are ready to Continue Cleaning
for another 100 iterations.

example, if you have a previously cleaned image of a complex source or mosaic that you wish to
use to guide the placement of boxes or polygons, just use the Open button or menu item to bring
in that image, which will be visible and registered on top of your dirty residual image that you are
cleaning on. You can then draw masks as usual, which will be stored in the mask layer as before.
Note you can blink between the new and dirty image, change the colormap and/or contrast, and
carry out other standard viewer operations. See § 7 for more on the use of the viewer.

ALERT: Currently, interactive spectral line cleaning is done globally over the cube, with halts
for interaction after searching all channels for the requested npercycle total iterations. It is more
convenient for the user to treat the channels in order, cleaning each in turn before moving on. This
will be implemented in an upcoming update.
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Figure 5.4: We continue in our interactive cleaning of Jupiter from where Figure 5.3 left off. In
the first (left) panel, it has cleaned deeper, and we come back and zoom in to see that our current
mask is good and we should clean further. We change npercycle to 500 (from 100) in the box
at upper right of the window. In the final panel (right), we see the results after this clean. The
residuals are such that we should terminate the clean using the red X button and use our model
for self-calibration.

5.3.15 Mosaic imaging

The clean task contains the capability to image multiple pointing centers together into a single
“mosaic” image. This ability is controlled by setting imagermode=’mosaic’ (§ 5.3.4).

The key parameter that controls how clean produces the mosaic is the ftmachine sub-parameter
(§ 5.3.4.3). For ftmachine=’ft’, clean will perform a weighted combination of the images pro-
duced by transforming each mosaic pointing separately. This can be slow, as the individual sub-
images must be recombined in the image plane. NOTE: this option is preferred for data taken
with sub-optimal mosaic sampling (e.g. fields too far apart, on a sparse irregular pattern, etc.).

The primary beams used in CASA are described in § 5.2.14.

If ftmachine=’mosaic’, then the data are gridded onto a single uv-plane which is then trans-
formed to produce the single output image. This is accomplished by using a gridding kernel
that approximates the transform of the primary beam pattern. Note that for this mode the



CHAPTER 5. SYNTHESIS IMAGING 315

Figure 5.5: After clean and self-calibration using the intensity image, we arrive at the final polar-
ization image of Jupiter. Shown in the viewer superimposed on the intensity raster is the linear
polarization intensity (green contours) and linear polarization B-vectors (vectors). The color of the
contours and the sampling and rotation by 90 degrees of the vectors was set in the Display Options
panel. A LEL expression was used in the Load Data panel to mask the vectors on the polarized
intensity.

<imagename>.flux image includes this convolution kernel in its effective weighted response pat-
tern (needed to “primary-beam correct” the output image). For this mode only, an additional
image <imagename>.flux.pbcoverage is produced that is the primary-beam coverage only used
to compute the minpb cutoff (§ 5.3.7).

The flatnoise parameter determines whether the minor cycle performs on the the residual with or
without a primary beam correction. Whereas the former has the correct fluxes, the latter has a
uniform noise, which allows for a simpler deconvolution in particular at the the edges of the mosaic
where the primary beam correction is largest.

ALERT: In order to avoid aliasing artifacts for ftmachine=’mosaic’ in the mosaic image, due
to the discrete sampling of the mosaic pattern on the sky, you should make an image in which the
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Figure 5.6: Screen-shot of the interactive clean window during deconvolution of the NGC5921
spectral line dataset. Note where we have selected the mask to apply to the Displayed Plane
rather than All Channels. We have just used the Polygon tool to draw a mask region around the
emission in this channel, which will apply to this channel only.

desired unmasked part of the image (above minpb) lies within the inner quarter. In other words,
make an image twice as big as necessary to encompass the mosaic.

It is also important to choose an appropriate phasecenter for your output mosaic image (§ sec-
tion:im.pars.phasecenter). The phase center should not be at the edge of an image with pointings
around it. In that case, FFT aliasing may creep into the image.
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An example of a simple mosaic clean call is shown below:

clean(vis=’n4826_tboth.ms’,
imagename=’tmosaic’,
mode=’channel’,
nchan=30,start=46, # Make the output cube 30 chan
width=4, # start with 46 of spw 0, avg by 4 chans
spw=’0~2’,
field=’0~6’,
cell=[1.,1.],
imsize=[256,256],
stokes=’I’,
psfmode=’clark’,
niter=500,
imagermode=’mosaic’,
scaletype=’SAULT’,
cyclefactor=0.1)

5.3.16 Heterogeneous imaging

The clean task and underlying tools can handle cases where there are multiple dish sizes, and thus
voltage patterns and primary beams, in the array. This is effected by using the dish sizes stored
in the ANTENNA sub-table of the MS. Depending on how the data was written and imported into
CASA, the user may have to manually edit this table to insert the correct dish sizes (e.g. using
browsetable or the tb table tool).

5.3.17 Polarization imaging

The clean task handles full and partial Stokes polarization imaging through the setting of the
stokes parameter (§ 5.2.10). The subsequent deconvolution of the polarization planes of the image
and the search for clean components is controlled by the psfmode parameter (§ 5.3.1). If the stokes
parameter includes polarization planes other than I, then choosing psfmode=’hogbom’ (§ 5.3.1.2)
or psfmode=’clarkstokes’ (§ 5.3.1.3) will clean (search for components) each plane sequentially,
while psfmode=’clark’ (§ 5.3.1.1) will deconvolve jointly.

The interactive clean example given above (§ 5.3.14) shows a case of polarization imaging.

5.3.18 Wide-field imaging and deconvolution in clean

When imaging sufficiently large angular regions, the sky can no longer be treated as a two-
dimensional plane and the use of the standard clean task will produce distortions around sources
that become increasingly severe with increasing distance from the phase center. In this case, one
must use a “wide-field” imaging algorithm such as w-projection or faceting.

When is wide-field imaging needed? The number of required facets N depends on the maximum
baseline Bmax, the dish diameter D and the wavelength λ as:
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Receiver Band Wavelength [cm] Array configurations
4 430 A/B/C/D
L 20 A/B/C
S 10 A/B
C 5 A
X 3 A
Ku 2 A
K 1.4 –
Ka 0.9 –
Q 0.7 –

Table 5.1: Combinations of observing band (wavelength,) and antenna array configurations that
require w-projection.

N =
Bmax λ

D2
(5.13)

and w-projection is required when N > 1. (For details, see “Synthesis Imaging in Radio Astronomy
II”, ed. Taylor, G., Carilli, C., Perley, R. 1999). With 25 m diameter JVLA dishes (which implies
that imaging is requested out to the primary beam FWHM), w-projection is required for array
configurations as listed in Table 5.1.

The relevant inputs for clean for wide-field imaging are:

gridmode = ’widefield’ # The kind gridding kernel to
# be used for FFT-based transforms

wprojplanes = 1 # Number of w-projection planes for convolution
facets = 1 # Number of facets along each axis (main image only)

Most of the clean parameters behave as described previously.

Wide-field imaging can be carried out using two major modes: First, the w-projection mode as
chosen with ftmachine deals with the w-term (the phase associated with the sky/array curvature)
internally. Secondly, the image can be broken into many facets, each small enough so that the w-
term is not significant. These two basic methods can be combined, as discussed below in § 5.3.18.4.

5.3.18.1 Outlier fields

When using wide-field imaging, the position and image size of any independent images must be
specified. Those positions will be used to add additional cleaning components to strong sources
that may reside in that area and influence the central image.

There are a two options to specify the outlier fields:

Direct listing of fields The outlier field directions are provided via their centers (phasecenter
parameter), and their sizes as a second entry in the imsize parameter, e.g. 128 pixels in the
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example below. clean will derive two additional images and their names are to be provided in the
imagename field that will then be a list of the main field name plus the outlier field names:

vis = ’wfield.ms’ # name of input visibility file
imagename=[’n5921’,’outlier1’,’outlier2’] # Pre-name of output images
outlierfile = ’’ # Text file with image names, sizes, centers
mask = [[’image_setup.rgn’],[’’],[’’]]
imsize = [[2048,2048],[128,128],[128,128]] # Image size in pixels (nx,ny)
cell = ’1.0arcsec’ # The image cell size in arcseconds [x,y].
phasecenter = [’’,’J2000 13h27m20.98 43d26m28.0’, ’J2000 13h30m52.158 43d23m08.00’]

Outlier file For many outlier fields, it may be easier to setup the main interface to clean for the
main field only and list outlier fields in an additional outlierfile:

imagename=’n5921’
outlierfile = ’outliers.txt’
imsize=[1024,1024]
phasecenter = ’’

outliers.txt provides all outlier fields with a syntax that is similar to the direct input, but separated
by field. Below is an example for an outlierfile:

#content of outliers.txt
#
#outlier field1
imagename=’outlier1’
imsize=[512,512]
phasecenter = ’J2000 13h30m52.15 43d23m08.0’
mask=’box[[245pix,245pix],[265pix,265pix]]’
#
#outlier field2
imagename=’outlier2’
imsize=[512,512]
phasecenter = ’J2000 13h24m08.16 43d09m48.0’

The syntax rules for the outlier files are:

• each field must begin with imagename followed by

• imsize and phasecenter must be given

• optionally a mask can be provided. The mask parameter follows the CASA region file con-
vention (Chapter D) or can be a mask file or LEL string.

The older AIPS-style convention (and box definition) that was used in CASA 3.2 and earlier is still
supported in CASA 3.3 but will be deprecated for CASA 3.4 and higher.
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5.3.18.2 Setting up w-projection

The w-projection mode is controlled using wprojplanes sub-parameter, e.g.

gridmode = ’widefield’ # The kind gridding kernel to
# be used for FFT-based transforms

wprojplanes = 64 # Number of w-projection planes for convolution
facets = 1 # Number of facets along each axis (main image only)

will construct 64 w-projection planes.

The w-projection algorithm is much faster than using faceting, but it does consume a lot of memory.
On most 32-bit machines with 1 or 2 Mbytes of memory, images larger than about 4000 × 4000
cannot be made.

5.3.18.3 Setting up faceting

Faceting will break the image into many small parts. This is invoked using facets:

gridmode = ’widefield’ # The kind gridding kernel to be used for FFT-based transforms
wprojplanes = 1 # Number of w-projection planes for convolution
facets = 7 # Number of facets along each axis (main image only)

In this example the image is broken into 49 (7× 7) facets.

A reasonable value of facets is such that the image width of each facet does not need the w-
term correction. The computation method with pure faceting is slow, so that w-projection is
recommended

5.3.18.4 Combination of w-projection and faceting

You can also use a combination of w-projection and faceting:

gridmode = ’widefield’ # The kind gridding kernel to be used for FFT-based transforms
wprojplanes = 32 # Number of w-projection planes for convolution
facets = 3 # Number of facets along each axis (main image only)

This hybrid method allows for a smaller number of wprojplanes in order to try to conserve memory
if the image size approached the memory limit of the computer. However, there is a large penalty
in execution time.
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5.4 Refactored clean: tclean

tclean is a refactored version of clean with a better interface, more possible combinations of
algorithms and new algorithms. tclean also allows to process the imaging and deconvolution on
parallelized computing methods. tclean is still undergoing testing and improvement and we refer
to the inline help for a detailed task description.

Eventually tclean will replace the current clean task.

5.5 Primary Beam Correction (impbcor, widebandpbcor)

The primary beam correction can be applied during the imaging with clean. It is also possible to
correct after imaging using the task impbcor for ’regular’ data sets, or widebandpbcorr for those
that used the Taylor-term expansion function in clean (nterms>1). pbcor has the following inputs:

# impbcor :: Construct a primary beam corrected image from an image
and a primary beam pattern.
imagename = ’’ # Name of the input image
pbimage = ’’ # Name of the primary beam

# image which must exist or
# array of values for the pb response. Default ""

outfile = ’’ # Output image name. If empty, no image is written.
# Default ""

box = ’’ # One or more boxes to use
# for fit region(s). Default is
# to use the entire directional plane.

region = ’’ # The region to correct. Default is entire image. If
# both box and region are specified, box is used and
# region is not.

chans = ’’ # The frequency planes to correct. Default is all
# frequencies.

stokes = ’I’ # The correlations to correct. Default is all.
mask = [] # Boolean LEL expression or mask region. Default is

# none.
mode = ’velocity’ # Divide or multiply the image by the primary beam

# image. Minimal match supported. Default "divide"
cutoff = -1.0 # PB cutoff. If mode is "d", all values less than this

# will be masked. If "m", all values greater will be
# masked. Less than 0, no cutoff. Default no cutoff

wantreturn = False # Return an image tool
# referencing the corrected image?

The main inputs are the input image and the image of a primary beam (usually your “image.flux”
output image from clean) in the pbimage parameter. The mode parameter will typically be ’divide’
but it is also possible to multiply with the beam pattern.

widebandpbcor has the following options
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# widebandpbcor :: Wideband PB-correction on the output of the MS-MFS algorithm
vis = ’’ # Name of measurement set.
imagename = ’’ # Name-prefix of multi-termimages to operate on.
nterms = 2 # Number of taylor terms to use
threshold = ’’ # Intensity above which to

# re-calculate spectral index
action = ’pbcor’ # PB-correction (pbcor) or

# only calc spectral-index (calcalpha)
reffreq = ’’ # Reference frequency (if specified in clean)
pbmin = 0.2 # PB threshold below which to not correct
field = ’’ # Fields to include in the PB calculation
spwlist = ’’ # List of N spw ids
chanlist = [] # List of N channel ids
weightlist = [] # List of N weights (relative)

action=’pbcor’ computes Taylor-coefficient images that represent the primary beam spectrum
and applies them to the input Taylor coefficient images. The action=’calcalpha’ will recalculate
spectral index maps based on the primary beam correction polynomials.

5.6 Combined Single Dish and Interferometric Imaging (feather)

The term “feathering” is used in radio imaging to describe how to combine or “feather” two
images together by forming a weighted sum of their Fourier transforms in the (gridded) uv-plane.
Intermediate size scales are down-weighted to give interferometer resolution while preserving single-
dish total flux density.

The feathering technique does the following:

1. The single-dish and interferometer images are Fourier transformed.

2. The beam from the single-dish image is Fourier transformed (FTSDB(u, v)), (alternatively,
one can specify some smaller portion of the single dish aperture, which corresponds to a wider
beam).

3. The Fourier transform of the interferometer image is multiplied by (1−FTSDB(u, v)). This
basically down weights the shorter spacing data from the interferometer image.

4. The Fourier transform of the single-dish image is scaled by the volume ratio of the interfer-
ometer restoring beam to the single dish beam.

5. The results from 3 and 4 are added and Fourier transformed back to the image plane.

Other Packages:
The feather task is analogous
to the AIPS IMERG task and the
MIRIAD immerge task with option
’feather’.

The term feathering derives from the tapering or down-
weighting of the data in this technique; the overlapping,
shorter spacing data from the deconvolved interferometer
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image is weighted down compared to the single dish im-
age while the overlapping, longer spacing data from the
single-dish are weighted down compared to the interferom-
eter image.

The tapering uses the transform of the low resolution point spread function. This can be specified
as an input image or the appropriate telescope beam for the single-dish. The point spread function
for a single dish image may also be calculated using clean.

Advice: Note that if you are feathering large images, be advised to have the number of pixels along
the X and Y axes to be composite numbers and definitely not prime numbers. In general FFTs
work much faster on even and composite numbers. You may use subimage function of the image
tool to trim the number of pixels to something desirable.

The inputs for feather are:

# feather :: Combine two images using their Fourier transforms
imagename = ’’ # Name of output feathered image
highres = ’’ # Name of high resolution (interferometer) image
lowres = ’’ # Name of low resolution (single dish) image
sdfactor = 1.0 # Scale factor to apply to Single Dish image
effdishdiam = -1.0 # New effective SingleDish diameter to use in m
lowpassfiltersd = False # Filter out the high spatial frequencies of the SD

# image

Alert: Before feathering data, make
sure that the single dish data header
is correct. The units need to be
in Jy/beam, and the beam to be in
the usual bmin and bmaj keywords
(check with imhead if CASA rec-
ognizes all header information cor-
rectly). feather also does not
accept interferometric data cubes
with a varying beam size per chan-
nel. Prior to the combination,
make sure that the cube has a
single beam size for all channels,
you may use imsmooth with ker-
nel=’commonbeam’ to smooth the
data to the largest beam in the cube.

The single-dish data cube is specified by the lowres and
the interferometric data cube by the highres keyword.
The combined, feathered output cube name is given by the
imagename parameter. sdfactor can be used to adjust the
flux calibration of the images. Since single-dish processing
typically involves the fit of a baseline level, it might be the
one with the most uncertain calibration and sdfactor will
multiply with the single-dish image values for any needed
correction.

The weighting functions for the data are usually the Fourier
transform of the Single Dish beam FFT(PBSD) for the Sin-
gle dish data, and the inverse, 1-FFT(PBSD) for the in-
terferometric data. It is possible, however, to change the
weighting functions by pretending that the SD is smaller
in size via the effdishdiameter parameter. This tapers
the high spatial frequencies of the SD data and adds more
weight to the interferometric data. The lowpassfiltersd
can take out artifacts at very high spatial frequencies that
are often present but non-physical in SD data.

Note that the only inputs are for images and feather will attempt to regrid the images to a
common shape, i.e. pixel size, pixel numbers, and spectral channels. feather does not do any
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deconvolution but combines presumably deconvolved images after the fact. This implies that the
short spacings extrapolated by the deconvolution process will be those that are down-weighted the
most. The single dish image must have a well-defined beam shape and the correct flux units for a
model image (Jy/beam instead of Jy/pixel) so use the tasks imhead and immath first to convert if
needed.

Starting with a cleaned synthesis image and a low resolution image from a single dish telescope,
the following example shows how they can be feathered:

feather(imagename=’feather.im’, # Create an image called feather.im
highres=’synth.im’, # The synthesis image is called synth.im
lowres=’single_dish.im’ # The SD image is called single_dish.im
)

5.6.1 Visual Interface for feather (casafeather)

CASA also provides a visual interface to the feather task. The interface is run from a command
line outside CASA by typing casafeather in a shell. Fig. 5.7 shows an example. As a first step,
one needs to specify a high and a low resolution image, typically an interferometric and a single
dish map. Note that the single dish map needs to be in units of Jy beam−1. An output image is
usually specified, too, and an additional image, such as a non-deconvolved (dirty) interferometric
image can be specified, too. On the main GUI, press “Feather” to start the feathering process,
which includes regridding the low resolution image to the high resolution image.

“casafeather” has the ability to show two major rows of displays (see Fig. 5.7) that can be turned
on or off. A good visualization is usually obtained by making both axes logarithmic. This can
be specified in the “Customize menu”, the toothed wheel symbol at the top of the panel. The two
rows of displays are: 1) “Original Data Slice”: Cuts through the u and v directions of the Fourier
transformed input images. A vertical line shows the location of the effective dish diameter(s).
2) “Feathered Data Slice”: The same cuts, but scaled by the “low resolution scale factor” and
weighted by the weighting functions (see § 5.6). In this display, the weighting functions themselves
are shown, too.

At the top of the display effdshdiameter for u and v and sdfactor can be provided in the
“Effective Dish Diameter” and “Low Resolution Scale Factor” input boxes.

The data can be visualized in different forms. The data type to be displayed can be selected in
the “Color Options” menu. The data can be the unmodified, original data, or data that have been
convolved with the high or low resolution beams. One can also select to display data that were
weighted and scaled by the functions discussed above.

The data can also be displayed in the form of a “scatter plot” (Fig. 5.8). This allows one to check
for differences in flux. In particular, the scaling parameter should be adjusted such that the flux
of the Low-resolution data, convolved with the High beam, weighted and scaled, is the same as the
Dirty data, convolved with the Low beam, weighted (use the High resolution data instead of the
Dirty data if the latter are not available). If that can be achieved, the flux adjustments should be
roughly correct. The “scatter plot” can display any two data sets on the two axes, selected from
the “Color Preferences” menu.
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Figure 5.7: Visual “casafeather” interface to the feather task.

The “Customize” button at the top (toothed wheel), allows one to set the display parameters as
seen in Fig. 5.9. Options are to show the slice plot, the scatter plot, or the legend. One can also
select between logarithmic and linear axes, and whether the x-axis for the slices are in the u, or v,
or both directions, or, alternatively a radial average in the uv-plane can be used. For data cubes
one can also select a particular velocity plane, or to average the data across all velocity channels.

5.7 Making Deconvolution Masks or Box Regions

For most careful imaging, you will want to restrict the region over which you allow CLEAN com-
ponents to be found. To do this, you can create a ’deconvolution region’ or ’mask’ image using the
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Figure 5.8: The scatter plot in casafeather.

Figure 5.9: The casafeather “customize” window.

boxit or the viewer. Note that clean can take simple boxes or box files as direct input to its mask
parameter, so these tasks are most useful when direct input to clean (or use of interactive clean)
will not suffice.

There are two ways to construct region files or mask images for use in deconvolution. The boxit
task will find a set of box regions based upon an input image and control parameters.
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5.7.1 Making Deconvolution Regions from an Image (boxit)

The boxit task creates “cleanbox” deconvolution regions automatically from an image. It searches
the image to find “islands”: all contiguous sets of pixels above the given threshold. The extreme
x- and y-pixels of the island are used to determine the corners of a rectangular box that covers
each island. The set of boxes are written out into a single region file with extension .rgn. Boxit
works on single-plane images as well as multi-channel images: in the latter case, the thresholding
and boxing is done separately in each plane of the image. The output region file from boxit can
be used as the mask input parameter for the clean task (§ 5.3).

The parameter inputs for boxit are:

# boxit :: Box regions in image above given threshold value.
imagename = ’’ # Name of image to threshold
regionfile = ’’ # Output region file
threshold = ’0.0mJy’ # Threshold value. Must include units.
minsize = 2 # Minimum number of pixels for a boxable island
diag = False # Count diagonal connections?
boxstretch = 1 # Increase box sizes by this many pixels beyond thresholded pixels.
overwrite = False # Overwrite existing region file?

The regionfile parameter specifies the root name of the region file. It will automatically be given
.rgn as the file extension. The minsize parameter specifies the smallest island that qualifies to be
boxed. It refers to the total number of pixels in the island. To include pixels connected only on
the diagonal as being part of the same island, set the diag parameter to True. The boxstretch
parameter increases the size of the boxes beyond the extent of the island, and can range from -1
to 5. For a value of 1 (the default), the box is stretched by one pixel in each outward direction;
therefore, each side of the box lengthens by two pixels. Finally, the parameter overwrite specifies
whether an existing region file can be overwritten.

ALERT: The boxit task is a prototype under active development and coded in Python. Eventually
we will add functionality to deal with the creation of non-rectangular regions and with multi-plane
masks, as well as efficiency improvements.

5.8 Insert an Image Model (ft)

The ft task will add a source model (units should be Jy/pixel) or a clean component list to a
Measurement Set. This is especially useful if you have a resolved calibrator and you want to start
with a model of the source before you derive accurate gain solutions. This is also helpful for
self-calibration (see § 5.10 below).

The inputs for ft are:

# ft :: Insert a source model a visibility set:
vis = ’’ # Name of input visibility file (MS)
field = ’’ # Field selection
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spw = ’all’ # Spw selection
model = ’’ # Name of input model image(s)
nterms = 1 # Number of terms used to model the sky frequency

# dependence
complist = ’’ # Name of component list
incremental = False # Add to the existing model visibility?
usescratch = False # If True predicted visibility is stored in MODEL_DATA

# column

An example on how to do this:

ft(vis=’n75.ms’, # Start with the visibility dataset n75.ms
field=’1328’, # Select field name ’1328+307’ (minimum match)
model=’1328.model.image’) # Name of the model image you have already

This example will add the source model ’1328.model.imag’ to all entries that match the field name
’1328’. If the parameter usescratch is set to ’True’, ft will Fourier transform the source model
and fill the MODEL DATA column with the data. This, however, is only needed in special applications
and usescratch=F is the default.

Alternatively, one can add a clean component list to be used as a model to the MS. The following
procedure is an example:

# for a point source with no spectral index
cl.addcomponent(flux=0.39, fluxunit=’Jy’,shape=’point’, dir=’J2000 19h33m09s 15d01m20s’)

# for a Gaussian with a spectral index
cl.addcomponent(flux=1.25, fluxunit=’mJy’, polarization=’Stokes’,
dir=’J2000 19h30m00s 15d00m00s’, shape=’gaussian’, majoraxis=’10arcsec’,
minoraxis=’6arcsec’, positionangle=’0deg’, freq=’1.25GHz’,
spectrumtype=’spectral index’, index=-0.8)
###you can add more components if you wish by calling addcomponent repeatedly with different params

##save it to disk
cl.rename(’my_component.cl’)
cl.close()

## write the model into the measurement set (’myms’)
ft(vis=’myms’, complist=’my_component.cl’)

5.9 Image-plane deconvolution (deconvolve)

If you have only an image (obtained from some telescope) and an image of its point spread function, then
you can attempt a simple image-plane deconvolution. Note that for interferometer data, full uv-plane
deconvolution using clean or similar algorithm is superior!

The default inputs for deconvolve are:
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# deconvolve :: Deconvolving a point spread function from an image

imagename = ’’ # Name of image to deconvolve
model = ’’ # Name of output image to which deconvolved components are stored
psf = ’’ # Name of psf or gaussian parameters if psf is assumed gaussian
alg = ’clark’ # Deconvolution algorithm to use
niter = 10 # number of iteration to use in deconvolution process
gain = 0.1 # CLEAN gain parameter
threshold = ’0.0Jy’ # level below which sources will not be deconvolved
mask = ’’ # Name of image that has mask to limit region of deconvolution

The algorithm (alg) options are: ’clark’, ’hogbom’, ’multiscale’ or ’mem’. The ’multiscale’
and ’mem’ options will open the usual set of sub-parameters for these methods.

5.10 Self-Calibration

Once you have a model image or set of model components reconstructed from your data using one
of the deconvolution techniques described above, you can use it to refine your calibration. This is
called self-calibration as it uses the data to determine its own calibration (rather than observations
of special calibration sources).

In principle, self-calibration is no different than the calibration process we described earlier (§ 4).
In effect, you alternate between calibration and imaging cycles, refining the calibration and the
model as you go. The trick is you have to be careful, as defects in early stages of the calibration
can get into the model, and thus prevent the calibration from improving. In practice, it is best to
not clean very deeply early on, so that the CLEAN model contains correct components only.

One important thing to keep in mind is that the self-calibration relies upon having the most recent
source model inside the MS. This is indeed the case if you follow the imaging (using clean) directly
by the self-calibration. If you have done something strange in between and have lost or overwritten
source model (for example done some extra cleaning that you do not want to keep), then use the
ft task (see § 5.8 above), which adds a source model image or clean component lists to an MS.

Likewise, during self-calibration (once you have a new calibration solution) the imaging part relies
upon having the CORRECTED DATA column contain the self-calibrated data. This is done with the
applycal task (§ 4.6.1).

The clearcal command can be used during the self-calibration if you need to clear the CORRECTED DATA
column and revert to the original DATA. If you need to restore the CORRECTED DATA to any previous
stage in the self-calibration, use applycal again with the appropriate calibration tables.

ALERT: In later patches we will change the tasks so that users need not worry what is contained
in the MS scratch columns and how to fill them. CASA will handle that underneath for you!

For now, we refer the user back to the calibration chapter for a reminder on how to run the
calibration tasks.
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5.11 Parallelized Cleaning

Parallelized cleaning on multi-core systems will be integrated in the new task tclean which is
currently experimental. This task will replace older code, e.g., pclean which should not be used
at this stage.

5.12 Examples of Imaging

The data reduction tutorials on casaguides.nrao.edu provide walkthroughs for high and low
frequency, spectral line and polarization imaging techniques.

casaguides.nrao.edu


Chapter 6

Image Analysis

Inside the Toolkit:
Image analysis is handled in the ia
tool. Many functions exist there, in-
cluding region statistics and image
math. See § 6.25 below for more in-
formation.

Once data has been calibrated (and imaged in the case of
synthesis data), the resulting image or image cube must be
displayed or analyzed in order to extract quantitative infor-
mation, such as statistics or moment images. In addition,
there need to be facilities for the coordinate conversion of
images for direct comparison.

The image analysis tasks are:

• imhead — summarize and manipulate the “header”
information in a CASA image (§ 6.2)

• imsubimage — Create a (sub)image from a region of
the image (§ 6.3)

• imcontsub — perform continuum subtraction on a
spectral-line image cube (§ 6.4)

• imfit — image plane Gaussian component fitting
(§ 6.5)

• immath — perform mathematical operations on or
between images (§ 6.6)

• immoments — compute the moments of an image cube
(§ 6.7)

• impv — generate a position-velocity diagram along a
slit (§ 6.8)

• imstat — calculate statistics on an image or part of
an image (§ 6.9)

331
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• imval — extract the data and mask values from a
pixel or region of an image (§ 6.10)

• imtrans — reorder the axes of an image or cube
(§ 6.11)

• imcollapse — collapse image along one or more axes
by aggregating pixel values along that axis (§ 6.12)

• imregrid — regrid an image onto the coordinate sys-
tem of another image (§ 6.13)

• imreframe — change the frame in which the image
reports its spectral values (§ 6.14)

• imrebin — rebin an image (§ 6.15)

• specsmooth — 1-dimensional smooth images in the
spectral and angular directions (§ 6.16)

• imsmooth — 2-dimensional smooth images in the spec-
tral and angular directions (§ 6.17)

• specfit — fit 1-dimensional Gaussians, polynomial,
and/or Lorentzians models to an image or image re-
gion (§ 6.18)

• rmfit — Calculation of rotation measures (§ 6.19)

• spxfit — Calculation of Spectral Indices and higher
order polynomials (§ 6.20)

• makemask — image mask handling (§ 6.21)

• slsearch — query a subset of the Splatalogue spec-
tral line catalog (§ 6.22)

• splattotable — convert a file exported from Splat-
alogue to a CASA table (§ 6.23)

• importfits — import a FITS image into a CASA
image format table (§ 6.24.2)

• exportfits — write out an image in FITS format
(§ 6.24.1)

There are other tasks which are useful during image analysis. These include:

• viewer — there are useful region statistics and image cube slice and profile capabilities in
the viewer (§ 7)

We also give some examples of using the CASA Toolkit to aid in image analysis (§ 6.25).
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6.1 Common Image Analysis Task Parameters

We now describe some sets of parameters are are common to the image analysis. These should
behave the same way in any of the tasks described in this section that they are found in.

ALERT: As of CASA 4.0.0 we introduced changed clean such that for large fractional bandwidths,
if the PSF changes more than half a pixel, a different beam will be used for each image plane. These
cubes are supported in all image analysis tasks.

6.1.1 Input Image (imagename)

The input image typically is an image cube. Most analysis tasks and tools also accept complex
valued images.

6.1.2 Region Selection (box)

Direction (e.g. RA, Dec) areal selection in the image analysis tasks is controlled by the box
parameter or through the region parameter (§ 6.1.6). Note that one should either specify a region
(recommended) or any of box/chans/stokes. Specifying both at the same time will give priority to
the command line inputs in ’chans’ and ’stokes’ but will keep the region file specification for the
spatial region selection.

The box parameter selects spatial rectangular areas:

box = ’’ # Select one or more box regions

# string containing blcx,blcy,trcx,trcy

# A box selection in the directional portion of an image.
# The directional portion of an image are the axes for right
# ascension and declination, for example. Boxes are specified
# by their bottom-left corner (blc) and top-right corner (trc)
# as follows: blcx, blcy, trcx, trcy;
# ONLY pixel values acceptable at this time.
# Default: none (all);
# Example: box=’0,0,50,50’

To get help on box, see the in-line help

help(par.box)
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6.1.3 Plane Selection (chans, stokes)

The channel, frequency, or velocity plane(s) of the image is chosen using the chans parameter:

chans = ’’ # Select the channel(spectral) range

# string containing channel range

# immath, imstat, and imcontsub - takes a string listing
# of channel numbers, velocity, and/or frequency
# numbers, much like the spw parameter
# Only channel numbers acceptable at this time.
# Default: none (all);
# Example: chans=’3~20’
# chans="0,3,4,8"
# chans="3~20,50,51"

chans can also be set in the CASA region format to allow settings ins frequency and velocity, e.g.

chans=("range=[-50km/s,50km/s], restfreq=100GHz, frame=LSRK")

this example would even define a new velocity system independent of the one in the image itself.
If the rest frequency and velocity frame within the image are being used, the latter two entries are
not needed. The parentheses are needed when the call is in a single command.

A frequency selection looks as follows:

chans=("range=[100GHz,100.125GHz]")

The polarization plane(s) of the image is chosen with the stokes parameter:

stokes = ’’ # Stokes params to image (I,IV,IQU,IQUV)

# string containing Stokes selections

# Stokes parameters to image, may or may not be separated
# by commas but best if you use commas.
# Default: none (all); Example: stokes=’IQUV’;
# Example:stokes=’I,Q’
# Options: ’I’,’Q’,’U’,’V’,
# ’RR’,’RL’,’LR’,’LL’,
# ’XX’,’YX’,’XY’,’YY’,...

To get help on these parameters, see the in-line help

help(par.chans)
help(par.stokes)

Sometimes, as in the immoments task, the channel/plane selection is generalized to work on more
than one axis type. In this case, the planes parameter is used. This behaves like chans in syntax.
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6.1.4 Lattice Expressions (expr)

Lattice expressions are strings that describe operations on a set of input images to form an output
image. These strings use the Lattice Expression Language (LEL). LEL syntax is described in detail
in AIPS++ Note 223

http://casa.nrao.edu/aips2_docs/notes/223/index.shtml

The expr string contains the LEL expression:

expr = ’’ # Mathematical expression using images

# string containing LEL expression

# A mathematical expression, with image file names.
# image file names must be enclosed in double quotes (")
# Default: none
# Example: expr=’min("image2.im")+(2*max("image1.im"))’
#
# Available functions in the expr and mask parameters:
# pi(), e(), sin(), sinh(), asinh(), cos(), cosh(), tan(), tanh(),
# atan(), exp(), log(), log10(), pow(), sqrt(), complex(), conj()
# real(), imag(), abs(), arg(), phase(), amplitude(), min(), max()
# round(), isgn(), floor(), ceil(), rebin(), spectralindex(), pa(),
# iif(), indexin(), replace(), ...

For examples using LEL expr, see § 6.6.1 below. Note that in immath, shortcut names have been
given to the images provided by the user in imagename that can be used in the LEL expression, for
the above example:

imagename=[’image2.im’,’image1.im’]
expr=’min(IM0)+(2*max(IM1))’

ALERT: LEL expressions use 0-based indices. Also, the functions must be lowercase (in almost
all cases we know about). Numbers in filenames may be interpreted a ssuch and not strings. Some
special characters may also need to be escaped. It is advisable to use double quotes outside single
quotes to make such strings being accepted as filenames instead of functions, e.g. ”’5sigma+file.im’”.

6.1.5 Masks (mask)

A mask can be used to define whether part of an image is used or not. There are different options
for masks:

• an image cube with Boolean True/False values

• an image cube with zero and non-zero values

http://casa.nrao.edu/aips2_docs/notes/223/index.shtml
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• an LEL string for a condition.

Using image cubes is useful to mask on a pixel by pixel basis, where False and zeros mark masked
pixels. Both versions can be converted into each other makemask (§ 6.21). Some analysis task show
an optional stretch parameter which is useful, e.g. to expand a single plane mask to an antire
cube along the spectral axis.

An LEL string (see § 6.1.4 above) can be an on-the-fly (OTF) mask expression or refer to an image
pixel mask.

mask = ’’ # Mask to be applied to the images

# string containing LEL expression

# Name of mask applied to each image in the calculation
# Default ’’ means no mask;
# Example: mask=’"ngc5921.clean.cleanbox.mask">0.5’
# mask=’mask(ngc5921.clean.cleanbox.mask)’

Note that the mask file supplied in the mask parameter must have the same shape, same number
of axes and same axes length, as the images supplied in the expr parameter, with one exception.
The mask may be missing some of the axes — if this is the case then the mask will be expanded
along these axes to become the same shape.

For examples using mask, see § 6.6.2 below.

6.1.6 Regions (region)

The region parameter points to a CASA region which can be directly specified or listed in a
ImageRegion file. An ImageRegion file can be created with the CASA viewer’s region manager
(§ 7.4.3). Or directly using the CASA region syntax (ChapterD. Typically ImageRegion files will
have the suffix ’.crtf’ for CASA Region Text Format.

Alert: When both the region parameter and any of box/chans/stokes are specified simultaneously,
the task may perform unwanted selections. Only specify one of these (sets of) parameters. We
recommend the use of CASA regions and may remove the box/chans/stokes selection in later
releases.

For example:

region=’circle[[18h12m24s, -23d11m00s], 2.3arcsec]’

or

region=’myimage.im.crtf’
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for to specify a region file.

For the most part, the region parameter in tasks only accepts strings (e.g. file names, region shape
descriptions) while the region parameter in ia tool methods only accepts python region dictionaries
(e.g. produced using the rg tool).

6.2 Image Header Manipulation (imhead)

To summarize and change keywords and values in the “header” of your image, use the imhead task.
Its inputs are:

# imhead :: List, get and put image header parameters
imagename = ’’ # Name of the input image
mode = ’summary’ # imhead options: add, del,

# get, history, list, put, summary
verbose = False # Give a full listing of

# beams or just a short summary?
# Only used when the image has multiple beams
# and mode="summary".

The mode parameter controls the operation of imhead.

Setting mode=’summary’ will print out a summary of the image properties and the header to the
logger.

Setting mode=’list’ prints out a list of the header keywords and values to the terminal.

The mode=’get’ allows the user to retrieve the current value for a specified keyword hdkey:

mode = ’get’ # imhead options: list, summary, get, put
hdkey = ’’ # The FITS keyword

Note that to catch this value, you need to assign it to a Python variable. See § 1.4.3 for more on
return values.

The mode=’put’ allows the user to replace the current value for a given keyword hditem with that
specified in hdvalue. There are two sub-parameters that are opened by this option:

mode = ’put’ # imhead options: list, summary, get, put
hdkey = ’’ # The FITS keyword
hdvalue = ’’ # Value of hdkey
hdtype = ’’ # Data type of the header keyword.
hdcomment = ’’ # Comment associated with the header keyword

WARNING: Be careful when using mode=’put’. This task does no checking on whether the
values you specify (e.g. for the axes types) are valid, and you can render your image invalid. Make
sure you know what you are doing when using this option!
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6.2.1 Examples for imhead

Here is an example – we can print the summary to the logger:

CASA <51>: imhead(’ngc5921.demo.cleanimg.image’,mode=’summary’)

prints in the logger:

##### Begin Task: imhead #####
Image name : ngc5921.demo.cleanimg.image
Object name : N5921_2
Image type : PagedImage
Image quantity : Intensity
Pixel mask(s) : None
Region(s) : None
Image units : Jy/beam
Restoring Beam : 52.3782 arcsec, 45.7319 arcsec, -165.572 deg

Direction reference : J2000
Spectral reference : LSRK
Velocity type : RADIO
Rest frequency : 1.42041e+09 Hz
Pointing center : 15:22:00.000000 +05.04.00.000000
Telescope : VLA
Observer : TEST
Date observation : 1995/04/13/00:00:00
Telescope position: [-1.60119e+06m, -5.04198e+06m, 3.55488e+06m] (ITRF)

Axis Coord Type Name Proj Shape Tile Coord value at pixel Coord incr Units
------------------------------------------------------------------------------------------------
0 0 Direction Right Ascension SIN 256 64 15:22:00.000 128.00 -1.500000e+01 arcsec
1 0 Direction Declination SIN 256 64 +05.04.00.000 128.00 1.500000e+01 arcsec
2 1 Stokes Stokes 1 1 I
3 2 Spectral Frequency 46 8 1.41279e+09 0.00 2.4414062e+04 Hz

Velocity 1607.99 0.00 -5.152860e+00 km/s
##### End Task: imhead

If the beam size per plane differs, the beam information will be displayed for the channel with the
smallest beam, the one with the largest beam, and the channel closest to the median beam size.
E.g.,

Restoring Beams
Pol Type Chan Freq Vel
I Max 0 9.680e+08 0 39.59 arcsec x 22.77 arcsec pa=-70.57 deg
I Min 511 1.990e+09 -316516 20.36 arcsec x 12.05 arcsec pa=-65.67 deg
I Median 255 1.478e+09 -157949 27.11 arcsec x 15.54 arcsec pa=-70.36 deg

If verbose=T the beam information for every plane will be provided.

If you choose mode=’list’, you get the summary in the logger and a listing of keywords and values
to the terminal:
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CASA <52>: imhead(’ngc5921.demo.cleanimg.image’,mode=’list’)

Out[52]:

{’beammajor’: 52.378242492675781,

’beamminor’: 45.731891632080078,

’beampa’: -165.5721435546875,

’bunit’: ’Jy/beam’,

’cdelt1’: ’-7.27220521664e-05’,

’cdelt2’: ’7.27220521664e-05’,

’cdelt3’: ’1.0’,

’cdelt4’: ’24414.0625’,

’crpix1’: 128.0,

’crpix2’: 128.0,

’crpix3’: 0.0,

’crpix4’: 0.0,

’crval1’: ’4.02298392585’,

’crval2’: ’0.0884300154344’,

’crval3’: ’I’,

’crval4’: ’1412787144.08’,

’ctype1’: ’Right Ascension’,

’ctype2’: ’Declination’,

’ctype3’: ’Stokes’,

’ctype4’: ’Frequency’,

’cunit1’: ’rad’,

’cunit2’: ’rad’,

’cunit3’: ’’,

’cunit4’: ’Hz’,

’datamax’: ’ Not Known ’,

’datamin’: -0.010392956435680389,

’date-obs’: ’1995/04/13/00:00:00’,

’equinox’: ’J2000’,

’imtype’: ’Intensity’,

’masks’: ’ Not Known ’,

’maxpixpos’: array([134, 134, 0, 38], dtype=int32),

’maxpos’: ’15:21:53.976, +05.05.29.998, I, 1.41371e+09Hz’,

’minpixpos’: array([117, 0, 0, 21], dtype=int32),

’minpos’: ’15:22:11.035, +04.31.59.966, I, 1.4133e+09Hz’,

’object’: ’N5921_2’,

’observer’: ’TEST’,

’projection’: ’SIN’,

’reffreqtype’: ’LSRK’,

’restfreq’: [1420405752.0],

’telescope’: ’VLA’}

Note that this list is a return value and can be captured in a variable:

mylist = imhead(’ngc5921.demo.cleanimg.image’,mode=’list’)

The values for these keywords can be queried using mode=’get’. At this point you should capture
the return value:

CASA <53>: mybmaj = imhead(’ngc5921.demo.cleanimg.image’,mode=’get’,hdkey=’beammajor’)

CASA <54>: mybmaj
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Out[54]: {’unit’: ’arcsec’, ’value’: 52.378242492699997}

CASA <55>: myobserver = imhead(’ngc5921.demo.cleanimg.image’,mode=’get’,hdkey=’observer’)

CASA <56>: print myobserver
{’value’: ’TEST’, ’unit’: ’’}

You can set the values for these keywords using mode=’put’. For example:

CASA <57>: imhead(’ngc5921.demo.cleanimg.image’,mode=’put’,hdkey=’observer’,hdvalue=’CASA’)
Out[57]: ’CASA’

CASA <58>: imhead(’ngc5921.demo.cleanimg.image’,mode=’get’,hdkey=’observer’)
Out[58]: {’unit’: ’’, ’value’: ’CASA’}

6.3 Extracting sub-images (imsubimage)

The task imsubimage provides a way to extract a smaller data cube from a bigger one. The inputs
are:

# imsubimage :: Create a (sub)image from a region of the image
imagename = ’’ # Input image name. Default is unset.
outfile = ’’ # Output image name. Default is unset.
region = ’’ # Region of interest. Default is whole image.
mask = ’’ # Mask to use. See help par.mask. Default is

# none.
dropdeg = False # Drop degenerate axes
overwrite = False # Overwrite (unprompted) pre-existing output

# file?
verbose = True # Post additional informative messages to the

# logger
stretch = False # Stretch the mask if necessary and possible?
wantreturn = True # If True, return an image analysis tool

# associated with the subimage. If False,
# return nothing.

The region keyword defines the size of the smaller cube and is specified via the CASA region
CRTF syntax. E.g.

region=’box [ [ 100pix , 130pix] , [120pix, 150pix ] ]’

will extract the portion of the image that is between pixel coordinates (100,130) and (12,150).
dropdeg=T is useful to remove axes in the data cube that are degenerate, i.e. axes with a single
plane only. A single Stokes I axis is a common example.



CHAPTER 6. IMAGE ANALYSIS 341

6.4 Continuum Subtraction on an Image Cube (imcontsub)

One method to separate line and continuum emission in an image cube is to specify a number of
line-free channels in that cube, make a linear fit to the visibilities in those channels, and subtract
the fit from the whole cube. Note that the task uvcontsub serves a similar purpose; see § 4.7.6 for
a synopsis of the pros and cons of either method.

The imcontsub task will subtract a polynomial baseline fit to the specified channels from an image
cube.

The default inputs are:

# imcontsub :: Continuum subtraction on images
imagename = ’’ # Name of the input image
linefile = ’’ # Output line image file name
contfile = ’’ # Output continuum image file name
fitorder = 0 # Polynomial order for the continuum estimation
region = ’’ # Image region or name to process see viewer
box = ’’ # Select one or more box regions
chans = ’’ # Select the channel(spectral) range
stokes = ’’ # Stokes params to image (I,IV,IQU,IQUV)

Area selection using box and region is detailed in § 6.1.2 and § 6.1.6 respectively.

Image cube plane selection using chans and stokes are described in § 6.1.3.

ALERT: imcontsub has issues when the image does not contain a spectral or stokes axis. Errors
are generated when run on an image missing one or both of these axes. You will need to use the
Toolkit (e.g. the ia.adddegaxes method) to add degenerate missing axes to the image.

6.4.1 Examples for imcontsub)

For example, we first make a clean image without the uv-plane continuum subtraction:

# First, run clearcal to clear the uvcontsub results from the
# corrected column
clearcal(’ngc5921.demo.src.split.ms’)

# Now clean, keeping all the channels except first and last
default(’clean’)
vis = ’ngc5921.demo.src.split.ms’
imagename = ’ngc5921.demo.nouvcontsub’
mode = ’channel’
nchan = 61
start = 1
width = 1
imsize = [256,256]
psfmode = ’clark’
imagermode = ’’
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cell = [15.,15.]
niter = 6000
threshold=’8.0mJy’
weighting = ’briggs’
robust = 0.5
mask = [108,108,148,148]
interactive=False
clean()

# It will have made the image:
# -----------------------------
# ngc5921.demo.nouvcontsub.image

# You can view this image
viewer(’ngc5921.demo.nouvcontsub.image’)

You can clearly see continuum sources in the image which were removed previously in the script
by the use of uvcontsub. Let’s see if imcontsub can work as well.

Using the viewer, it looks like channels 0 through 4 and 50 through 60 are line-free. Then:

default(’imcontsub’)
imagename = ’ngc5921.demo.nouvcontsub.image’
linefile = ’ngc5921.demo.nouvcontsub.lineimage’
contfile = ’ngc5921.demo.nouvcontsub.contimage’
fitorder = 1
chans = ’0~4,50~60’
stokes = ’I’
imcontsub()

This did not do too badly!

6.5 Image-plane Component Fitting (imfit)

The inputs are:

# imfit :: Fit one or more elliptical Gaussian components on an image region(s)
imagename = ’’ # Name of the input image
box = ’’ # Specify one or more box regions for the fit.
region = ’’ # Region. See help par.region for specs.
chans = ’’ # Spectral channels on which to perform fit. See "help

# par.chans" for examples.
stokes = ’’ # Stokes parameter to fit. If blank, first stokes plane is

# used.
mask = ’’ # Mask to use. See help par.mask. Default is none.
includepix = [] # Range of pixel values to include for fitting.
excludepix = [] # Range of pixel values to exclude for fitting.
residual = ’’ # Name of output residual image.
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model = ’’ # Name of output model image.
estimates = ’’ # Name of file containing initial estimates of component

# parameters.
logfile = ’’ # Name of file to write fit results.
newestimates = ’’ # File to write fit results which can be used as initial

# estimates for next run.
complist = ’’ # Name of output component list table.
dooff = False # Also fit a zero level offset? Default is False
rms = -1 # RMS to use in calculation of uncertainties. Numeric or

# valid quantity (record or string). If numeric, it is
# given units of the input image. If quantity, units must
# conform to image units. If not positive, the rms of the
# residual image, in the region of the fit, is used.

noisefwhm = ’’ # Noise correlation beam FWHM. If numeric value,
# interpreted as pixel widths. If quantity (dictionary,
# string), it must have angular units.

This task will return (as a Python dictionary) the results of the fit, but the results can also be
written into a component list table or a logfile.

Note that to fit more than a single component, you must provide starting estimates for each
component via the estimates file. See ‘‘help imfit’’ for more details on this. An noise estimate
will be calculated automatically or can be provided through the rms and noisefwhm keywords.

6.5.1 Examples for imfit

The following are some examples using the B1608+656 Tutorial

http://casa.nrao.edu/Doc/Scripts/b1608_demo.py

as an example.

# First fit only a single component at a time
# This is OK since the components are well-separated and not blended
# Box around component A
xfit_A_res = imfit(’b1608.demo.clean2.image’,box=’121,121,136,136’,

newestimates=’b1608.demo.clean2.newestimate’)

# Now extract the fit part of the return value
xfit_A = xfit_A_res[’results’][’component0’]
#xfit_A
# Out[7]:
#{’flux’: {’error’: array([ 6.73398035e-05, 0.00000000e+00, 0.00000000e+00,
# 0.00000000e+00]),
# ’polarisation’: ’Stokes’,
# ’unit’: ’Jy’,
# ’value’: array([ 0.01753742, 0. , 0. , 0. ])},
# ’label’: ’’,

http://casa.nrao.edu/Doc/Scripts/b1608_demo.py
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# ’shape’: {’direction’: {’error’: {’latitude’: {’unit’: ’arcsec’,
# ’value’: 0.00041154866279462775},
# ’longitude’: {’unit’: ’arcsec’,
# ’value’: 0.00046695916589535109}},
# ’m0’: {’unit’: ’rad’, ’value’: -2.0541102061078207},
# ’m1’: {’unit’: ’rad’, ’value’: 1.1439131060384089},
# ’refer’: ’J2000’,
# ’type’: ’direction’},
# ’majoraxis’: {’unit’: ’arcsec’, ’value’: 0.29100166137741568},
# ’majoraxiserror’: {’unit’: ’arcsec’,
# ’value’: 0.0011186420613222663},
# ’minoraxis’: {’unit’: ’arcsec’, ’value’: 0.24738110059830495},
# ’minoraxiserror’: {’unit’: ’arcsec’,
# ’value’: 0.0013431999725066338},
# ’positionangle’: {’unit’: ’deg’, ’value’: 19.369249322401796},
# ’positionangleerror’: {’unit’: ’rad’,
# ’value’: 0.016663189295782171},
# ’type’: ’Gaussian’},
# ’spectrum’: {’frequency’: {’m0’: {’unit’: ’GHz’, ’value’: 1.0},
# ’refer’: ’LSRK’,
# ’type’: ’frequency’},
# ’type’: ’Constant’}}

# Now the other components
xfit_B_res = imfit(’b1608.demo.clean2.image’,box=’108,114,120,126’,

newestimates=’b1608.demo.clean2.newestimate’,append=True)
xfit_B = xfit_B_res[’results’][’component0’]

xfit_C_res= imfit(’b1608.demo.clean2.image’,box=’108,84,120,96’)
xfit_C = xfit_C_res[’results’][’component0’]

xfit_D_res = imfit(’b1608.demo.clean2.image’,box=’144,98,157,110’)
xfit_D = xfit_D_res[’results’][’component0’]

print ""
print "Imfit Results:"
print "--------------"
print "A Flux = %6.4f Bmaj = %6.4f" % (xfit_A[’flux’][’value’][0],xfit_A[’shape’][’majoraxis’][’value’])
print "B Flux = %6.4f Bmaj = %6.4f" % (xfit_B[’flux’][’value’][0],xfit_B[’shape’][’majoraxis’][’value’])
print "C Flux = %6.4f Bmaj = %6.4f" % (xfit_C[’flux’][’value’][0],xfit_C[’shape’][’majoraxis’][’value’])
print "D Flux = %6.4f Bmaj = %6.4f" % (xfit_D[’flux’][’value’][0],xfit_D[’shape’][’majoraxis’][’value’])
print ""

Now try fitting four components together. For this we will have to provide an estimate file. We
will use the clean beam for the estimate of the component sizes:

estfile=open(’b1608.demo.clean2.estimate’,’w’)
print >>estfile,’# peak, x, y, bmaj, bmin, bpa’
print >>estfile,’0.017, 128, 129, 0.293arcsec, 0.238arcsec, 21.7deg’
print >>estfile,’0.008, 113, 120, 0.293arcsec, 0.238arcsec, 21.7deg’
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print >>estfile,’0.008, 113, 90, 0.293arcsec, 0.238arcsec, 21.7deg’
print >>estfile,’0.002, 151, 104, 0.293arcsec, 0.238arcsec, 21.7deg’
estfile.close()

Then, this can be used in imfit:

xfit_all_res = imfit(’b1608.demo.clean2.image’,
estimates=’b1608.demo.clean2.estimate’,
logfile=’b1608.demo.clean2.imfitall.log’,
newestimates=’b1608.demo.clean2.newestimate’,
box=’121,121,136,136,108,114,120,126,108,84,120,96,144,98,157,110’)

# Now extract the fit part of the return values
xfit_allA = xfit_all_res[’results’][’component0’]
xfit_allB = xfit_all_res[’results’][’component1’]
xfit_allC = xfit_all_res[’results’][’component2’]
xfit_allD = xfit_all_res[’results’][’component3’]

These results are almost identical to those from the individual fits. You can see a nicer printout of
the fit results in the logfile.

6.6 Mathematical Operations on an Image (immath)

The inputs are:

# immath :: Perform math operations on images
imagename = ’’ # a list of input images
mode = ’evalexpr’ # mode for math operation (evalexpr, spix, pola, poli)

expr = ’’ # Mathematical expression using images
varnames = ’’ # a list of variable names to use with the image files

outfile = ’immath_results.im’ # File where the output is saved
mask = ’’ # Mask to be applied to the images
region = ’’ # File path which contains an Image Region
box = ’’ # Select one or more box regions in the input images
chans = ’’ # Select the channel(spectral) range
stokes = ’I’ # Stokes params to image (I,IV,IQU,IQUV)

In all cases, outfile must be supplied with the name of the new output file to create.

The mode parameter selects what immath is to do.

The default mode=’evalexpr’ lets the user specify a mathematical operation to carry out on one
or more input images. The sub-parameter expr contains the Lattice Expression Language (LEL)
string describing the image operations based on the images in the imagename parameter. See § 6.1.4
for more on LEL strings and the expr parameter.

Mask specification is done using the mask parameter. This can optionally contain an on-the-fly
mask expression (in LEL) or point to an image with a pixel mask. See § 6.1.5 for more on the use



CHAPTER 6. IMAGE ANALYSIS 346

of the mask parameter. See also § 6.1.4 for more on LEL strings. Sometimes, one would like to
use a flat image (e.g. a moment image) mask to be applied to an entire cube. The stretch=True
subparameter in mask allows one to expand the mask to all planes of the cube.

Region selection is carried out through the region and box parameters. See § 6.1.2 and § 6.1.6 for
more on area selection.

Image plane selection is controlled by chans and stokes. See § 6.1.3 for details on plane selection.

For mode=’evalexpr’, the standard usage for specifying images to be used in the LEL expression is
to provide them as a list in the imagename parameter, and then access there in the LEL expression
by the names IM0, IM1, .... For example,

immath(imagename=[’image1.im’,’image2.im’],expr=’IM0-IM1’,outfile=’ImageDiff.im’)

would subtract the second image given from the first.

For the special modes ’spix’, ’pola’, ’poli’, the required images for the given operation are to
be provided in imagename (sometimes in a particular order). V3.0 ALERT: For mode=’pola’ you
MUST call as a function as in the example below (§ 6.6.1.2), giving the parameters as arguments,
or immath will fail.

Detailed examples are given below.

6.6.1 Examples for immath

In the following, we show a few examples of immath. Note that the image names in the expr are
assumed to refer to existing image files in the current working directory.

6.6.1.1 Simple math

Select a single plane (channel 22) of the 3-D cube and subtract it from the original image:

immath(imagename=’ngc5921.demo.cleanimg.image’,
expr=’IM0’,chans=’22’,
outfile=’ngc5921.demo.chan22.image’)

Double all values in our image:

immath(imagename=[’ngc5921.demo.chan22.image’],
expr=’IM0*2.0’,
outfile=’ngc5921.demo.chan22double.image’ )

Square all values in our image:

immath(imagename=[’ngc5921.demo.chan22.image’],
expr=’IM0^2’,
outfile=’ngc5921.demo.chan22squared.image’ )



CHAPTER 6. IMAGE ANALYSIS 347

Note that the units in the output image are still claimed to be “Jy/beam”, i.e. immath will not
correctly scale the units in the image for non-linear cases like this. Beware.

You can do other mathematical operations on an image (e.g. trigonometric functions) as well as
use scalars results from an image (e.g. max, min, median, mean, variance). You also have access to
constants such as e() and pi() (which are doubles internally, while most images are floats). For
example: Take the sine of an image:

immath(imagename=[’ngc5921.demo.chan22.image’,’ngc5921.demo.chan22squared.image’],
expr=’sin(float(pi())*IM0/sqrt(max(IM1)))’,
outfile=’ngc5921.demo.chan22sine.image’)

Note again that the units are again kept as they were.

Select a single plane (channel 22) of the 3-D cube and subtract it from the original image:

immath(imagename=’ngc5921.demo.cleanimg.image’,
expr=’IM0’,chans=’22’,
outfile=’ngc5921.demo.chan22.image’)

immath(imagename=[’ngc5921.demo.cleanimg.image’,’ngc5921.demo.chan22.image’],
expr=’IM0-IM1’,
outfile=’ngc5921.demo.sub22.image’)

Note that in this example the 2-D plane gets extended in the third dimension and the 2-D values
are applied to each plane in the 3-D cube.

Select and save the inner 1/4 of an image for channels 40,42,44 as well as channels 10 and below:

default(’immath’)
imagename=[’ngc5921.demo.cleanimg.image’]
expr=’IM0’
region=’box[[64pix,64pix],[192pix,192pix]]’
chans=’<10;40,42,44’
outfile=’ngc5921.demo.inner.image’
immath()

ALERT: Note that if chan selects more than one channel then the output image has a number of
channels given by the span from the lowest and highest channel selected in chan. In the example
above, it will have 45 channels. The ones not selected will be masked in the output cube. If we
had set

chans = ’40,42,44’

then there would be 5 output channels corresponding to channels 40,41,42,43,44 of the MS with
41,43 masked. Also, the chans=’<10’ selects channels 0–9.

Note that the chans syntax allows the operators ’<’, ’<=’, ’>’, ’>’. For example,
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chans = ’<17,>79’
chans = ’<=16,>=80’

do the same thing.

Divide an image by another, with a threshold on one of the images:

immath(imagename=[’ngc5921.demo.cleanimg.image’,’ngc5921.demo.chan22.image’],
expr=’IM0/IM1[IM1>0.008]’,
outfile=’ngc5921.demo.div22.image’)

6.6.1.2 Polarization manipulation

The following are some examples using the 3C129 Tutorial

http://casa.nrao.edu/Doc/Scripts/3c129_tutorial.py

as an example.

It is helpful to extract the Stokes planes from the cube into individual images:

default(’immath’)
imagename = ’3C129BC.clean.image’
outfile=’3C129BC.I’; expr=’IM0’; stokes=’I’; immath();
outfile=’3C129BC.Q’; expr=’IM0’; stokes=’Q’; immath();
outfile=’3C129BC.U’; expr=’IM0’; stokes=’U’; immath();
outfile=’3C129BC.V’; expr=’IM0’; stokes=’V’; immath();

Extract linearly polarized intensity and polarization position angle images:

immath(stokes=’’, outfile=’3C129BC.P’, mode=’poli’,
imagename=[’3C129BC.Q’,’3C129BC.U’], sigma=’0.0mJy/beam’);

immath(stokes=’’, outfile=’3C129BC.X’, mode=’pola’,
imagename=[’3C129BC.Q’,’3C129BC.U’], sigma=’0.0mJy/beam’);

V3.0 ALERT: For mode=’pola’ you MUST call as a function as in this example (giving the
parameters as arguments) or immath will fail.

Create a fractional linear polarization image:

default( ’immath’)
imagename = [’3C129BC.I’,’3C129BC.Q’,’3C129BC.U’]
outfile=’3C129BC.fractional_linpol’
expr=’sqrt((IM1^2 + IM2^2)/IM0^2)’
stokes=’’
immath()

Create a polarized intensity image:

http://casa.nrao.edu/Doc/Scripts/3c129_tutorial.py
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default( ’immath’)
imagename = [’3C129BC.Q’,’3C129BC.U’,’3C129BC.V’]
outfile=’3C129BC.pol_intensity’
expr=’sqrt(IM0^2 + IM1^2 + IM2^2)’
stokes=’’
immath()

Toolkit Tricks: The following uses the toolkit (§ 6.25). You can make a complex linear polarization
(Q + iU) image using the imagepol tool:

# See CASA User Reference Manual:
# http://casa.nrao.edu/docs/casaref/imagepol-Tool.html
#
# Make an imagepol tool and open the clean image
potool = casac.homefinder.find_home_by_name(’imagepolHome’)
po = potool.create()
po.open(’3C129BC.clean.image’)
# Use complexlinpol to make a Q+iU image
po.complexlinpol(’3C129BC.cmplxlinpol’)
po.close()

You can now display this in the viewer, in particular overlay this over the intensity raster with the
intensity contours. When you load the image, use the LEL:

’3C129BC.cmplxlinpol’[’3C129BC.P’>0.0001]

which is entered into the LEL box at the bottom of the Load Data menu (§ 7.3.1).

6.6.2 Using masks in immath

The mask parameter is used inside immath to apply a mask to all the images used in expr before
calculations are done (if you are curious, it uses the ia.subimage tool method to make virtual
images that are then input in the LEL to the ia.imagecalc method).

For example, let’s assume that we have made a single channel image using clean

default(’clean’)

vis = ’ngc5921.demo.src.split.ms.contsub’
imagename = ’ngc5921.demo.chan22.cleanimg’
mode = ’channel’
nchan = 1
start = 22
step = 1

field = ’’
spw = ’’
imsize = [256,256]
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cell = [15.,15.]
psfalg = ’clark’
gain = 0.1
niter = 6000
threshold=’8.0mJy’
weighting = ’briggs’
rmode = ’norm’
robust = 0.5

mask = [108,108,148,148]

clean()

There is now a file ’ngc5921.demo.chan22.cleanimg.mask’ that is an image with values 1.0 inside
the cleanbox region and 0.0 outside.

We can use this to mask the clean image:

default(’immath’)
imagename = ’ngc5921.demo.chan22.cleanimg.image’
expr=’IM0’
mask=’"ngc5921.demo.chan22.cleanimg.mask">0.5’
outfile=’ngc5921.demo.chan22.cleanimg.imasked’
immath()

Toolbox Tricks: Note that there are also pixel masks that can be contained in each image. These
are Boolean masks, and are implicitly used in the calculation for each image in expr. If you want
to use the mask in a different image not in expr, try it in mask:

# First make a pixel mask inside ngc5921.demo.chan22.cleanimg.mask
ia.open(’ngc5921.demo.chan22.cleanimg.mask’)
ia.calcmask(’"ngc5921.demo.chan22.cleanimg.mask">0.5’)
ia.summary()
ia.close()
# There is now a ’mask0’ mask in this image as reported by the summary

# Now apply this pixel mask in immath
default(’immath’)
imagename=’ngc5921.demo.chan22.cleanimg.image’
expr=’IM0’
mask=’mask(ngc5921.demo.chan22.cleanimg.mask)’
outfile=’ngc5921.demo.chan22.cleanimg.imasked1’
immath()

Note that nominally the axes of the mask must be congruent to the axes of the images in expr.
However, one exception is that the image in mask can have fewer axes (but not axes that exist but
are of the wrong lengths). In this case immath will extend the missing axes to cover the range in
the images in expr. Thus, you can apply a mask made from a single channel to a whole cube.
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# drop degenerate stokes and freq axes from mask image
ia.open(’ngc5921.demo.chan22.cleanimg.mask’)
im2 = ia.subimage(outfile=’ngc5921.demo.chan22.cleanimg.mymask’,dropdeg=True)
im2.summary()
im2.close()
ia.close()
# mymask has only RA and Dec axes

# Now apply this mask to the whole cube
default(’immath’)
imagename=’ngc5921.demo.cleanimg.image’
expr=’IM0’
mask=’"ngc5921.demo.chan22.cleanimg.mymask">0.5’
outfile=’ngc5921.demo.cleanimg.imasked’
immath()

For more on masks as used in LEL, see

http://casa.nrao.edu/aips2_docs/notes/223/index.shtml

or in § 6.1.5 above.

6.7 Computing the Moments of an Image Cube (immoments)

For spectral line datasets, the output of the imaging process is an image cube, with a frequency or
velocity channel axis in addition to the two sky coordinate axes. This can be most easily thought
of as a series of image planes stacked along the spectral dimension.

A useful product to compute is to collapse the cube into a moment image by taking a linear
combination of the individual planes:

Mm(xi, yi) =
N∑
k

wm(xi, yi, vk) I(xi, yi, vk) (6.1)

for pixel i and channel k in the cube I. There are a number of choices to form the m moment,
usually approximating some polynomial expansion of the intensity distribution over velocity mean
or sum, gradient, dispersion, skew, kurtosis, etc.). There are other possibilities (other than a
weighted sum) for calculating the image, such as median filtering, finding minima or maxima along
the spectral axis, or absolute mean deviations. And the axis along which to do these calculation
need not be the spectral axis (i.e. do moments along Dec for a RA-Velocity image). We will treat
all of these as generalized instances of a “moment” map.

The immoments task will compute basic moment images from a cube. The default inputs are:

# immoments :: Compute moments of an image cube:
imagename = ’’ # Input image name

http://casa.nrao.edu/aips2_docs/notes/223/index.shtml


CHAPTER 6. IMAGE ANALYSIS 352

moments = [0] # List of moments you would like to compute
axis = ’spectral’ # The moment axis: ra, dec, lat, long, spectral, or stokes
region = ’’ # Image Region. Use viewer
box = ’’ # Select one or more box regions
chans = ’’ # Select the channel(spectral) range
stokes = ’’ # Stokes params to image (I,IV,IQU,IQUV)
mask = ’’ # mask used for selecting the area of the

# image to calculate the moments on
includepix = -1 # Range of pixel values to include
excludepix = -1 # Range of pixel values to exclude
outfile = ’’ # Output image file name (or root for multiple moments)

This task will operate on the input file given by imagename and produce a new image or set of
images based on the name given in outfile.

The moments parameter chooses which moments are calculated. The choices for the operation mode
are:

moments=-1 - mean value of the spectrum
moments=0 - integrated value of the spectrum
moments=1 - intensity weighted coordinate; traditionally used to get

’velocity fields’
moments=2 - intensity weighted dispersion of the coordinate; traditionally

used to get ’velocity dispersion’
moments=3 - median of I
moments=4 - median coordinate
moments=5 - standard deviation about the mean of the spectrum
moments=6 - root mean square of the spectrum
moments=7 - absolute mean deviation of the spectrum
moments=8 - maximum value of the spectrum
moments=9 - coordinate of the maximum value of the spectrum
moments=10 - minimum value of the spectrum
moments=11 - coordinate of the minimum value of the spectrum

The meaning of these is described in the CASA Toolkit Manual, that describes the associated
image.moments tool:

http://casa.nrao.edu/docs/CasaRef/image.moments.html

The axis parameter sets the axis along which the moment is “collapsed” or calculated. Choices are:
’ra’, ’dec’, ’lat’, ’long’, ’spectral’, or ’stokes’. A standard moment-0 or moment-1 image
of a spectral cube would use the default choice ’spectral’. One could make a position-velocity
map by setting ’ra’ or ’dec’.

The includepix and excludepix parameters are used to set ranges for the inclusion and exclusion
of pixels based on values. For example, includepix=[0.05,100.0] will include pixels with values
from 50 mJy to 1000 Jy, and excludepix=[100.0,1000.0] will exclude pixels with values from
100 to 1000 Jy.

http://casa.nrao.edu/docs/CasaRef/image.moments.html
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If a single moment is chosen, the outfile specifies the exact name of the output image. If multiple
moments are chosen, then outfile will be used as the root of the output filenames, which will get
different suffixes for each moment.

For image cubes that contain different beam sizes for each plane, immoments will smooth all planes
to the largest beam size first, then collapse to the desired moment.

6.7.1 Hints for using (immoments)

In order to make an unbiased moment-0 image, do not put in any thresholding using includepix
or excludepix. This is so that the (presumably) zero-mean noise fluctuations in off-line parts of
the image cube will cancel out. If you image has large biases, like a pronounced clean bowl due
to missing large-scale flux, then your moment-0 image will be biased also. It will be difficult to
alleviate this with a threshold, but you can try.

To make a usable moment-1 (or higher) image, on the other hand, it is critical to set a reasonable
threshold to exclude noise from being added to the moment maps. Something like a few times the
rms noise level in the usable planes seems to work (put into includepix or excludepix as needed.
Also use chans to ignore channels with bad data.

6.7.2 Examples using (immoments)

Below is an example for immoments:

default(’immoments’)
imagename = ’ngc5921.demo.cleanimg’
# Do first and second spectral moments
axis = ’spectral’
chans = ’’
moments = [0,1]
# Need to mask out noisy pixels, currently done
# using hard global limits
excludepix = [-100,0.009]
outfile = ’ngc5921.demo.moments’

immoments()

# It will have made the images:
# --------------------------------------
# ngc5921.demo.moments.integrated
# ngc5921.demo.moments.weighted_coord

Other examples of NGC2403 (a moment zero image of a VLA line dataset) and NGC4826 (a
moment one image of a BIMA CO line dataset) are shown in Figure 6.1.

ALERT: We are working on improving the thresholding of planes beyond the global cutoffs in
includepix and excludepix.
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Figure 6.1: NGC2403 VLA moment zero (left) and NGC4826 BIMA moment one (right) images
as shown in the viewer.

6.8 Generating Position-Velocity Diagrams (impv)

CASA can generate position-velocity (pV) diagrams via the task impv or directly in the viewer (see
§7.4.9). The viewer application calls the task:

# impv :: Construct a position-velocity image by choosing two points in the direction plane.
imagename = ’’ # Name of the input image
outfile = ’’ # Output image name. If empty, no image is written.
mode = ’coords’ # If "coords", use start and end values. If "length", use

# center, length, and pa values.
width = 1 # Width of slice for averaging pixels perpendicular to the

# slice. Must be an odd positive integer or valid
# quantity. See help for details.

unit = ’arcsec’ # Unit for the offset axis in the resulting image. Must be
# a unit of angular measure.

chans = ’’ # Channels to use. See "help par.chans" for examples.
# Channels must be contiguous. Default is to use all
# channels.

region = ’’ # Region selection. Default is entire image. No selection
# is permitted in the direction plane. See help
# par.region.

stokes = ’I’ # Stokes planes to use. Planes must be contiguous. Default
# is to use all stokes.

mask = [] # Mask to use. See help par.mask. Default is none.
stretch = False # Stretch the mask if necessary and possible? See help

# par.stretch. Default False
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PV diagrams are generated by placing a “slicing” a datacube through the RA/DEC planes. The
“slit” can be defined either by start/end coordinates or by a length, center coordinate, and position
abgle. Averaged over the width of the ’slit’ the image cube values are then stored in a new image
with position and velocity as the two axes. The slit position is specified by a start and end pixel in
the RA/DEC plane of the data cube. An angular unit can be set to define what is stored in the
resulting pV image.

6.9 Computing image statistics (imstat)

The imstat task will calculate statistics on a region of an image, and return the results as a return
value in a Python dictionary.

The inputs are:

# imstat :: Displays statistical information from an image or image region
imagename = ’’ # Name of the input image
axes = -1 # List of axes to evaluate statistics over. Default is

# all axes.
region = ’’ # Image Region or name. Use Viewer
box = ’’ # Select one or more box regions
chans = ’’ # Select the channel(spectral) range. See "help

# par.chans" for examples.
stokes = ’’ # Stokes params to image (I,IV,IQU,IQUV). Default "" =>

# include all
listit = True # Print stats and bounding box to logger?
verbose = False # Print additional messages to logger?
mask = ’’ # Mask to use. See help par.mask. Default is none.
logfile = ’’ # Name of file to write fit results.
algorithm = ’classic’ # Algorithm to use. Supported values are "chauvenet",

# "classic", "fit-half", and "hinges-fences". Minimum
# match is supported.

clmethod = ’auto’ # Method to use for calculating classical statistics.
# Supported methods are "auto", "tiled", and
# "framework". Ignored if algorithm is not "classic".

Area selection using region and mask is detailed in § 6.1.6 and (§ 6.1.5) respectively.

Plane selection is controlled by chans and stokes. See § 6.1.3 for details on plane selection.

The parameter axes will select the dimensions that the statistics is calculated over. Typical data
cubes have axes like: RA axis 0, DEC axis 1, Velocity axis 2. So, e.g. axes=[0,1] would be the
most common setting to calculate statistics per spectral channel.

A typical output of imstat on a cube with axes=[0,1] and algorithm=’classic’ (default) looks like:

No region specified. Using full positional plane.

Using all spectral channels.

Using polarizations ALL
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Determining stats for image IRC10216_HC3N.cube_r0.5.image

Set region from supplied region record

Statistics calculated using Classic algorithm

Regions ---

-- bottom-left corner (pixel) [blc]: [0, 0, 0, 0]

-- top-right corner (pixel) [trc]: [299, 299, 0, 63]

-- bottom-left corner (world) [blcf]: 09:48:01.492, +13.15.40.658, I, 3.63994e+10Hz

-- top-right corner (world) [trcf]: 09:47:53.299, +13.17.40.258, I, 3.63915e+10Hz

No region specified. Using full positional plane.

Using all spectral channels.

Using polarizations ALL

Selected bounding box :

[0, 0, 0, 0] to [299, 299, 0, 63] (09:48:01.492, +13.15.40.658, I, 3.63994e+10Hz to 09:47:53.299, +13.17.40.258, I, 3.63915e+10Hz)

# Frequency Frequency(Plane) Npts Sum Mean Rms Std dev Minimum Maximum

3.63993552e+10 0 9.000000e+04 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

3.63992302e+10 1 9.000000e+04 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

3.63991052e+10 2 9.000000e+04 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

3.63989802e+10 3 9.000000e+04 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

3.63988551e+10 4 9.000000e+04 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

3.63987301e+10 5 9.000000e+04 6.069948e-01 6.744386e-06 1.534640e-03 1.534634e-03 -6.355108e-03 6.166496e-03

3.63986051e+10 6 9.000000e+04 2.711720e-01 3.013023e-06 1.538071e-03 1.538077e-03 -6.165663e-03 5.862981e-03

3.63984801e+10 7 9.000000e+04 2.501259e-01 2.779177e-06 1.578049e-03 1.578056e-03 -6.771976e-03 6.272645e-03

3.63983551e+10 8 9.000000e+04 -3.706732e-01 -4.118591e-06 1.607191e-03 1.607194e-03 -8.871284e-03 6.591001e-03

where the header information provides the specifications of the data that were selected followed by the table with
the frequency values of the lanes, the plane numbers, Npts the number of pixels per plane, and the Sum, Median,
RMS, Standard deviations, Minimum, and Maximum of the pixel values for each plane. Similar output is provided
when the data is averaged over different axes. The logger output can also be written into or appended to a log file
for further processing elsewhere (logfile parameter).

Imstat has access to different statistics algorithms. Most of them represent different ways on how to treat distributions
that are not Gaussian, in particular to eliminate outlier values from the statistics. Available algorithms are classic,
where all unmasked pixels are used, fit-half, where one (good) half of the distribution is being mirrored across a
central value, hinges-fences, where the inner quartiles plus a ’fence’ data portion is being used, and chauvenet, which
includes values based on the number of standard deviations from the mean. For more information, see the inline help
of the imstat task.

6.9.1 Using the task return value

The contents of the return value of imstat are in a Python dictionary of key-value sets. For example,

xstat = imstat()

will assign this to the Python variable xstat.

The keys for xstat are then:

KEYS
blc - absolute PIXEL coordinate of the bottom left corner of

the bounding box surrounding the selected region
blcf - Same as blc, but uses WORLD coordinates instead of pixels
trc - the absolute PIXEL coordinate of the top right corner
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of the bounding box surrounding the selected region
trcf - Same as trc, but uses WORLD coordinates instead of pixels
flux - the integrated flux density if the beam is defined and

the if brightness units are $Jy/beam$
npts - the number of unmasked points used
max - the maximum pixel value
min - minimum pixel value
maxpos - absolute PIXEL coordinate of maximum pixel value
maxposf - Same as maxpos, but uses WORLD coordinates instead of pixels
minpos - absolute pixel coordinate of minimum pixel value
minposf - Same as minpos, but uses WORLD coordinates instead of pixels
sum - the sum of the pixel values: $\sum I_i$
sumsq - the sum of the squares of the pixel values: $\sum I_i^2$
mean - the mean of pixel values:

$ar{I} = \sum I_i / n$
sigma - the standard deviation about the mean:

$\sigma^2 = (\sum I_i -ar{I})^2 / (n-1)$
rms - the root mean square:

$\sqrt {\sum I_i^2 / n}$
median - the median pixel value (if robust=T)
medabsdevmed - the median of the absolute deviations from the

median (if robust=T)
quartile - the inter-quartile range (if robust=T). Find the points

which are 25% largest and 75% largest (the median is
50% largest), find their difference and divide that
difference by 2.

For example, an imstat call might be

default(’imstat’)
imagename = ’ngc5921.demo.cleanimg.image’ # The NGC5921 image cube
box = ’108,108,148,148’ # 20 pixels around the center
chans = ’21’ # channel 21

xstat = imstat()

In the terminal window, imstat reports:

Statistics on ngc5921.usecase.clean.image

Region ---
-- bottom-left corner (pixel) [blc]: [108, 108, 0, 21]
-- top-right corner (pixel) [trc]: [148, 148, 0, 21]
-- bottom-left corner (world) [blcf]: 15:22:20.076, +04.58.59.981, I, 1.41332e+09Hz
-- top-right corner( world) [trcf]: 15:21:39.919, +05.08.59.981, I, 1.41332e+09Hz

Values --
-- flux [flux]: 0.111799236126
-- number of points [npts]: 1681.0
-- maximum value [max]: 0.029451508075
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-- minimum value [min]: -0.00612453464419
-- position of max value (pixel) [maxpos]: [124, 131, 0, 21]
-- position of min value (pixel) [minpos]: [142, 110, 0, 21]
-- position of max value (world) [maxposf]: 15:22:04.016, +05.04.44.999, I, 1.41332e+09Hz
-- position of min value (world) [minposf]: 15:21:45.947, +04.59.29.990, I, 1.41332e+09Hz
-- Sum of pixel values [sum]: 1.32267159822
-- Sum of squared pixel values [sumsq]: 0.0284534543692

Statistics ---
-- Mean of the pixel values [mean]: 0.000786836167885
-- Standard deviation of the Mean [sigma]: 0.00403944306904
-- Root mean square [rms]: 0.00411418313161
-- Median of the pixel values [median]: 0.000137259965413
-- Median of the deviations [medabsdevmed]: 0.00152346317191
-- Quartile [quartile]: 0.00305395200849

The return value in xstat is

CASA <152>: xstat
Out[152]:

{’blc’: array([108, 108, 0, 21]),
’blcf’: ’15:22:20.076, +04.58.59.981, I, 1.41332e+09Hz’,
’flux’: array([ 0.11179924]),
’max’: array([ 0.02945151]),
’maxpos’: array([124, 131, 0, 21]),
’maxposf’: ’15:22:04.016, +05.04.44.999, I, 1.41332e+09Hz’,
’mean’: array([ 0.00078684]),
’medabsdevmed’: array([ 0.00152346]),
’median’: array([ 0.00013726]),
’min’: array([-0.00612453]),
’minpos’: array([142, 110, 0, 21]),
’minposf’: ’15:21:45.947, +04.59.29.990, I, 1.41332e+09Hz’,
’npts’: array([ 1681.]),
’quartile’: array([ 0.00305395]),
’rms’: array([ 0.00411418]),
’sigma’: array([ 0.00403944]),
’sum’: array([ 1.3226716]),
’sumsq’: array([ 0.02845345]),
’trc’: array([148, 148, 0, 21]),
’trcf’: ’15:21:39.919, +05.08.59.981, I, 1.41332e+09Hz’}

ALERT: The return dictionary currently includes NumPy array values, which have to be accessed
by an array index to get the array value. To access these dictionary elements, use the standard
Python dictionary syntax, e.g.

xstat[<key string>][<array index>]

For example, to extract the standard deviation as a number

mystddev = xstat[’sigma’][0]
print ’Sigma = ’+str(xstat[’sigma’][0])
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6.9.2 Examples for imstat

The following are some examples using the B1608+656 Tutorial

http://casa.nrao.edu/Doc/Scripts/b1608_demo.py

as an example.

To extract statistics for the final image:

xstat = imstat(’b1608.demo.clean2.image’)
# Printing out some of these

print ’Max = ’+str(xstat[’max’][0])
print ’Sigma = ’+str(xstat[’sigma’][0])

# results:
# Max = 0.016796965152
# Sigma = 0.00033631979385

In a box around the brightest component:

xstat_A = imstat(’b1608.demo.clean2.image’,box=’124,125,132,133’)
# Printing out some of these

print ’Comp A Max Flux = ’+str(xstat_A[’max’][0])
print ’Comp A Max X,Y = (’+str(xstat_A[’maxpos’][0])+’,’+str(xstat_A[’maxpos’][1])+’)’

# results:
# Comp A Max Flux = 0.016796965152
# Comp A Max X,Y = (128,129)

6.10 Extracting data from an image (imval)

The imval task will extract the values of the data and mask from a specified region of an image
and place in the task return value as a Python dictionary.

The inputs are:

# imval :: Get the data value(s) and/or mask value in an image.
imagename = ’’ # Name of the input image
region = ’’ # Image Region. Use viewer
box = ’’ # Select one or more box regions
chans = ’’ # Select the channel(spectral) range
stokes = ’’ # Stokes params to image (I,IV,IQU,IQUV)

Area selection using box and region is detailed in § 6.1.2 and § 6.1.6 respectively. By default,
box=’’ will extract the image information at the reference pixel on the direction axes.

Plane selection is controlled by chans and stokes. See § 6.1.3 for details on plane selection. By
default, chans=’’ and stokes=’’ will extract the image information in all channels and Stokes
planes.

For instance,

http://casa.nrao.edu/Doc/Scripts/b1608_demo.py
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xval = imval(’myimage’, box=’144,144’, stokes=’I’ )

will extract the Stokes I value or spectrum at pixel 144,144, while

xval = imval(’myimage’, box=’134,134.154,154’, stokes=’I’ )

will extract a 21 by 21 pixel region.

Extractions are returned in NumPy arrays in the return value dictionary, plus some extra elements
describing the axes and selection:

CASA <2>: xval = imval(’ngc5921.demo.moments.integrated’)

CASA <3>: xval
Out[3]:

{’axes’: [[0, ’Right Ascension’],
[1, ’Declination’],
[3, ’Frequency’],
[2, ’Stokes’]],

’blc’: [128, 128, 0, 0],
’data’: array([ 0.89667124]),
’mask’: array([ True], dtype=bool),
’trc’: [128, 128, 0, 0],
’unit’: ’Jy/beam.km/s’}

extracts the reference pixel value in this 1-plane image. Note that the ’data’ and ’mask’ elements
are NumPy arrays, not Python lists.

To extract a spectrum from a cube:

CASA <8>: xval = imval(’ngc5921.demo.clean.image’,box=’125,125’)

CASA <9>: xval
Out[9]:

{’axes’: [[0, ’Right Ascension’],
[1, ’Declination’],
[3, ’Frequency’],
[2, ’Stokes’]],

’blc’: [125, 125, 0, 0],
’data’: array([ 8.45717848e-04, 1.93370355e-03, 1.53750915e-03,

2.88399984e-03, 2.38683447e-03, 2.89159478e-04,
3.16268904e-03, 9.93389636e-03, 1.88773088e-02,
3.01138610e-02, 3.14478502e-02, 4.03211266e-02,
3.82498614e-02, 3.06552909e-02, 2.80734301e-02,
1.72479432e-02, 1.20884273e-02, 6.13593217e-03,
9.04005766e-03, 1.71429547e-03, 5.22095338e-03,
2.49114982e-03, 5.30831399e-04, 4.80734324e-03,
1.19265869e-05, 1.29435991e-03, 3.75700940e-04,
2.34788167e-03, 2.72604497e-03, 1.78467855e-03,
9.74952069e-04, 2.24676146e-03, 1.82263291e-04,
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1.98463408e-06, 2.02975096e-03, 9.65532148e-04,
1.68218743e-03, 2.92119570e-03, 1.29359076e-03,
-5.11484570e-04, 1.54162932e-03, 4.68662125e-04,
-8.50282842e-04, -7.91683051e-05, 2.95954203e-04,
-1.30133145e-03]),

’mask’: array([ True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True], dtype=bool),

’trc’: [125, 125, 0, 45],
’unit’: ’Jy/beam’}

To extract a region from the plane of a cube:

CASA <13>: xval = imval(’ngc5921.demo.clean.image’,box=’126,128,130,129’,chans=’23’)

CASA <14>: xval
Out[14]:

{’axes’: [[0, ’Right Ascension’],
[1, ’Declination’],
[3, ’Frequency’],
[2, ’Stokes’]],

’blc’: [126, 128, 0, 23],
’data’: array([[ 0.00938627, 0.01487772],

[ 0.00955847, 0.01688832],
[ 0.00696965, 0.01501907],
[ 0.00460964, 0.01220793],
[ 0.00358087, 0.00990202]]),

’mask’: array([[ True, True],
[ True, True],
[ True, True],
[ True, True],
[ True, True]], dtype=bool),

’trc’: [130, 129, 0, 23],
’unit’: ’Jy/beam’}

CASA <15>: print xval[’data’][0][1]
0.0148777160794

In this example, a rectangular box was extracted, and you can see the order in the array and how
to address specific elements.

6.11 Reordering the Axes of an Image Cube (imtrans)

Sometimes data cubes can be in axis orders that are not adequate for processing. The CASA task
imtrans can change the ordering of the axis:
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# imtrans :: Reorder image axes
imagename = ’’ # Name of the input image
outfile = ’’ # Name of output CASA image.
order = ’’ # New zero-based axes order.
wantreturn = True # Return an image tool referencing the

# transposed image

The order parameter is the most important input here. It is a string of numbers that shows how
axes 0, 1, 2, 3, ... are mapped onto the new cube (note that the first axis has the label 0, as typical in
python). E.g. order=’1032’ will reorder the input axis 0 to be axis 1 in the output, input axis 1 to be
output axis 0, input axis 2 to output axis 3 (the last axis) and input axis 3 to output axis 2. Alterna-
tively, axes can be specified by their names. E.g., to reorder an image with right ascension, declina-
tion, and frequency and reverse the first two, order=[‘‘declination’’, ‘‘right ascension’’,
‘‘frequency’’] will work. The axes names can be found typing (ia.coordsys().names()).
Minimum match is supported, so that order=["d", "f", "r"] will produce the same results.

Axes can simultaneously be transposed and reversed. To reverse an axis, precede it by a ”-”. For
example, order=’-10-32’ will reverse the direction of the first and third axis of the input image
(the zeroth and second axes in the output image).

Example:

Swap the stokes and spectral axes in an RA-Dec-Stokes-Frequency image

imagename = "myim.im"
outfile = "outim.im"
order = "0132"
imtrans()

or

outfile = "myim_2.im"
order = 132
imtrans()

or

outfile = "myim_3.im"
order = ["r", "d", "f", "s"]
imtrans()

or

outfile = "myim_4.im"
order = ["rig", "declin", "frequ", "stok"]
imtrans()

If the outfile parameter is empty, only a temporary image is created; no output image is written to disk.
The temporary image can be captured in the returned value (assuming wantreturn is true).
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6.12 Collapsing an Image Along an Axis (imcollapse)

imcollapse allows to apply an aggregation function along one or more axes of an image. Functions supported
are ’max’, ’mean’, ’median’, ’min’, ’rms’, ’stdev’, ’sum’, ’variance’ (minimum match supported). The relevant
axes will then collapse to a single value or plane (i.e. they will result in a degenerate axis). The functions
are specified in the function parameter of the imcollapse inputs:

# imcollapse :: Collapse image along one axis, aggregating pixel values along that axis.
imagename = ’’ # Name of the input image
function = ’’ # Function used to compute aggregation

# of pixel values.
axes = [0] # Zero-based axis number(s) or minimal

# match strings to collapse.
outfile = ’’ # Name of output CASA image.
box = ’’ # Optional direction plane box ("blcx,

# blcy, trcx trcy").
region = ’’ # Name of optional region file to use.

chans = ’’ # Optional zero-based contiguous
# frequency channel specification.

stokes = ’’ # Optional contiguous stokes planes
# specification.

mask = ’’ # Optional mask to use.
wantreturn = True # Should an image analysis tool

# referencing the collapsed image be
# returned?

wantreturn=True returns an image analysis tool containing the newly created collapsed image.

Example:

myimage.im is a 512x512x128x4 (ra,dec,freq,stokes; i.e. in the 0-based system, frequency is labeled
as axis 2) image and we want to collapse a subimage of it along its spectral axis avoiding the 8
edge channels at each end of the band, computing the mean value of the pixels (resulting image is
256x256x1x4 in size):

imcollapse(imagename="myimage.im", outfile="collapse_spec_mean.im",
function="mean", axis=2, box="127,127,383,383", chans="8~119")

Note that imcollapse will not smooth to a common beam for all planes if they differ. If this is
desired, run imsmooth before imcollapse.

6.13 Regridding an Image (imregrid)
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Inside the Toolkit:
More complex coordinate system
and image regridding operation can
be carried out in the toolkit.
The coordsys (cs) tool and the
ia.regrid method are the relevant
components.

It is occasionally necessary to regrid an image onto a new
coordinate system. The imregrid task will regrid one im-
age onto the coordinate system of another, creating an out-
put image. In this task, the user need only specify the
names of the input, template, and output images.

The default inputs are:

imregrid :: regrid an image onto a template image
imagename = ’’ # Name of the source image
template = ’get’ # A dictionary, refcode, or

# name of an image that provides the output shape and coordinate system
output = ’’ # Name for the regridded image
asvelocity = True # Regrid spectral axis in velocity space rather than frequency space?
axes = [-1] # The pixel axes to regrid. -1 => all.
interpolation = ’linear’ # The interpolation method. One of "nearest", "linear", "cubic".
decimate = 10 # Decimation factor for coordinate grid computation
replicate = False # Replicate image rather than regrid?
overwrite = False # Overwrite (unprompted) pre-existing output file?

The output image will have the data in imagename regrid-
ded onto the coordinate system provided by the template
parameter. template is used universally for a range of ways
to define the grid of the output image:

• a template image: specify an image name here and the input will be regridded to the same
3-dimensional coordinate system as the one in template. Values are filled in as blanks if
they do not exist in the input. Note that the input and template images must have the same
coordinate structure to begin with (like 3 or 4 axes, with the same ordering)

• a coordinate system (reference code): to convert from one coordinate frame to another one,
e.g. from B1950 to J2000, the template parameter can be used to specify the output co-
ordinate system. These following recognized keywords are supported: ’J2000’, ’B1950’,
’B1950 VLA’, ’GALACTIC’, ’HADEC’, ’AZEL’, ’AZELSW’, ’AZELNE’, ’ECLIPTIC’, ’MECLIPTIC’,
’TECLIPTIC’, ’SUPERGAL’

• ’get’: This option returns a python dictionary in the {’csys’: csys record, ’shap’:
shape} format

• a python dictionary: In turn, such a dictionary can be used as a template to define the final
grid

6.14 Redefining the Velocity System of an Image (imreframe)

imreframe can be used to change the velocity system of an image. It is not applying a regridding
as a change from radio to optical conventions would require, but it will change the labels of the
velocity axes.



CHAPTER 6. IMAGE ANALYSIS 365

# imreframe :: Change the frame in which the image reports its spectral values
imagename = ’’ # Name of the input image
output = ’’ # Name of the output image; ’’ => modify input image
outframe = ’lsrk’ # Spectral frame in which the frequency or velocity

# values will be reported by default
restfreq = ’’ # restfrequency to use for velocity values (e.g.

# "1.420GHz" for the HI line)

outframe defines the velocity frame (LSRK, BARY, etc., see §C.2) of the output image and a rest
frequency should be specified to relabel the spectral axis in new velocity units.

6.15 Rebin an Image (imrebin)

The task imrebin allows one to rebin an image in any spatial or spectral direction:

# imrebin :: Rebin an image by the specified integer factors
imagename = ’’ # Name of the input image
outfile = ’’ # Output image name.
factor = [] # Binning factors for each axis
region = ’’ # The region to rebin. Default is entire image. Do not

# specify region and box/chans simultaneously.
box = ’’ # Box in directional plane to rebin. Default is to use the

# entire directional plane.
chans = ’’ # Channels to rebin. See "help par.chans" for examples.

# Default is all channels
stokes = ’’ # The correlations to include in the output. Default is

# all. Stokes planes cannot be rebinned.

mask = ’’ # Mask to use. See help par.mask. Default is none.
dropdeg = False # Drop degenerate axes?
crop = True # Remove pixels from the end of an axis to be rebinned if

# there are not enough to form an integral bin?

where factor is a list of integers that provides the numbers of pixels to be binned for each axis. The
crop parameters controls how pixels at the boundaries are treated if the bin values are not multiple
integers of the image dimensions.

Example:

imrebin(imagename="my.im", outfile="rebinned.im", factor=[1,2,1,4], crop=T)

This leaves RA untouched, bins DEC by a factor of 2, leaves Stokes as is, and bins the spectral
axis by a factor of 4. If the input image has a spectral axis with a length that is not a multiple of
4, the crop=T setting will discard the remaining 1-3 edge pixels.
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6.16 1-dimensional Smoothing (specsmooth)

To gain higher signal-to-noise of data cubes, one can smooth the data along one dimension (for
2-dimensional smoothing, see imsmooth § 6.16). Typically this is the spectral axis. Hanning and
Boxcar smoothing kernels are available in the task specsmooth:

# specsmooth :: Smooth an image region in one dimension
imagename = ’’ # Name of the input image
outfile = ’’ # Output image name.
region = ’’ # Region selection. See help par.region for possible

# specifications. Default: Do not use a region.
box = ’’ # Rectangular box in direction coordinate blc, trc.

# Default: entire image ("").

mask = ’’ # Mask to use. See help par.mask. Default is none..
axis = -1 # The profile axis. Default: use the spectral axis if one

# exists, axis 0 otherwise (<0).
function = ’hanning’ # Convolution function. hanning and boxcar are supported

# functions. Minimum match is supported.
dmethod = ’copy’ # Decimation method. "" means no decimation, "copy" and

# "mean" are also supported
(minimum match).

The parameter dmethod=’copy’ allows one to only keep every w’th channel, if the smoothing kernel
has a with of w. Leaving this parameter empty will return the same size cube as the input and
setting it to ’mean’ will average planes using the kernel width.

6.17 2-dimensional Smoothing; Image Convolution (imsmooth)

A data cube can be smoothed across spatial dimensions with imsmooth. The inputs are:

# imsmooth :: Smooth an image or portion of an image
imagename = ’’ # Name of the input image. Must be specified.
kernel = ’gauss’ # Type of kernel to use. Acceptable values are "b", "box",

# or "boxcar" for a boxcar kernel, "g", "gauss", or
# "gaussian" for a gaussian kernel, "c", "common", or
# "commonbeam" to use the common beam of an image with
# multiple beams as the gaussian to which to convolve all
# the planes, "i" or "image" to use an image as the
# kernel.

beam = ’’ # Alternate way of describing a Gaussian. If specified,
# must be a dictionary with keys "major", "minor", and
# "pa" (or "positionangle"). Do not specify beam if
# specifying major, minor, and pa. Example: Example:
# {"major": "5arcsec", "minor": "2arcsec", "pa": "20deg"}.
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targetres = False # If gaussian kernel, specified parameters are to be
# resolution of output image (True) or parameters of
# gaussian to convolve with input image (False).

major = ’’ # Major axis for the kernels. Standard quantity
# representation. Must be specified for kernel="boxcar".
# Example: "4arcsec".

minor = ’’ # Minor axis. Standard quantity representation. Must be
# specified for kernel="boxcar". Example: "2arcsec".

pa = ’’ # Position angle used only for gaussian kernel. Standard
# quantity representation. Example: "40deg".

region = ’’ # Region selection. See help par.region. Empty string means
# use box/chans/stokes if supplied, or else entire image.

box = ’’ # Rectangular region specification in directional plane. Do
# not specify region if you specify box.

chans = ’’ # Select the spectral channel range. See "help par.chans"
# for examples. Do not specify region if you specify
# chans.

stokes = ’I’ # Stokes parameters to image (eg, I,IV,IQU,IQUV). Do not
# specify region if you specify stokes.

mask = [] # Mask to use. See help par.mask. Default is none.
stretch = False # Stretch the mask if necessary and possible? See help

# par.stretch

outfile = ’’ # Output image name. Must be specified.
overwrite = False # Overwrite (unprompted) pre-existing output file?

where the cube/image imagename will be convolved with a kernel defined in the kernel keyword.
Kernels ’gauss’ and ’boxcar’ need the major and minor axes sizes as input, the Gaussian kernel
smoothing also requires a position angle. By default, the kernel size defines the kernel itself, i.e.
the data will be smoothed with this kernel. If the targetres parameter for Gaussian kernels is set
to ’True’, major and minor axes will be those from the output resolution, and the kernel will be
adjusted for each plane to arrive at the final resolution.

The ’commonbeam’ kernel is to be used when the beam shape is different as a function of frequency.
This option will then smooth all planes to a single beam, defined by the largest beam in the cube.

With the ’image’ kernel, one can specify an image that will serve as the convolution kernel. A scale
factor can be applied, which defaults to flux conservation.

Examples:

1) smoothing to a Gaussian kernel 20” by 10”

imsmooth( imagename=’my.image’, kernel=’gauss’, major=’20arcsec’, minor=’10arcsec’,targetres=T)

2) Smoothing using pixel coordinates and a boxcar kernel.

imsmooth( imagename=’new.image’, major=’20pix’, minor=’10pix’, kernel=’boxcar’)



CHAPTER 6. IMAGE ANALYSIS 368

6.18 Spectral Line fitting with specfit

specfit is a powerful task to perform spectral line fits in data cubes. Three types of fitting
functions are currently supported, polynomials, Gaussians, and Lorentzians. specfit can fit these
functions in two ways: over data that were averaged across a region (multifit=False) or on a
pixel by pixel basis (multifit=True).

# specfit :: Fit 1-dimensional Gaussians and/or polynomial models to an image or image region
imagename = ’’ # Name of the input image
box = ’’ # Rectangular box in direction coordinate

# blc, trc. Default: entire image ("").
region = ’’ # Region of interest. See help par.region

# for possible specifications. Default: Do
# not use a region.

chans = ’’ # Channels to use. Channels must be
# contiguous. Default: all channels ("").

stokes = ’’ # Stokes planes to use. Planes must be
# contiguous. Default: all stokes ("").

axis = -1 # The profile axis. Default: use the
# spectral axis if one exists, axis 0
# otherwise (<0).

mask = ’’ # Mask to use. See help par.mask. Default is
# none..

poly = -1 # Order of polynomial element. Default: do
# not fit a polynomial (<0).

estimates = ’’ # Name of file containing initial estimates.
# Default: No initial estimates ("").

ngauss = 1 # Number of Gaussian elements. Default: 1.
pampest = ’’ # Initial estimate of PCF profile (gaussian

# or lorentzian) amplitudes.
pcenterest = ’’ # Initial estimate PCF profile centers, in

# pixels.
pfwhmest = ’’ # Initial estimate PCF profile FWHMs, in

# pixels.
pfix = ’’ # PCF profile parameters to fix during fit.
pfunc = ’’ # PCF singlet functions to fit. "gaussian"

# or "lorentzian" (minimal match
# supported). Unspecified means all
# gaussians.

minpts = 0 # Minimum number of unmasked points
# necessary to attempt fit.

multifit = True # If true, fit a profile along the desired
# axis at each pixel in the specified
# region. If false, average the non-fit
# axis pixels and do a single fit to that
# average profile. Default False.

amp = ’’ # Name of amplitude solution image. Default:
# do not write the image ("").

amperr = ’’ # Name of amplitude solution error image.
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# Default: do not write the image ("").
center = ’’ # Name of center solution image. Default: do

# not write the image ("").
centererr = ’’ # Name of center solution error image.

# Default: do not write the image ("").
fwhm = ’’ # Name of fwhm solution image. Default: do

# not write the image ("").
fwhmerr = ’’ # Name of fwhm solution error image.

# Default: do not write the image ("").
integral = ’’ # Prefix of name of integral solution image.

# Name of image will have gaussian
# component number appended. Default: do
# not write the image ("").

integralerr = ’’ # Prefix of name of integral error solution
# image. Name of image will have gaussian
# component number appended. Default: do
# not write the image ("").

model = ’’ # Name of model image. Default: do not write
# the model image ("").

residual = ’’ # Name of residual image. Default: do not
# write the residual image ("").

wantreturn = True # Should a record summarizing the results be
# returned?

logresults = True # Output results to logger?
gmncomps = 0 # Number of components in each gaussian

# multiplet to fit
gmampcon = ’’ # The amplitude ratio constraints for non-

# reference components to reference
# component in gaussian multiplets.

gmcentercon = ’’ # The center offset constraints (in pixels)
# for non-reference components to reference
# component in gaussian multiplets.

gmfwhmcon = ’’ # The FWHM ratio constraints for non-
# reference components to reference
# component in gaussian multiplets.

gmampest = [0.0] # Initial estimate of individual gaussian
# amplitudes in gaussian multiplets.

gmcenterest = [0.0] # Initial estimate of individual gaussian
# centers in gaussian multiplets, in
# pixels.

gmfwhmest = [0.0] # Initial estimate of individual gaussian
# FWHMss in gaussian multiplets, in pixels.

gmfix = ’’ # Parameters of individual gaussians in
# gaussian multiplets to fix during fit.

logfile = ’’ # File in which to log results. Default is
# not to write a logfile.

goodamprange = [0.0] # Acceptable amplitude solution range. [0.0]
# => all amplitude solutions are
# acceptable.

goodcenterrange = [0.0] # Acceptable center solution range in pixels
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# relative to region start. [0.0] => all
# center solutions are acceptable.

goodfwhmrange = [0.0] # Acceptable FWHM solution range in pixels.
# [0.0] => all FWHM solutions are
# acceptable.

sigma = ’’ # Standard deviation array or image name.

6.18.1 Polynomial Fits

Polynomials can be fit by specifying the polynomial order in poly. Negative orders will not fit any
polynomials.

6.18.2 Lorentzian and Gaussian Fits

Gaussian and Lorentzian fits are very similar, they both require amplitude, center, and FWHM to
be fully specified. All of the following discussion is thus valid for both functions. The parameter
pfunc controls whether Gaussian or Lorentzian functions are to be used. Default is all Gaus-
sians. pfunc=["L", "G", "G", "L"] would use Lorentzian, Gaussian, Gaussian, and Lorentzian
components in the order they appear in the estimates file (see below).

6.18.2.1 One or more single Gaussian/Lorentzian

For Gaussian and Lorentzian fits, the task will allow multiple components and specfit will try to
find the best solution. The parameter space, however, is usually not uniform and to avoid local
minima in the goodness-of-fit space, one can provide initial start values for the fits. This can
be done either through the parameters pampest, pcenterest, and pfwhmest for the amplitudes,
center, and FWHM estimates in image coordinates. pfix can take parameters that specify fixed
fit values. Any combination of the characters ’p’ (peak), ’c’ (center), and ’f’ (fwhm) are permitted,
e.g. ”fc” will hold the fwhm and the center constant during the fit. Fixed parameters will have no
errors associated with them in the solution. Alternatively, a file with initial values can be supplied
by the estimates parameter (one Gaussian/Lorentzian parameter set per line). The file has the
following format:

[peak intensity], [center], [fwhm], [optional fixed parameter string]

The first three values are required and must be numerical values. The peak intensity must be
expressed in map units, while the center and fwhm must be specified in pixels. The fourth value
is optional and if present, represents the parameter(s) that should be held constant during the fit
(see above).

An example estimates file is:

# estimates file indicating that two Gaussians should be fit
# first guassian estimate, peak=40, center at pixel number 10.5,
# fwhm = 5.8 pixels, all parameters allowed to vary during
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# fit
40, 10.5, 5.8
# second Gaussian, peak = 4, center at pixel number 90.2,
# fwhm = 7.2 pixels, hold fwhm constant
4, 90.2, 7.2, f
# end file

and the output of a typical execution, e.g.

specfit(imagename=’IRC10216_HC3N.cube_r0.5.image’,
region=’specfit.crtf’, multifit=F, estimates=’’, ngauss=2)

(’specfit.crtf’ is a CASA regions file, see SectionD)

will be

Fit :
RA : 09:47:57.49
Dec : 13.16.46.46
Stokes : I
Pixel : [146.002, 164.499, 0.000, *]
Attempted : YES
Converged : YES
Iterations : 28
Results for component 0:

Type : GAUSSIAN
Peak : 5.76 +/- 0.45 mJy/beam
Center : -15.96 +/- 0.32 km/s

40.78 +/- 0.31 pixel
FWHM : 7.70 +/- 0.77 km/s

7.48 +/- 0.74 pixel
Integral : 47.2 +/- 6.0 mJy/beam.km/s

Results for component 1:
Type : GAUSSIAN
Peak : 4.37 +/- 0.33 mJy/beam
Center : -33.51 +/- 0.58 km/s

23.73 +/- 0.57 pixel
FWHM : 15.1 +/- 1.5 km/s

14.7 +/- 1.5 pixel
Integral : 70.2 +/- 8.8 mJy/beam.km/s

If wantreturn=True (the default value), the task returns a python dictionary (here captured in a
variable with the inventive name of ’fitresults’) :

fitresults=specfit(imagename=’IRC10216_HC3N.cube_r0.5.image’, region=’specfit.rgn’, multifit=F,
estimates=’’, ngauss=2)

The values can then be used by other python code for further processing.
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6.18.2.2 Gaussian Multiplets

It is possible to fit a number of Gaussians together, as multiplets with restrictions. All restrictions
are relative to a reference Gaussian (the zero’th component of each multiplet). gncomps specifies
the number of Gaussians for each multiplets, and, in fact, a number of these multiplets can be
fit simultaneously. gncomps=[2,4,3], e.g. fits a 2-component Gaussian, a 4-component Gaussian,
and a 3-component Gaussian all at once. The initial parameter estimates can be specified with
the gmampest, gmcenterest, and gmfwhmest parameters and the estimates are simply listed in
the sequence of gncomps. E.g. if gncomps=[2,4,3] is specified with multiplet G0 consisting of 2
Gaussians a, b, multiplet G1 of 4 Gaussians c, d, e, f, and multiplet G2 of three Gaussians g, h, i,
the parameter list in gm*est would be like gm*est=[a,b,c,d,e,f,g,h,i].

Restrictions can be specified via the gmampcon parameter for the amplitude ratio (non-reference
to reference), gmcentercon for the offset in pixels (to a reference), and gmfwhmcon for the FWHM
ratio (non-reference to reference). A value of 0 will not constrain anything. The reference is
always the zero’th component in each multiplet, in our example, Gaussians a, c, and g. They
cannot be constrained. So gmncomps=[2, 4, 3], gmampcon= [ 0 , 0.2, 0 , 0.1, 4.5, 0 ],
gcentercon=[24.2, 45.6, 92.7, 0 , -22.8, -33.5], and gfwhmcon="" would constrain Gaus-
sians b relative to a with a 24.2 pixel offset, Gaussian d to c with a amplitude ratio of 0.2 and a
45.6 pixel offset, Gaussian e to c with a offset of 92.7 pixels, etc. Restrictions will overrule any
estimates.

The parameters goodamprange, goodcenterrange, and goodfwhmrange can be used to limit the
range of amplitude, center, and fwhm solutions for all Gaussians.

6.18.3 Pixel-by-pixel fits

As mentioned above, specfit can also fit spectral cubes on a pixel by pixel basis. In this case, one
can choose to write none, any or all of the solution and error images for Gaussian/Lorentzian fits
via the parameters amp, amperr, center, centererr, fwhm, and fwhmerr. The files written contain
all the components along a “component number” axis. They can be inspected by using the “hidden
axes” slider in the viewer (§7.4.1). Writing analogous images for polynomial coefficients is not
yet supported although polynomial fits when multifit=True is supported. Best fit coefficients are
written to the logger. Pixels for which fits were not attempted or did not converge will be masked
as bad.

6.19 Calculation of Rotation Measures rmfit

rmfit is an image domain task that accepts an input cube image containing Stokes Q and U axes
and will generate the rotation measure by performing a least square fit in the image domain to
obtain the best fit to the equation χ = χ0 + RM × λ2.

The inputs to rmfit are:



CHAPTER 6. IMAGE ANALYSIS 373

# rmfit :: Calculate rotation measure.
imagename = ’’ # Name(s) of the input image(s). Must be specified.
rm = ’’ # Output rotation measure image name. If not specified, no

# image is written.
rmerr = ’’ # Output rotation measure error image name. If not

# specified, no image is written.
pa0 = ’’ # Output position angle (degrees) at zero wavelength image

# name. If not specified, no image is written.
pa0err = ’’ # Output position angle (degrees) at zero wavelength error

# image name. If not specified, no image is written.
nturns = ’’ # Output number of turns image name. If not specified, no

# image is written.
chisq = ’’ # Output reduced chi squared image name. If not specified,

# no image is written.
sigma = ’’ # Estimate of the thermal noise. A value less than 0 means

# auto estimate.
rmfg = 0.0 # Foreground rotation measure in rad/m/m to subtract.
rmmax = 0.0 # Maximum rotation measure in rad/m/m for which to solve.

# IMPORTANT TO SPECIFY.
maxpaerr = 1e+30 # Maximum input position angle error in degrees to allow in

# solution determination.

This task generates the rotation measure image from stokes Q and U measurements at several
different frequencies. You are required to specify the name of at least one image with a polarization
axis containing stokes Q and U planes and with a frequency axis containing more than two pixels.
The frequencies do not have to be equally spaced (ie the frequency coordinate can be a tabular
coordinate). It will work out the position angle images for you. You may also specify multiple
image names, in which case these images will first be concatenated along the spectral axis using
ia.imageconcat(). The requirements are that for all images, the axis order must be the same and
the number of pixels along each axis must be identical, except for the spectral axis which may differ
in length between images. The spectral axis need not be contiguous from one image to another.

See also the imagepol.fourierrotationmeasure function for a new Fourier-based approach.

Rotation measure algorithms that work robustly are few. The main problem is in trying to account
for the n − π ambiguity (see Leahy et al, Astronomy & Astrophysics, 156, 234 or the MIRIAD
manual1).

The algorithm that this task uses is that of Leahy et al. in their Appendix A.1. But as in all these
algorithms, the basic process is that for each spatial pixel, the position angle vs frequency data is
fit to determine the rotation measure and the position angle at zero wavelength (and associated
errors). An image containing the number of n−π turns that were added to the data at each spatial
pixel and for which the best fit was found can be written. The reduced χ2 image for the fits can
also be written.

Note that no assessment of curvature (i.e. deviation from the simple linear position angle - λ2

functional form) is made.

Any combination of output images can be written.
1http://www.cfa.harvard.edu/sma/miriad/manuals/SMAuguide/smauserhtml/imrm.html

http://www.cfa.harvard.edu/sma/miriad/manuals/SMAuguide/smauserhtml/imrm.html
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The parameter sigma gives the thermal noise in Stokes Q and U. By default it is determined
automatically using the image data. But if it proves to be inaccurate (maybe not many signal-
free pixels), it may be specified. This is used for calculating the error in the position angles (via
propagation of Gaussian errors).

The argument maxpaerr specifies the maximum allowable error in the position angle that is accept-
able. The default is an infinite value. From the standard propagation of errors, the error in the
linearly polarized position angle is determined from the Stokes Q and U images (at each directional
pixel for each frequency). If the position angle error for any pixel exceeds the specified value, the
position angle at that pixel is omitted from the fit. The process generates an error for the fit and
this is used to compute the errors in the output images.

Note that maxpaerr is not used to mask pixels in the output images.

The argument rmfg is used to specify a foreground RM value. For example, you may know the
mean RM in some direction out of the Galaxy, then including this can improve the algorithm by
reducing ambiguity.

The parameter rmmax specifies the maximum absolute RM value that should be solved for. This
quite an important parameter. If you leave it at the default, zero, no ambiguity handling will
be used. So some apriori information should be supplied; this is the basic problem with rotation
measure algorithms.

6.20 Calculation of Spectral Indices and Higher Order Polynomi-
als (spxfit)

This application fits a power logarithmic polynomial or a logarithmic transformed polynomial to
pixel values along a specified axis of an image or images. These functions are most often used for
fitting the spectral index and higher order terms of a spectrum. A power logarithmic polynomial
has the form

y =
c0x

D(c1+c2 ln(x/D)+c3 ln(x/D)2+cn ln(x/D)(n−1))
(6.2)

and a logarithmic transformed polynomial is simply the result of this equation after taking the
natural log of both sides so that it has the form

ln(y) = c0 + c1 ln(x) + c2 ln(x/D)2 + ... + cn ln(x/D)n (6.3)

Because the logarithm of the ordinate values must be taken before fitting a logarithmic transformed
polynomial, all non-positive pixel values are effectively masked for the purposes of fitting.

The coefficients of the two forms are equal to each other except that c0 in the second equation is
equal to ln(c0) of the first. In the case of fitting a spectral index, which is traditionally represented
as α, is equal to c1.
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In both cases, D is a normalization constant used so that abscissa values are closer to unity when
they are sent to the fitter. This generally improves the probability that the fit will converge. This
parameter may be specified via the div parameter. A value of 0 (the default) indicates that the
application should determine a reasonable value for D, which is determined via

D = 10
∫

(log 10(
√

(min(x)∗max(x)))

where min(x) and max(x) are the minimum and maximum abscissa values, respectively.

The inputs are:

# spxfit :: Fit a 1-dimensional model to an image or image region
for determination of spectral index.
imagename = # Name of the input image(s)
box = ’’ # Rectangular box in

# direction coordinate blc, trc.
# Default: entire image ("").

region = ’’ # Region of interest. See
# help par.region for possible
# specifications. Default:
# Do not use a region.

chans = ’’ # Channels to use. Channels
# must be contiguous. See "help
# par.chans" for
# examples. Default: all channels ("").

stokes = ’’ # Stokes planes to
# use. Planes must be contiguous. Default:
# all stokes ("").

axis = -1 # The profile axis. Default:
# use the spectral axis if one
# exists, axis 0 otherwise (<0).

mask = ’’ # Mask to use. See help
# par.mask. Default is none.

minpts = 1 # Minimum number of unmasked
# points necessary to attempt
# fit.

multifit = True # If true, fit a profile
# along the desired axis at each
# pixel in the specified
# region. If false, average the
# non-fit axis pixels and do
# a single fit to that average
# profile. Default False.

spxsol = ’’ # Name of the spectral index
# function coefficient solution
# image to write.

spxerr = ’’ # Name of the spectral index
# function coefficient error
# image to write.

model = ’’ # Name of model
# image. Default: do not write the model
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# image ("").
residual = ’’ # Name of residual

# image. Default: do not write the
# residual image ("").

spxtype = ’plp’ # Type of function to
# fit. "plp" => power logarithmic
# polynomial, "ltp" =>
# logarithmic transformed polynomial.

spxest = [] # Initial estimates for the
# spectral index function
# coefficients.

spxfix = [] # Fix the corresponding spectral index function
# coefficients during the fit. True=>hold fixed.

div = 0 # Divisor (numerical value or
# quantity) to use in the
# logarithmic terms of the
# plp or ltp function. 0 =>
# calculate a useful value on the fly.

wantreturn = True # Should a record summarizing
# the results be returned?

logresults = True # Output results to logger?
logfile = ’’ # File in which to log

# results. Default is not to write a
# logfile.

sigma = -1 # Standard deviation array or image name(s).
outsigma = ’’ # Name of output image used

# for standard deviation. Ignored
# if sigma is empty.

for more than a single input image or cube, all images must have the same dimensions along all
axes other than the fit axis. multifit will perform a per pixel fit, otherwise there will be a single
value over the entire region.

6.21 Image Mask Handling makemask

makemask facilitates the handling of image masks in CASA. There are two basic mask formats: 1)
one or more Boolean masks stored internally in the image file, and 2) images with zero and non-zero
image values. makemask looks like:

# makemask :: Makes and manipulates image masks
mode = ’list’ # Mask method (list, copy,expand,delete,setdefaultmask)

inpimage = ’’ # Name of input image.

To distinguish between Boolean internal masks and zero/non-zero images, makemask uses the syntax
galaxy.image:mask0 for Boolean masks within an image, in this example the Boolean mask mask0
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within the image galaxy.image. Without the colon separator, the image itself is assumed to the be
treated like a zero/non-zero mask.

mode=’list’ lists all the internal Boolean masks that are present in an image. The default masks
can be set with mode setdefaultmask and they can be deleted with the mode delete. The default
mask is used when an image is displayed in the viewer and is used in all analysis tasks.

mode=’copy’ lets a user to copy a Boolean mask from one image to another image, or to write out
the Boolean mask as a zero/non-zero image. The latter format is very useful when different masks
are combined or manipulated. All the image analysis tools, in particular immath are applicable for
such zero/non-zero masks as they act like normal images. makemask will always attempt to regrid
the input mask to the output image.

In addition mode=’copy’ can be used to merge masks and also accepts regions. E.g. to create a
mask from a CASA region file (CRTF, see § 6.1.6), the input would look like:

# makemask :: Makes and manipulates image masks
mode = ’copy’ # Mask method (list, copy,expand,delete,setdefaultmask)

inpimage = ’inputimage.im’ # Name of input image.
inpmask = ’region.crtf’ # mask(s) to be processed: image masks,T/F internal masks

# (Need to include parent image names),regions(for copy mode)
output = ’imagemask.im’ # Name of output mask (imagename or imagename:internal_maskname)
overwrite = False # overwrite output if exists?

mode=’expand’ furthermore expands a mask in the spectral domain. It regrids first then stretches
the edge channels. E.g. a one plane continuum image would be stretched to all planes of a data
cube.

6.22 Search for Spectral Line Rest Frequencies (slsearch)

The slsearch task allows the spectral line enthusiast to find their favorite spectral lines in subset
of the Splatalogue spectral line catalog (http://www.splatalogue.net) which is distributed with
CASA. In addition, one can export custom catalogs from Splatalogue and import them to CASA
using the task splattotable (Sect. 6.23) or tool method sl.splattotable(). One can even import
catalogs with lines not in Splatalogue using the same file format.

The inputs to slsearch are as follows:

# slsearch :: Search a spectral line table.
tablename = ’’ # Input spectral line table name to

# search. If not specified, use the
# default table in the system.

outfile = ’’ # Results table name. Blank means do not
# write the table to disk.

freqrange = [84, 90] # Frequency range in GHz.

http://www.splatalogue.net
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species = [’’] # Species to search for.
reconly = False # List only NRAO recommended

# frequencies.
chemnames = [’’] # Chemical names to search for.
qns = [’’] # Resolved quantum numbers to search

# for.
rrlinclude = True # Include RRLs in the result set?
rrlonly = False # Include only RRLs in the result set?

intensity = -1 # CDMS/JPL intensity range. -1 -> do not
# use an intensity range.

smu2 = -1 # S*mu*mu range in Debye**2. -1 -> do
# not use an S*mu*mu range.

loga = -1 # log(A) (Einstein coefficient) range.
# -1 -> do not use a loga range.

eu = -1 # Upper energy state range in Kelvin. -1
# -> do not use an eu range.

el = -1 # Lower energy state range in Kelvin. -1
# -> do not use an el range.

verbose = True # List result set to logger (and
# optionally logfile)?

logfile = ’’ # List result set to this logfile (only
# used if verbose=True).

append = True # If true, append to logfile if it
# already exists, if false overwrite
# logfile if it exists. Only used if
# verbose=True and logfile not blank.

wantreturn = True # If true, return the spectralline tool
# associated with the result set.

The table is provided in the tablename parameter but if it is blank (the default), the catalog
which is included with CASA will be used. Searches can be made in a parameter space with large
dimensionality:

• freqrange Frequency range in GHz.

• species Species to search for.

• reconly List only NRAO recommended frequencies.

• chemnames Chemical names to search for.

• qns Resolved quantum numbers to search for.

• intensity CDMS/JPL intensity range.

• smu2 Sµ2 range in Debye2.

• loga log(A) (Einstein coefficient) range.
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• el Lower energy state range in Kelvin.

• eu Upper energy state range in Kelvin.

• rrlinclude Include RRLs in the result set?

• rrlonly Include only RRLs in the result set?

Notation is as found in the Splatalogue catalog.

Example:
Search for all lines of the species HOCN and HOCO+ in the 200-300GHz range:

slsearch(outfile="myresults.tbl", freqrange = [200,300],
species=[’HOCN’, ’HOCO+’])

The task can also return a python dictionary if assigned a variable like:

myLines = slsearch(outfile="myresults.tbl", freqrange = [200,300],
species=[’HOCN’, ’HOCO+’])

6.23 Convert Exported Splatalogue Catalogs to CASA Tables (splattotable)

In some cases the internal spectral line catalog may not contain the lines in which one is interested.
In that case, one can export a catalog from Splatalogue http://www.splatalogue.net or even
create their own ”by hand” (be careful to get the format exactly right though!). CASA’s task
splattotable can then be used to create a CASA table that contains these lines and can be
searched:

---------> inp(splattotable)
# splattotable :: Convert a downloaded Splatalogue spectral line list to a casa table.
filenames = [’’] # Files containing Splatalogue lists.
table = ’’ # Output table name.
wantreturn = True # Do you want the task to return a spectralline tool attached to the results table?

A search in Splatalogue will return a catalog that can be saved in a file (look for the ”Export”
section after the results on the search results page). The exported filename(s) should be entered in
the filenames parameter of splattotable. The downloaded files must be in a specific format for
this task to succeed. If you use the Splatalogue ”Export CASA fields” feature, you should have no
difficulties.

6.24 Image Import/Export to FITS

These tasks will allow you to write your CASA image to a FITS file that other packages can read,
and to import existing FITS files into CASA as an image.

http://www.splatalogue.net
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6.24.1 FITS Image Export (exportfits)

To export your images to fits format use the exportfits task. The inputs are:

# exportfits :: Convert a CASA image to a FITS file
imagename = ’’ # Name of input CASA image
fitsimage = ’’ # Name of output image FITS file
velocity = False # Use velocity (rather than frequency) as spectral axis
optical = False # Use the optical (rather than radio) velocity convention
bitpix = -32 # Bits per pixel
minpix = 0 # Minimum pixel value
maxpix = 0 # Maximum pixel value
overwrite = False # Overwrite pre-existing imagename
dropstokes = False # Drop the Stokes axis?
stokeslast = True # Put Stokes axis last in header?

The dropstokes or stokeslast parameter may be needed to make the FITS image compatible
with an external application.

For example,

exportfits(’ngc5921.demo.cleanimg.image’,’ngc5921.demo.cleanimg.image.fits’)

6.24.2 FITS Image Import (importfits)

You can also use the importfits task to import a FITS image into CASA image table format.
Note, the CASA viewer can read fits images so you don’t need to do this if you just want to look
at the image. The inputs for importfits are:

# importfits :: Convert an image FITS file into a CASA image
fitsimage = ’’ # Name of input image FITS file
imagename = ’’ # Name of output CASA image
whichrep = 0 # If fits image has multiple

# coordinate reps, choose one.
whichhdu = 0 # If its file contains

# multiple images, choose one.
zeroblanks = True # Set blanked pixels to zero (not NaN)
overwrite = False # Overwrite pre-existing imagename
defaultaxes = False # Add the default 4D

# coordinate axes where they are missing
defaultaxesvalues = [] # List of values to assign to

# added degenerate axes when
# defaultaxes=True (ra,dec,freq,stokes)

For example, we can read the above image back in

importfits(’ngc5921.demo.cleanimg.image.fits’,’ngc5921.demo.cleanimage’)
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6.25 Using the CASA Toolkit for Image Analysis

Inside the Toolkit:
The image analysis tool (ia) is
the workhorse here. It appears in
the User Reference Manual as the
image tool. Other relevant tools
for analysis and manipulation in-
clude measures (me), quanta (qa)
and coordsys (cs).

Although this cookbook is aimed at general users employ-
ing the tasks, we include here a more detailed description of
doing image analysis in the CASA toolkit. This is because
there are currently only a few tasks geared towards image
analysis, as well as due to the breadth of possible manipu-
lations that the toolkit allows that more sophisticated users
will appreciate.

To see a list of the ia methods available, use the CASA
help command:

CASA <1>: help ia

--------> help(ia)

Help on image object:

class image(__builtin__.object)

| image object

|

| Methods defined here:

|

| __init__(...)

| x.__init__(...) initializes x; see x.__class__.__doc__ for signature

|

| __str__(...)

| x.__str__() <==> str(x)

|

| adddegaxes(...)

| Add degenerate axes of the specified type to the image‘ :

| outfile

| direction = false

| spectral = false

| stokes

| linear = false

| tabular = false

| overwrite = false

| ----------------------------------------

|

| addnoise(...)

...

|

| unlock(...)

| Release any lock on the image‘ :

| ----------------------------------------

|

| ----------------------------------------------------------------------

| Data and other attributes defined here:

|

| __new__ = <built-in method __new__ of type object at 0x55d0f20>

| T.__new__(S, ...) -> a new object with type S, a subtype of T
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or for a compact listing use <TAB> completion on ia., e.g.

CASA <5>: ia.
Display all 105 possibilities? (y or n)
ia.__class__ ia.deconvolvecomponentlist ia.ispersistent ia.reorder
ia.__delattr__ ia.deconvolvefrombeam ia.lock ia.replacemaskedpixels
ia.__doc__ ia.done ia.makearray ia.restoringbeam
ia.__getattribute__ ia.echo ia.makecomplex ia.rotate
ia.__hash__ ia.fft ia.maketestimage ia.sepconvolve
ia.__init__ ia.findsources ia.maskhandler ia.set
ia.__new__ ia.fitallprofiles ia.maxfit ia.setboxregion
ia.__reduce__ ia.fitcomponents ia.miscinfo ia.setbrightnessunit
ia.__reduce_ex__ ia.fitpolynomial ia.modify ia.setcoordsys
ia.__repr__ ia.fitprofile ia.moments ia.sethistory
ia.__setattr__ ia.fromarray ia.name ia.setmiscinfo
ia.__str__ ia.fromascii ia.newimage ia.setrestoringbeam
ia.adddegaxes ia.fromfits ia.newimagefromarray ia.shape
ia.addnoise ia.fromimage ia.newimagefromfile ia.statistics
ia.boundingbox ia.fromrecord ia.newimagefromfits ia.subimage
ia.brightnessunit ia.fromshape ia.newimagefromimage ia.summary
ia.calc ia.getchunk ia.newimagefromshape ia.toASCII
ia.calcmask ia.getregion ia.open ia.tofits
ia.close ia.getslice ia.outputvariant ia.topixel
ia.collapse ia.hanning ia.pixelvalue ia.torecord
ia.continuumsub ia.haslock ia.putchunk ia.toworld
ia.convertflux ia.histograms ia.putregion ia.twopointcorrelation
ia.convolve ia.history ia.rebin ia.type
ia.convolve2d ia.imagecalc ia.regrid ia.unlock
ia.coordmeasures ia.imageconcat ia.remove
ia.coordsys ia.insert ia.removefile
ia.decompose ia.isopen ia.rename

A common use of the ia tool is to do region statistics on an image. The imhead task has
mode=’stats’ to do this quickly over the entire image cube. The tool can do this on specific
planes or sub-regions. Here is an example on how to use the ia tool to get on-source and off-source
statistics:

# The variable clnimage points to the clean image name

# Pull the max and rms from the clean image
ia.open(clnimage)
on_statistics=ia.statistics()
thistest_immax=on_statistics[’max’][0]
oldtest_immax = 1.07732224464
print ’ Clean image ON-SRC max should be ’,oldtest_immax
print ’ Found : Max in image = ’,thistest_immax
diff_immax = abs((oldtest_immax-thistest_immax)/oldtest_immax)
print ’ Difference (fractional) = ’,diff_immax

print ’’
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# Now do stats in the lower right corner of the image
box = ia.setboxregion([0.75,0.00],[1.00,0.25],frac=true)
off_statistics=ia.statistics(region=box)
thistest_imrms=off_statistics[’rms’][0]
oldtest_imrms = 0.0010449
print ’ Clean image OFF-SRC rms should be ’,oldtest_imrms
print ’ Found : rms in image = ’,thistest_imrms
diff_imrms = abs((oldtest_imrms-thistest_imrms)/oldtest_imrms)
print ’ Difference (fractional) = ’,diff_imrms

print ’’
print ’ Final Clean image Dynamic Range = ’,thistest_immax/thistest_imrms
print ’’
print ’ =============== ’

ia.close()

Note: If you don’t close the file with, e.g., ia.close() the file will stay in a ’locked’ state. Other
processes won’t be able to access the file until the file is properly closed.

6.26 Examples of CASA Image Analysis

The data reduction tutorials on casaguides.nrao.edu provide walkthroughs for high and low
frequency, spectral line and polarization analysis techniques.

casaguides.nrao.edu


Chapter 7

Visualization With The CASA Viewer

This chapter describes using the CASA Viewer to display data. The Viewer can be started as a
stand-alone executable or by the viewer task inside a CASA shell. It can display both images
and Measurement Sets. We are in the process of splitting the task-level access to the Viewer
into two tasks: imview for images and msview for measurement sets. These tasks offer improved
scriptability, giving command line access to many of the viewer features.

7.1 Starting the Viewer

Figure 7.1: The Viewer Display Panel (left) and the Data Manager (right) panel for a regular
image or data cube.

Within the casapy environment, the viewer task can be used to start the CASA Viewer, displaying
an image or MS. The inputs are:

384
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# viewer :: View an image or visibility data set.

infile = ’’ # (Optional) Name of file to visualize.
displaytype = ’raster’ # (Optional) Type of visual rendering

# (raster, contour, vector or marker).
# lel if an lel expression is given
# for infile (advanced).

Examples of starting the CASA Viewer:

CASA <1>: viewer()

CASA <2>: viewer(’ngc5921.demo.ms’)

CASA <3>: viewer(’ngc5921.demo.cleanimg.image’)

CASA <4>: viewer(’ngc5921.demo.cleanimg.image’, ’contour’)

CASA <5>: viewer(’"ngc5921.demo.cleanimg.image"^2’, ’lel’)

The first command creates an empty Viewer Display Panel (§ 7.2) and a Load Data window
(§ 7.3.1) . The second starts the CASA Viewer and loads a Measurement Set. The third example
starts the Viewer and opens an image data cube (see Figure 7.1).

Examples four and five make use of the second parameter (displaytype). Example four displays
the image as a contour map rather than the default raster map. Example five uses ’Lattice (Image)
Expression Language’ to display the square of the image data.

Note that the Viewer can open FITS files, CASA image files, Measurement Sets, and saved viewer
states. The Viewer determines the type of file being opened automatically.

For additional scripting options when opening the Viewer, see the discussion of the imview and
msview tasks at the end of this Chapter (§7.7 and 7.8).

7.1.1 Running the CASA Viewer outside casapy

If you have CASA installed, then the CASA Viewer is available as a stand-alone application called
casaviewer. From the operating system prompt, the following commands work the same as the
casapy task commands given in the previous Section:

casaviewer &

casaviewer ms_filename &

casaviewer image_filename &

casaviewer image_filename contour &

casaviewer ’"image_filename"^2’ lel &
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7.2 The Viewer Display Panel

The CASA Viewer consists of a number of graphical user interface (GUI) windows. The main
Viewer Display Panel (§ 7.2) is used for both image and Measurement Set viewing. It is shown
in the left panels of Figures 7.1 and 7.2 and appears the same whether an image or Measurement
Set is being displayed.

Figure 7.2: The Viewer Display Panel (left) and Data Display Options (right) panels with
a Measurement Set open.

At the top of the Viewer Display Panel are drop down menus:

• Data

– Open — open the Data Manager window (§7.3).
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– Register — select and de-select which of the loaded data file(s) should be displayed.
The menu expands to the right showing all loaded data sets. Unchecking an image will
cause it not to be displayed, but does not close it.

– Close — close (unload) the selected data file. The menu expands to the right showing
all loaded data.

– Adjust Data Display — open the Data Display Options (’Adjust’) window (§7.4.1).

– Save as... — save/export data to a file

– Print — print the displayed image

– Save Panel State — to a ’restore’ file (xml format)

– Restore Panel State — from a restore file

– Preferences — manually edit the viewer configuration

– Close Panel — close this Viewer Display Panel. If this is the last display panel open,
this will exit the Viewer.

– Quit Viewer — close all display panels and exit

• Display Panel

– New Panel — create a new, empty Viewer Display Panel

– Panel Options — open the Viewer Canvas Manager window to edit margins, the num-
ber of panels, and the background (§7.4.1.5).

– Save Panel State — save the current state of the viewer as a file that can later be
reloaded.

– Restore Panel State — restore the viewer to a state previously saved as a file.

– Print — print displayed image

– Close Panel — close this Viewer Display Panel. If this is the last display panel open,
this will exit the Viewer.

• Tools

– Spectral Profile — Open the Spectral Profile Browser window to look at intensity as
a function of frequency for part of an image (§7.4.4.2)

– Collapse Image — Open the Collapse/Moments window, which allows you to create
new images from a data cube by integrating along the spectral axis (§7.4.6)

– Histogram — Open the Histogram inspection window, which allows you to graphically
examine the distribution of pixel values in a data cube (§7.4.7)

– Fit — Open the two-d fitting window, which can be used to fit Gaussians to two
dimensional intensity distributions (§7.4.8).

– Interactive Clean — Open a window to look at ongoing interactive clean processes.

• View

– Main Toolbar — show/hide the top row of icons (Figure 7.3, §7.2.1).
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– Mouse Toolbar — show/hide the second row of mouse-button action selection icons
(Figure 7.4, §7.2.2).

– Animator — show/hide tapedeck control panel attachment to the main Viewer Display
Panel (§7.2.3).

– Position Tracking — show/hide the position tracking attachment to the main Viewer
Display Panel (§7.2.3).

– Regions — show/hide the region manager attachment to the main Viewer Display Panel
(§7.2.3).

7.2.1 The Main Toolbar

Figure 7.3: The display panel’s Main Toolbar appears directly below the menus and contains
’shortcut’ buttons for most of the frequently-used menu items.

Below the drop down menus is the Main Toolbar (Figure 7.3). This top row of icons offers fast
access to these menu items:

• folder (Data:Open shortcut) — open the Data Manager window (§7.3)

• wrench (Data:Adjust shortcut) — open the Data Display Options (’Adjust’) window (§7.4.1).

• panels (Data:Register shortcut) — select and de-select which of the loaded data file(s)
should be displayed. The menu expands to the right showing all loaded data sets. Unchecking
an image will cause it not to be displayed, but does not close it.

• delete (Data:Close shortcut) — close (unload) the selected data file. The menu expands to
the right showing all loaded data.

• save data (Data:Save as) — save the current data to a file.

• new panel (Display Panel:New Panel) — create a new, empty Viewer Display Panel

• panel wrench (Display Panel:Panel Options) — open the Viewer Canvas Manager win-
dow to edit margins, the number of panels, and the background (§7.4.1.5).

• save panel (Display Panel: Save Panel State) — save panel state to a ’restore’ file

• restore panel (Display Panel: Restore Panel State) — restore panel state from a re-
store file

• spectral profile (Tools: Spectral Profile) — Open the Spectral Profile Browser win-
dow to look at intensity as a function of frequency for part of an image (§7.4.4.2)
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• collapse/moments(Tools: Collapse Image) — Open the Collapse/Moments window,
which allows you to create new images from a data cube by integrating along the spectral
axis (§7.4.6)

• histogram(Tools:Histogram) — Open the Histogram inspection window, which allows you
to graphically examine the distribution of pixel values in a data cube (§7.4.7)

• fitting(Tools:Fit) – Open the two-d fitting window, which can be used to fit Gaussians to
two dimensional intensity distributions (§7.4.8).

• print (Display Panel:Print) — print the current display

• magnifier box — zoom out all the way

• magnifier plus — zoom in (by a factor of 2)

• magnifier minus — zoom out (by a factor of 2)

7.2.2 The Mouse Toolbar

Figure 7.4: The ’Mouse Tool’ Bar allows you to assign how mouse buttons behave in the image
display area. Initially, zooming, color adjustment, and rectangular regions are assigned to the left,
middle and right mouse buttons. Click on a tool with a mouse button to assign that tool to that
mouse button.

Below the Main Toolbar are eleven Mouse Tool buttons (Figure 7.4). These allow you to assign
what behavior the three mouse buttons have when clicked in the display area. Clicking a mouse
tool icon will [re-]assign the mouse button that was clicked to that tool. Black and white squares
beneath the icons show which mouse button is currently assigned to which tool.

The mouse tools available from the toolbar are:

(Note that the ’escape’ key can be used to cancel any mouse tool operation that was begun but not
completed, and to erase a region, point, or other tool showing in the display area.)

• Zooming (magnifying glass icon): To zoom into a selected area, press the Zoom tool’s
mouse button (the left button by default) on one corner of the desired rectangle and drag
to the desired opposite corner. Once the button is released, the zoom rectangle can still
be moved or resized by dragging. To complete the zoom, double-click inside the selected
rectangle. If you instead double-clicking outside the rectangle, you will zoom out.

• Panning (hand icon): Press the tool’s mouse button on a point you wish to move, drag
it to the position where you want it moved, and release. Note: The arrow keys, Page Up,
Page Down, Home and End keys can also be used to pan through your data any time you are
zoomed in. (Click on the main display area first, to be sure the keyboard is ’focused’ there).
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• Stretch-shift colormap fiddling (crossed arrows): This is usually the handiest color
adjustment; it is assigned to the middle mouse button by default. Note that you can also
adjust the color table quantitatively inside the Data Display Options window (§7.4.1).

• Brightness-contrast colormap fiddling (light/dark sun): Another tool to adjust the
color stretch.

• Positioning (plus): This tool can place a point marker on the display to select a position. It
is used to flag Measurement Set data or to select an image position for spectral profiles. Click
on the desired position with the tool’s mouse button to place the point; once placed you can
drag it to other locations. You can also place multiple points on the display (e.g. for different
spectral profile positions) – remove them by hovering over and hitting ESC. Double-click is
not needed for this tool. See § 7.4.3.2 for more detail.

• Rectangle, Ellipse and Polygon region drawing: The rectangle region tool is assigned to
the right mouse button by default. As with the zoom tool, a rectangle region is generated by
dragging with the assigned mouse button; the selection is confirmed by double-clicking within
the rectangle. An ellipse regions is created by dragging with the assigned mouse button. In
addition to the elliptical region, also its surrounding rectangle is shown on the display. The
selection is confirmed by double-clicking within the ellipse. Polygon regions are created by
clicking the assigned mouse button at the desired vertices, clicking the final location twice
to finish. Once created, a polygon can be moved by dragging from inside, or reshaped by
dragging the handles at the vertices. See § 7.4.3.2 for the uses of this tool.

• Polyline drawing: A polyline can be created by selecting this tool. It is manipulated
similarly to the polygon region tool: create segments by clicking at the desired positions and
then double-click to finish the line. [Uses for this tool are still to be implemented].

• Distance tool: After selecting the distance tool by assigning any mouse button to it, dis-
tances on the image can conveniently be measured by dragging the mouse with the assigned
button pressed. The tool measures the distances along the world coordinate axes and along
the hypotenuse. If the units in both axes are [deg], the distances are displayed in [arcsec].

• Position-Velocity Diagram: Use this mouse tool to drag out a position axis that can be
used to generate a position velocity diagram in a new viewer panel from the region manager
dock.

7.2.3 The Display Area

The main Display Area lies below the toolbars. This area shows the image or Measurement Set
currently loaded. Clicking the mouse inside the display area allows region or position selection
according to the settings in the mouse toolbar.

The Display Area may have up to three attached panels: the Animator panel, the Position
Tracking panel, and the Regions panel. These may be displayed or hidden from the ”View”
dropdown menu in the main Viewer Display Panel. If one of these is missing from your viewer,
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check that it is checked ”on” in that menu. The panels can also be turned off by clicked the ”X”
in the top right corner, in which case you will need to use the View menu to get them back.

By default, the three panels appear attached to the main Viewer Display Panel on the right side
of the image. They may be dragged to new positions. Each of the three panels can be attached to
the left, top, right, or bottom of the main Viewer Display Panel or they can be entirely undocked
and left as free-floating panels.

NOTE: Depending on your window manager, windows without focus, including detached panels
and tools like the Spectral Profile Browser may sometimes display odd behavior. As a general rule,
giving the window focus by clicking on it will correct the issue. If you seem to ”lose” a detached
panel (like an Animator Panel), then click in the main window to get it back.

NOTE: With all three panels turned on (and especially with several images loaded), the main
display panel can sometimes shrink to very small sizes as the panels grow. Try detaching the
panels to get the main display panel back to a useful size.

A restart of the viewer will display all docks in the state of a previous viewer session, given that it
was closed normally. In addition, the viewer docking can be changed under “Preferences” In the
toolbar (Mac OS under the “CASA Viewer” tab on the toolbar, Linux: “Data”). Fig. 7.5 shows an
example. Each item can be changed and the input box will only allow accepted input formats. A
complete restart is required to apply the changes.

Figure 7.5: ”Preferences” dialog to manually change the docking and size of the viewer panel.
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Figure 7.6: The animator panel, which allows one to scroll along the z axis of a data cube (using
the Channels tape deck) or cycle among open Images. The panel can be undocked from the main
display panel.

7.2.3.1 The Animator Panel

The Animator Panel allows you to scroll through the channels of a data cube and to rotate among
loaded images. The main features of the panel are the two “tape decks,” one labeled ”Channels”
and one Labeled ”Images” (note that you will only see the Images tape deck when multiple images
are loaded.

The Channels tape deck scrolls between planes of an individual image. By default, the channel
tape deck scrolls among frequency planes when R.A. and Declination are the displayed axes (in this
case, frequency is the ”z axis”). From outside to inside, the buttons cause the display to jump all
the way to the beginning/end of the z axis, cause the viewer to step one plane forward or backward
along the z axis, or start a movie. The limits on the z axis can be set manually using the windows
at the end of the scroll bar. The scroll bar can also be dragged or the user can jump the display to
a manually entered plane by entering the plane into the text bock.

When you have multiple images loaded, the Images tape deck cycles through which is image is
being displayed. In the movie mode, it allows you continuously click between images. Functionally,
the image tape deck works similarly to the channels tape deck, with the ability to step, jump, or
continuously scroll through images.

NOTE: The check boxes next to the channel and images tabs enable or disable those panels. This
doesn’t have much effect when the display has only a single panel, but with multiple panels (i.e.,
several maps at once in the main window) it changes the nature of the display. If the ”Images”
box is checked then interleaved maps from different cubes are display. Otherwise a series of maps
from a single cube are shown.

7.2.3.2 The Position Tracking Panel

The Position Tracking panel (below the images in Fig 7.1) shows the intensity, position (e.g.,
RA and Dec), Stokes, frequency (or velocity), and pixel location for the point currently under the
cursor. A separate box appears for each registered image or Measurement Set and you can see the
tracking information for each. Tracking can be ’frozen’ (and unfrozen again) by hitting the space
bar when the viewer’s focus is on the main display area (to be sure that this is case first click on
the main display area).
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Figure 7.7: The position tracking panel, which gives information about the open data cube at the
current location of the cursor. Freeze the position tracking panel using the SPACE bar.

7.2.3.3 The Region Manager Panel

The Region Manager panel becomes active when regions are created. It has a large amount of
functionality, from display region statistics and histograms to creating position-velocity cuts. We
discuss these in §7.4.3. Like the Animator and Position Tracking panel, the Region Manager Panel
can be moved relative to the main viewer display panel or entirely undocked.

7.2.4 Saving and Restoring the Display Panel State

You can save the display panel’s current state — meaning the panel settings and the data on display
— or load a saved panel state from disk. To save the display panel state, select Save Panel State
from the Display Panel drop-down menu or click the ”Save Display Panel State to File” icon on
the main toolbar (an arrow pointing from a picture to a page, see Figure 7.3). It is advisable but
not required to retain the file’s ’.rstr’ (”Restore”) extension.

You can restore the display panel to the saved state by loading the saved state from the Data
Manager Panel, by selecting Restore Panel State from the Display Panel drop down menu,
or by clicking the ”Restore Display Panel State” icon (just to the right of the ”Save Display Panel
State” icon).

It is possible to restore panel states viewing Measurement Sets or image and panel states that have
multiple layers, such as contour plots over raster images. You can also save LEL displays. You can
also the save or restore the panel state with no data loaded, which is a convenient way to restore
preferred initial settings such as overall panel size.

Data Locations: The viewer is fairly forgiving regarding data location when restore a saved panel
state. It will find files located:

• in the original location recorded in the restore file

• in the current working directory (where you started the viewer)

• in the restore file’s directory

• in the original location relative to the restore file
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This means that you can generally restore a saved panel state if you move that file together with
data files. The exception to this rule is that the process is less forgiving if you save the display
of an LEL expression. In this case the files must be in the locations specified in the original LEL
expression. If a data file is not found, restore will attempt to proceed but results may not be ideal.

Manually Editing Saved Display Panel States: The saved ”Restore” files are in ascii (xml) format,
and manual edits are possible. However, these files are long and complex. Use caution, and back
up restore files before editing. If you make a mistake, the viewer may not even recognize the file as
a restore file. It is easier and safer to make changes on the display panel and then save the display
panel state again.

7.3 The Data Manager Panel — Saving and Loading Data

Figure 7.8: The load tab of the Data Manager panel. This appears if you open the viewer
without any infile specified, if you use select Open from the Data drop down menu, or click the
Open (Folder) icon. You can access the save image or save region tabs from this view or by
selecting Save as... from the Data drop down menu. The load tab shows all files in the current
directory that can be loaded into the viewer — images, MS, CASA region files, and Display Panel
State files.

The Data Manager Panel is used to interactively load and save images, Measurement Sets,
Display Panel States, and regions. An example of the loading tab in this panel is shown in Figure 7.8.
This panel appears automatically if you open the viewer without specifying an input file or it can
be accessed through the Data:Open menu or Open icon of the Viewer Display Panel.
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7.3.1 Loading Data

The load tab of the Data Manager Panel allows you to interactively choose images or Mea-
surement Sets to load into the viewer. The load tab automatically shows you the available images,
Measurement Sets, and Display Panel States in the current directory that can be opened by the
viewer. When you highlight an image in this view, the tab shows a brief summary of the im-
age: pixel shape, extent of the image on the sky and in frequency/velocity, and restoring beam (if
available).

Selecting a file will bring up information about that file in the panel on the right of the Data
Manager Panel provide options for how to display the data. Images can be displayed as:

1. raster image

2. contour map

3. vector map

4. marker map

These options area each discussed in § 7.4.

slice: a subselection of a data cube can be loaded, the start and end pixel in each spatial, polariza-
tion, and spectral dimension can be selected.

LEL: Instead of only loading an image from disk, you may ask the viewer to evaluate a ’Lattice
Expression Language’ (LEL) expression (§ 6.1.4). This can be entered in the box provided after
you click the ”LEL” box. The images used in the LEL expression should have the same coordinates
and extents.

Measurement Sets: A Measurement Set can only be displayed as a raster. For measurement sets,
the load tab offers options for data selection. This will reduce loading and processing times for
visibility flagging.

Regridding Images on Load: Optionally, you may regrid the velocity axis of an image on load to
match the current coordinates grid in the Display Panel. In this case, the viewer will interpolate
(using the selected interpolation scheme) the cube on disk to share the same velocity gridding as
the loaded coordinates. This can be used, e.g., to overlay contour maps of different spectral lines
or to make synchronized movies of multiple cubes. Note that the regridding depends on the rest
frequency in the image, which is used to calculate the velocities used in regridding.

7.3.2 Registered vs. Open Datasets

When you load data as described above, it is first opened, and then registered on all existing Display
Panels.

An open dataset has been prepared in memory from disk. All open datasets will have a tab in the
Data Display Options window, whether currently registered or not.
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When a data set is registered to a Display Panel its coordinates are aligned to the master coordinate
image in the panel and it is ready for drawing. If multiple Display Panels are open then a data set
may be registered on one Display Panel and not on another. Only those data sets registered on
a particular Display Panel show up in its Position Tracking panel.

Why Register More Than One Image? It is useful to have more than one image registered on a
panel if you are displaying a contour image over a raster image (§ 7.4.2.1), to ’blink’ between images
(see Animator in § 7.2), or to compare images using the position tracking panel.

Unregistering Images: A data set can be registered or unregistered using the Image Manager in
the Data drop down menu or the Image Manager icon (third from left). It will open The Image
Manager window and the checkboxes can be used to register or unregister an image.

Closing vs. Unregistering: You can close a data set that is no longer needed using the Close option
in the Data drop-down menu, the ”Close” icon (fourth from left), or right mouse button “Close”
selection in the Image Manager (§ 7.3.3).

If you close a dataset, you must reload it from disk (or recreate it if it’s an LEL expression,
regridded image, moment or something similar) to see it again. If you unregister a dataset, it will
draw immediately if you re-register it, with its options as you have previously set them. In general,
close unneeded datasets but unregister those that you intend to use again.

7.3.3 Image Manager

The Image Manager is used to define the master coordinate image, the sequence of images (e.g. for
blinking), to register and unregister images, close images, change between raster, contour, vector,
and marker displays, and to modify the properties of images. The panel can be invoked from the
“Manage Images” tool, the third icon from the left (two overlapping squares).

An example is shown in Fig. 7.9. In this case, four images are loaded into the viewer. The sequence
of images can be changed by dragging and dropping the images to new positions in the stack. The
letter to the left indicates whether the image is a Raster, Contour, Vector, or Mmarker image.
MC marks the coordinate master, in this case the second image. The checkboxes are to change
the registration statuses. The Coordinate Master image can be defined by a right mouse click,
and selection the corresponding option. The right mouse menu button also offers options for quick
changes between contour and raster images and to close an image.

The Options button will open a drop down box (as shown in Fig. 7.9 for the first image), in which
one can again change between image type, change to a different rest frequency (or “Reset” to the
value in the image header), or open the “Display Options” panel for that specific image with all
the adjustment options explained in (§7.4.1 or §7.4.2).

7.3.4 Saving Data or Regions

The viewer can create new images by carrying out velocity regridding, evaluating an LEL expression,
or collapsing a data cube. You can save these images to disk using the Data Manager Panel. Select
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Figure 7.9: The Image Manager.

Figure 7.10: The Save Data panel that appears when selecting the ’Save as...’ (Figure 7.3).

Save as under the Data drop-down menu or click the Save as (disk) icon to bring up the Data
Manager Panel set to the save tabs. This tab is shown in Figure 7.10.

From the Save Image tab of the Data Manager Panel, you can export images from the viewer to
either a CASA image or FITS file on disk. Select the desired file name and click ”save.” The Data
Manager also allows you to save your current regions to a file, either in the CASA or ds9 format.
The left part lists all images that can be exported to disk. To save an image to a file, the use
can either enter the new filename in the box labeled ’output name:’ followed by the save-button
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(alternatively the ’Enter’-key), or choose a file name from the right hand side.

7.4 Viewing Images

There are several options for viewing an image. These are seen at the right of the Load Data -
Viewer panel described in § 7.3.1 and shown in Figure 7.1 after selecting an image. They are:

• raster image — a greyscale or color image,

• contour map — contours of intensity as a line plot,

• vector map — vectors (as in polarization) as a line plot,

• marker map — a line plot with symbols to mark positions.

The raster image is the default image display, and is what you get if you invoke the Viewer with
an image file and no other options. In this case, you will need to use the Open menu to bring up
the Load Data panel to choose a different display.

7.4.1 Viewing a Raster Map

A raster map of an image shows pixel intensities in a two-dimensional cross-section of gridded data
with colors selected a colormap according to a scaling that can be specified by the user.

Starting the casaviewer with an image as a raster map will look something like the example in
Figure 7.1.

Once loaded, the data display can be adjusted by the user through the Data Display Options
panel, which appears when you choose the Data:Adjust menu or use the wrench icon from the
Main Toolbar.

The Data Display Options window is shown in the right panel of Figure 7.1. It consists of a tab
for each image or MS loaded, under which are a cascading series of expandable categories. For an
image, these are:

• display axes

• hidden axes

• basic settings

• position tracking

• axis labels

• axis label properties
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• beam ellipse

• color wedge

The basic settings category is expanded by default. To expand a category to show its options,
click on it with the left mouse button.

7.4.1.1 Data Display Options — display and hidden axes

In this category the physical axes (i.e. Right Ascension, Declination, Velocity, Stokes) to be dis-
played can be selected and assigned to the x, y, and z axes of the display. The z axis will be the
axis scrolled across by the channel bar in the Animator Panel.

If your image has a fourth axis (typically Stokes), then one of the axes will need to be hidden and
not used in viewing. Which axis is hidden can be controlled by a slider within the hidden axes
drop-down.

7.4.1.2 Data Display Options — basic settings

This roll-up is open by default showing some commonly-used parameters that alter the way the
image is displayed. The most frequently used of these change how the intensity value of a pixel
maps to a color on the screen. An example of this part of the panel is shown in Figure 7.11.

Figure 7.11: The basic settings category of the Data Display Options panel and the inter-
active tool for setting the mapping from intensity to color.

The options available are:
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• basic settings: aspect ratio

This option controls the horizontal-vertical size ratio of data pixels on screen. fixed world
(the default) means that the aspect ratio of the pixels is set according to the coordinate system
of the image (i.e., true to the projected sky). fixed lattice means that data pixels will
always be square on the screen. Selecting flexible allows the map to stretch independently
in each direction to fill as much of the display area as possible.

• basic settings: pixel treatment

This option controls the precise alignment of the edge of the current ’zoom window’ with
the data lattice. edge (the default) means that whole data pixels are always drawn, even on
the edges of the display. For most purposes, edge is recommended. center means that data
pixels on the edge of the display are drawn only from their centers inwards. (Note that a
data pixel’s center is considered its ’definitive’ position, and corresponds to a whole number
in ’data pixel’ or ’lattice’ coordinates).

• basic settings: resampling mode

This setting controls how the data are resampled to the resolution of the screen. nearest (the
default) means that screen pixels are colored according to the intensity of the nearest data
point, so that each data pixel is shown in a single color. bilinear applies a bilinear interpo-
lation between data pixels to produce smoother looking images when data pixels are large on
the screen. bicubic applies an even higher-order (and somewhat slower) interpolation.

• basic settings: data range

You can use the entry box provided to set the minimum and maximum data values mapped
to the available range of colors as a list [min, max]. For very high dynamic range images,
you will probably want to enter a max less than the data maximum in order to see detail in
lower brightness-level pixels.

NOTE: By default you edit the scaling of a single image at once and can click between the
tabs at the top of the Data Display Options window to manipulate different windows. By
checking the Global Color Settings box at the bottom of this window, you will manipulate
the scaling for all images at once. This can be very useful, for example, when attempting
detailed comparison multiple reductions of the same data.

• basic settings: scaling power cycles

This option allows logarithmic scaling of data values to colormap cells, which can be very
helpful in the case of very high dynamic range.

The color for a data value is determined as follows:

1. The value is clipped to lie within the data range [min, max] specified above.

2. This clipped value is mapped to a new value depending on the selected scaling power
cycles in the following way:

– If the scaling power cycles is set to 0 (the default), the program considers a linear
range from [min, max] and scales this directly onto the set of available colors.
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– For negative scaling values, the data value (after clipping on [min, max] is scaled
linearly to lie between 0 and 10p (where p is the value chosen) and then program
takes the logarithm of this values, yielding a value in the range 1 to p. That value
is scaled linearly to the set of available colors. Thus the data is treated as if it had
p decades of range, with an equal number of colors assigned to each decade.

– For positive scaling values, the data value (after clipping on [min, max] is scaled
linearly to lie between 0 and p (where p is the value chosen) and 10 is raised to this
power, yielding a value in the range 1 to 10p. That value is scaled linearly to the
set of available colors.

3. The color corresponding to a number in final range is determined by the selected col-
ormap and its ’fiddling’ (shift/slope) and brightness/contrast settings (see Mouse Tool-
bar, above). Adding a color wedge to your image can help clarify the effect of the
various color controls.

See Figure 7.12 for sample curves.

Figure 7.12: Example curves for scaling power cycles.

In practice, you will often manipulate the data range bringing the max down in high dynamic
range images, raising the minimum to the near the noise level when using non-zero scaling
cycles. It is also common to use negative power cycles when considering high dynamic range
images — this lets you bring out the faint features around the bright peaks.

• basic settings: colormap

You can select from a variety of colormaps here. Hot Metal, Rainbow and Greyscale col-
ormaps are the ones most commonly used.



CHAPTER 7. VISUALIZATION WITH THE CASA VIEWER 402

7.4.1.3 Graphical Specification of the Intensity Scale

A histogram icon next to the data range in the Data Display opens the Image Color Mapping
window, which allows visualization and graphical manipulation of the mapping of intensity to
color. The window at the left shows a histogram of the data with a gray range showing the data
range. You can use this window to select the data range graphically (with the mouse), manually
(by typing into the empty windows), or as a percentile of the data. On the right, you can select
the scaling power cycles and see a visualization of the transfer function mapping intensity (x-axis)
to color (y-axis).

The functionality here follows the other histogram tools, with the Display tab used to change the
histogram plotting parameters. It will often be useful to use a logarithmic scaling of the y-axis and
filled histograms when manipulating the color table.

7.4.1.4 Data Display Options — other settings

Many of the other settings on the Data Options panel for raster images are self-explanatory such
as those which affect beam ellipse drawing (only available if your image provides beam data),
or the form of the axis labeling and position tracking information. You can also give your
image a color wedge, a key to the current mapping from data values to colors.

7.4.1.5 Viewer Canvas Manager — Panels, Margins, and Backgrounds

The display area can also be manipulated from the Viewer Canvas Manager window. Use the
wrench icon with a ’P’ (or the ’Display Panel’ menu) to show this window, which allows you to
manipulate the infrastructure of the main display panel. You can set:

• Margins - specify the spacing for the left, right, top, and bottom margins

• Number of panels - specify the number of panels in x and y and the spacing between those
panels.

• Background Color - white or black (more choices to come)

Figure 7.13 illustrates a multi-panel display along with the Viewer Canvas Manager settings which
created it.

7.4.2 Viewing a Contour Map

Viewing a contour image is similar to viewing a raster map. A contour map shows lines of equal
data value for the selected plane of gridded data (Figure 7.14). Contour maps are particularly
useful for overlaying on raster images so that two different measurements of the same part of the
sky can be shown simultaneously (§ 7.4.2.1).

Several basic settings options control the contour levels used:
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Figure 7.13: A multi-panel display set up through the Viewer Canvas Manager.

• The contours themselves are specified by a list in the box Relative Contour Levels. These
are defined relative to the two other parameters:

• The Base Contour Level sets the zero level for the relative contour list corresponds to in
units of intensity in the image.

• The Unit Contour Level sets what 1 in the relative contour list corresponds to in units of
intensity in the image.

Additionally, you have the option to manipulate the thickness and color of the image and to have
either positive or negative contours appear dashed.

For example, the following settings:

Relative Contour Levels = [0.2, 0.4, 0.6, 0.8]
Base Contour Level = 0.0
Unit Contour Level = <image max>

would map the maximum of the image to 1 in the relative contour levels and the base contour level
to zero. So the contours will show 20%, 40%, 60%, and 80% of the peak.
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Figure 7.14: The Viewer Display Panel (left) and Data Display Options panel (right) after
choosing contour map from the Load Data panel. The image shown is for channel 11 of the
NGC5921 cube, selected using the Animator tape deck, and zoomed in using the tool bar icon.
Note the different options in the open basic settings category of the Data Display Options
panel (as compared to raster image in Figure 7.1).

Another approach is to set the unit contour to 1, so that the contours are given in intensity units
(usually Jy/beam). So this setup:

Relative Contour Levels = [0.010, 0.0.020, 0.040, 0.080, 0.160, 0.320]
Base Contour Level = 0.0
Unit Contour Level = 1.0

would create contours starting at 10 mJy/beam and doubling every contour.

Another useful approach is to set contours in units of the rms noise level of the image, which can
be worked out from a signal free region. Then a setup like this:

Relative Contour Levels = [-3,3,5,10,15,20]
Base Contour Level = 0.0
Unit Contour Level = <image rms>

Would indicate significance in the image. The first two contours show emission at ± 3-sigma and
so on.
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You can get the image rms using the imstat task (§ 6.9) or using the Viewer statistics tool on a
region of the image (§ 7.4.3.3).

Not all images are of intensity, for example a moment-1 image (§ 6.7) has units of velocity. In this
case, absolute contours (like the last two examples) will work fine, but by default the Viewer will
set fractional contours but referred to the min and max of the image:

Relative Contour Levels = [0.2, 0.4, 0.6, 0.8]
Base Contour Level = <image min>
Unit Contour Level = <image max>

Here we have contours spaced evenly from min to max, and this is what you get by default if you
load a non-intensity image (like the moment-1 image). See Figure 7.15 for an example of this.

7.4.2.1 Overlay Contours on a Raster Map

Contours of either a second data set or the same data set can be used for comparison or to enhance
visualization of the data. The Data Options Panel will have multiple tabs (switch between them
at the top of the window) that allow you to adjust each overlay individually.

NOTE: axis labeling is controlled by the first-registered image overlay that has labeling turned
on (whether raster or contour), so make label adjustments within that tab.

To add a Contour overlay, open the Load Data panel (Use the Data menu or click on the folder
icon), select the data set and click on contour map. See Figure 7.15 for an example using NGC5921.

7.4.3 Regions and the Region Manager

CASA regions are following the CASA ’crtf’ standard as described in § D. CASA regions can be
used in all applications, including clean and image analysis tasks (§ 6).

NOTE: A leading ’ann’ (short for annotation) to a region definition indicates that it is for visual
overlay purposes only.

NOTE: Whereas the region format is supported by all the data processing tasks, some aspects of
the viewer implementation are still limited to rectangles, ellipses, and some markers. Full support
for all region types is progressing with each CASA release.

Once one or more regions are created, the Region Manager Panel becomes active (see Figure 7.16).
Like the Position Tracking and Animator Panels, this can be docked or detached from the main
viewer display. It contains several tabs that can be used to adjust, analyze, and save or load regions.

NOTE: Moving the mouse into a region will bring it into focus for the Spectral Profile or Histogram
tools.
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Figure 7.15: The Viewer Display Panel (left) and Data Display Options panel (right) after
overlaying a Contour Map of velocity on a Raster Image of intensity. The image shown is for the
moments of the NGC5921 cube, zoomed in using the tool bar icon. The tab for the contour plot is
open in the Data Display Options panel.

Figure 7.16: The Region Manager Panel, which becomes active once at least one region is created.
Cycle through available regions using the slider bar at the bottom and use the various tabs to
adjust, analyze, load, and save regions.
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7.4.3.1 Region Creation, Selection, and Deletion

Within the display area, you can draw regions or select positions using the mouse. Regions can be
created with the buttons marked as ’R’ in the mouse tool bar (§ 7.2, § 7.4.3.2). The viewer currently
supports creation of rectangles, ellipses, polygons, and the point. As usual, a mouse button can be
assigned to each button as indicated by the small black square in each button (marking the left,
middle, or right mouse button § 7.2, § 7.4.3.2). An example is shown in Fig. 7.17.

Regions can be selected by SHIFT+click, de-selected by pressing SHIFT+click again. The bottom
of the Region Manager Panel features a slider to switch between regions in the image. Regions can
be removed by hovering over and pressing ESC or by pressing the buttons to the right side of the
slider where the first button deletes all regions and the far right button deletes the region that is
currently displayed in the panel.

Figure 7.17: Selecting an image region (done with SHIFT+click). The region can be resized by
dragging the handles or deleted by hitting ESCAPE.

Once regions are selected, they will feature little, skeletal squares in the corners of their boundary
boxes. Selected regions can be moved by dragging with the mouse button and manually resize
by grabbing the corners as handles. If more than one region is selected, all selected regions move
together.

The Rectangle Region drawing tool currently enables the full functionality of the various Region
Manager tabs (see below) as well as:

• Region statistics reporting for images via double clicking (also shown in the stats tab of the
Region Manager),
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• Defining a region to be averaged for the spectral profile tool (accessed via the Tools:Spectral
Profile drop down menu or ”Open the Spectrum Profiler” icon),

• Flagging of Measurement Sets. Note that the Rectangle Region tool’s mouse button must
also be double-clicked to confirm an MS flagging edit.

• Selecting Clean regions interactively (§ 5.3.5)

The Polygon Region and Ellipse Region drawing have the same uses, except that polygon region
flagging of a Measurement Set is not supported.

7.4.3.2 Region Positioning

Figure 7.18: The positioning tab in the Region Manager. Use it to manually adjust the location,
width, and display style of the selected region.

With at least one region drawn, the region manager becomes active. Using the Properties tab,
one can manually adjust the position, annotation, and display style of the region. The frames
boxes set which planes of the image cube the region persists through (regions can have a depth
associated with them and will only appear in the frames listed in this range). One can manually
adjust the width and height and the center of the box in the chosen units. The ’selection’ check
box is an alternative way to the SHIFT+click to select a region. The ’annotation’ checkbox will
place the ’ann’ string in front of the region ascii output – annotation regions are not be used for
processing in, e.g. data analysis tasks. In the line and text tabs, one can set the style with which
the region is displayed, the associated text, and the position and style of that text.

NOTE: Updating the position of a region will update the spectral profile shown if the Spectral
Profile tool is open and the histogram if the Histogram tool is open. The views are linked. Dragging
a region or adjusting it manually with the Position tab is a good way to explore an image.



CHAPTER 7. VISUALIZATION WITH THE CASA VIEWER 409

7.4.3.3 Region Statistics

Figure 7.19: The statistics tab in the Region Manager.

One of the most useful features of defining a region is the ability to extract statistics characterizing
the intensity distribution inside the region. You can see these in the Statistics tab of the of the
Region Manager Panel (see Figure 7.19). This displays statistics for the current region in the
current plane of the current image. When more than a single region is drawn, you can select them
one by one and the region panel will update the statistics to reflect the currently selected region.
All values are updated on the fly when the region is dragged across the image.

A similar functionality can be achieved by double clicking inside of a region. This will send statistics
information for this region in all registered images to the terminal, looking something like this:

(IRC10216.36GHzcont.image) image
Stokes Velocity Frame Doppler Frequency

I -2.99447e+11km/s LSRK RADIO 3.63499e+10
BrightnessUnit BeamArea Npts Sum Flux

Jy/beam 36.2521 27547 1.087686e-01 3.000336e-03
Mean Rms Std dev Minimum Maximum

3.948473e-06 3.723835e-04 3.723693e-04 -1.045624e-03 9.968892e-03

Listed Parameters are Stokes, and the displayed channel Velocity with the associated Frame, Doppler
and Frequency value. Sum, Mean, Rms, Std Deviation, Minimum, and Maximum value refer to those
in the selected region and has the units as specified in BrightnessUnit. Npts is the number of pixels
in the region, and BeamArea the beam size in pixels. FluxDensity is in Jy if the image is in Jy/beam.

This is an easy way to copy and paste the statistical data to a program outside of CASA for further
use.
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Taking the RMS of the signal-free portion of an image or cube is a good way to estimate the
noise. Contrasting this number with the maximum of the image gives an estimate of the dynamic
range of the image. The FluxDensity measurement gives a way to use the viewer to do very basic
photometry.

7.4.3.4 Saving and Loading Regions

Figure 7.20: The save/load tab in the Region Manager.

The File tab in the Region Manager allows one to save or load selected regions, either individually
or en masse. You can choose between CASA and ds9 region format. The default is a CASA region
file (saved with a *.crtf suffix, see §D). The DS9 format does not offer the full flexibility and cannot
capture stokes and spectral axes. DS9 regions will only be usable as annotations in the viewer, they
cannot be used for data processing in other CASA tasks. When saving regions, one can choose to
save only the current region, all regions that were selected with SHIFT+click, or all regions that
are visible on the screen.

NOTE: The load functionality for this tab will only become available once at least one region
exists. To load a region when no regions exist, use the Data Manager window (§ 7.3).

7.4.3.5 The Region Fit

NOTE: This functionality is still under development. Its robustness and functionality will be
improved in future version of CASA.

The Viewer can attempt to fit a two dimensional Gaussian to the emission distribution inside the
currently selected region. To attempt the fit, go to the Fit tab of the Region Manager and click the
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gaussfit button in the bottom left of the panel. You can choose whether or not to fit a sky level
(e.g., to account for a finite background, either astronomical, sky, or instrumental). After fitting
the distribution, the Fit panel shows the results of the fit, the center, major and minor axis, and
position angle of the Gaussian fit in pixels (I) and in world coordinates (W, RA and Dec). The
detailed results of the fit will also appear in the terminal window, including a flag showing whether
the fit converged.

7.4.3.6 The Region Histogram

Figure 7.21: The histogram tab in the Region Manager. Right click to zoom. Hit SHIFT +
Right Click to adjust the details of the histogram display.

The Viewer will automatically derive a histogram of the pixel values inside the selected region.
This can be viewed using the Histogram tab of the of the Region Manager Panel. This is a pared
down version of the full Histogram Tool. You can manipulate the details of the histogram plot by
clicking:

1. Use the Right Click to zoom - either to the full range, a selected percentile, or a range that
you have graphically selected by dragging the mouse (may still be under development).

2. Hit SHIFT + Right Click to open the histogram options. This lets you toggle between a
logarithmic and linear y-axis, choose between a line, outline, or filled histogram, and adjust
the number of bins.

The histogram will update as you change the plane of the cube or shift between region.
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7.4.4 The Spectral Profile Tool

Figure 7.22: The Spectral Profile panel (right) that appears when pressing the button Open the
Spectrum Profiler in the Main Toolbar and then use the tools to select a region in the image,
such as the rectangular region on the left panel. The Spectral Profile tool shows the spectrum
of the most recent region highlighted and updates to track movements of the region if moved by
dragging with the mouse.

The Spectral Profile Tool allows you examine the intensity as a function frequency or velocity. To
start a new Spectral Profile window, click the Spectral Profile option from the Tools drop-down
menu or click the ”Spectral Profile” (red line graph) icon from the Main Toolbar (see Fig. 7.3). A
new Spectral Profile window will appear.

NOTE: Make Sure That You Use the Radio Version! This section describes the ”Radio” version
of the profiler. To be sure that you have the radio version of the tool selected (this may not be
the default), click on the preferences icon ( the gear fourth from the left) and make sure that the
”Optical” option is not checked.

The Spectral Profile Tool consists of a toolbar (§7.4.4.1), a main display area (§7.4.4.2), and two
associated tabs: Spectral-Line Fitting (§7.4.4.3) and Line Overlays (§7.4.4.4).

Interaction With the Main Display Panel: For the Spectral Profile tool to work, a region or point
must be specified in the main Viewer Display window. Use the mouse tools to specify a point,
rectangle, ellipse, or polygon region. Alternatively, load a region file. The Spectral Profile tool
will show a spectrum extracted from the region most recently highlight by the mouse in the main
Viewer Display Panel. The method of extraction can be specified by the user using a drop down
menu below the spectrum in the Spectral Profile window; the method of extraction is mean by
default).

The Spectral Profile tool can also feed back to the Main Display Panel. By holding CTRL and right
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clicking in the spectrum, you will cause the Main Display Panel to jump to display the frequency
channel corresponding to the spectral (x) coordinate of the region clicked in the Spectral Profile
tool. Holding CTRL and dragging out a spectral range while holding the right mouse button will
queue a movie scrolling through images across that spectral range. You can achieve the same effect
with the two-ended-arrow icon towards the right of the toolbar in the Spectral Profile window.

In both tabs, it will be useful to do select regions of frequency or velocity. You can do this with
the parallel lines-and-arrow icon (see below) or by holding shift, left clicking, and dragging out the
range of interest. A shaded gray region should appear indicating your selection.

7.4.4.1 Spectral Profile Toolbar

Figure 7.23: The toolbar for the Spectral Profile tool allows the user to save the spectrum, print
or save the tool as an image, edit preferences (general, tool, legend), spectral smoothing, pan or
zoom around the spectrum, select a range of interest, jump to a channel, or add a label.

Figure 7.23 shows the toolbar from the top portion of the Spectral Profile window. From left to
right, the icons allow the user to:

• (disk) export the current profile to a FITS or ASCII file

• (printer) print the main window to a hard copy

• (writing desk) save the panel as an image (PNG, JPG, PDF, etc.)

• (gear) set plot preferences

• (color wheel) set color preferences for the plot

• (signpost) set legend preferences

• (triangle) set the spectral smoothing method and kernel width

• (arrows) pan the spectrum in the indicated direction NOTE: The arrow keys also allow one
to pan using the keyboard.

• (magnifying glass) zoom to the default zoom, in, and out NOTE: the +/- keys allow one to
zoom with the keyboard

• (parallel lines+arrows) drag out a range of interest in the spectrum, for use with fitting or
line overlays.
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• (double-ended arrow) jump to a channel in the main viewer (single click) or define a range
over which to play a movie in the viewer (with a drag). NOTE: You can also jump to a
channel with CTRL+Right Click and queue a movie by holding CTRL and dragging out
a range while holding the right mouse button.

• notepad and pencil Add or edit a label on the plot. Click this icon to enter a mode where
you can drag out a box to create a new annotation box or drag the corners of an existing
one to resize it. You can edit the contents, color, and font of an existing annotation by right
clicking on it and selecting ”Edit Annotation” in the main Spectral Profile window.

Figure 7.24: Preferences options in the Spectral Profile Tool. From the toolbar, one can access
dialogs to set overall viewer preferences, colors for plotting, how the plot legend is displayed, and
spectral smoothing method and kernel width.

Figure 7.24 shows the setting dialogs accessible from the toolbar. This Preferences dialog opened
by the gear icon allows the user to:

• Toggle automatic scaling the x- and y-ranges of the plot.

• Toggle the coordinate grid overlay in the background of the plot.

• Toggle whether registered images other than the current one appear as overlays on the plot.

• Toggle whether these profiles are plotted relative to the main profile (in development).

• Toggle the display of tooltips (in development).

• Toggle the plotting of a top axis.

• Toggle between a histogram and simple line style for the plot.

• Toggle between the radio and optical versions of the Spectral Profile tool Note: We dis-
cuss only the radio version here; this mainly impacts the Spectral Line Fitting and Col-
lapse/Moments functionality..

• Toggle the overplotting of a line showing the channel currently being displayed in the main
Display Panel.
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The Color Curve Preferences dialog opened by the color wheel icon allows the user to:

• Select the color of the line marking the current channel shown in the main Display Panel.

• Select the color used to overlay molecular lines from Splatalogue.

• Select the color to plot the initial Gaussian estimate used in spectral line fitting.

• Select the color used for the zoom rectangle.

• Set a queue of colors used to plot the various data sets registered in the Display Panel.

• Set a queue of colors to plot the set of Gaussian fits.

• Set a queue of colors to plot the synthesized curve.

Two sets of preset colors, ”Traditional” or ”Alternative”, are available and the user can define their
own custom color palette.

The legend options opened by the signpost icon allow the user to toggle the plotting of a legend
defining the curves shown in the main Spectral Profile window. Using a drop-down dialog, the
legend can be placed in the top left corner of the plot, to the right of the plot, or below the plot.
Toggling the color bar causes the color of the curve to be indicated either via a short bar or using
the color of the text itself. Double click the names of the files or curves to edit the text shown for
that curve by hand. A legend is only available if more than a single spectrum has been loaded.

The spectral smoothing option has two methods, Boxcar and Hanning with the selection of odd
numbers for the smoothing kernel width in channels.

7.4.4.2 Main Spectral Profile Window

The main window shows the spectrum extracted from active region of the image in the main Display
Panel. The spectra from the same region in any other registered images are also plotted if overlays
are enabled. Menus along the bottom of the image allow the user to select how the spectrum is
displayed. From left to right:

• The units for the bottom spectral axis.

• The units for the top spectral axis. NOTE: dual axes are enabled only if a single image is
registered and the top axis option is enabled. In general, dual axes are not well-defined for
mixed data sets. The exception is that open data cubes with matched frequency/spectral
axes will allow dual axes.

• The units for the left intensity or flux axis Note: fraction of peak allows easy comparison of
data with disparate intensity scales..

• The velocity reference frame used if a velocity axis is chosen for the top or bottom axis.
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Figure 7.25: The main panel for the Spectral Profile tool. Buttons along the bottom row allow
the axes to be set. Arrow keys pan and dragging out an area with the mouse zooms. Holding
CTRL and right clicking in the spectrum will jump the main Viewer Display panel to display that
frequency channel.

• The method used to extract spectrum from the region — a mean over all pixels in the region,
a median, sum, or a sum converting units to get a flux density over the region (Jy).

• Toggle the calculation and overplotting of error bars calculated from scatter in the data (rmse
refers to root mean square error).

In addition to these drop-down menus, the main Spectral Profile window allows the user to do the
following using keyboard and mouse inputs:

• jump the main Display Panel window to a specified channel (CTRL+Right click): hold CTRL
and right click in the spectrum. A marker will appear and the main Viewer Display Panel
will jump to display that channel.

• animate the main Display Panel in a movie across a frequency range (CTRL+Right click+drag):
hold CTRL, Right click, and drag. The main Viewer Display panel will respond by showing
a movie scrolling across the selected spectral channels.

• zoom the Spectral Profile (+/-, mouse drag): Use the +/- keys to zoom in the same way as
the toolbar buttons. Alternatively, press and dragging the left mouse button. A yellow box
is drawn onto the panel. After releasing the mouse button, the plot will zoom to the selected
range.

• pan the Spectral Profile (arrows): Use the arrow keys to pan the plot.

• select a spectral range for analysis: hold shift, left click, and drag. A gray area will be swept
out in the display. This method can be used to select a range for spectral line fitting or
collapsing a data cube (in the Collapse/Moments window).



CHAPTER 7. VISUALIZATION WITH THE CASA VIEWER 417

NOTE: If the mouse input to the Spectral Profile browser becomes confused hit the ESC key
several times and it will reset.

7.4.4.3 Spectral-Line Fitting

Figure 7.26: The Spectral Line Fitting tab in the Spectral Profile Tool. The user can fit a
combination of a polynomial and multiple Gaussian components, specifying the range to be fit
(gray region) manually or with a shift+click+drag. Initial estimates for each component may be
entered by hand or specified via an initial estimates GUI. The results are output to a dialog and
text file with the fit overplotted (here in blue) on the spectrum (with the possibility to save it to
disk).

NOTE: Interactive spectral line fitting is still under development.

The Spectral-Line Fitting tab, shown in Figures 7.26 and 7.27, allows the user to interactively
fit a combination of Gaussian and polynomial profiles to the data shown in the Spectral Line Profile
tool. The tool includes a number of options, many of which remain under development:

• A drag-down menu at the top of the panel allows the user to pick which data set to fit.

• The spectral range to fit can be specified by either holding shift+left click+dragging out a
region in the main spectral profile window or by typing it manually into the box at the top
left of the fitting panel.

• Optionally multiple fits can be carried out once, fitting each spectrum in the region in turn.
To enable this, check the “MultiFit” box. (Under development.)
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Figure 7.27: The left panel shows the graphical specification of initial estimates for Gaussian
fitting. Slider bars specify the center, FWHM, and peak intensity for the initial estimate. The
right panel shows the verbose output of the fitting.

• Optionally a polynomial of the specified order may be fit. To do so, check the ”Polynomial”
fit check box and then specify the desired order. (Under Development.)

• The results may be saved to a text file. This text file should be specified before the fit is
carried out. Click ”Save” and then use the dialog to specify the file name. Note that the
fit curve itself becomes a normal spectral profile data set and can be saved to disk using the
toolbar (disk icon) after the fit.

• One or more Gaussians can be fit (Results are presently most stable for one Gaussian.).
Specify the number of Gaussians and then enter initial estimates for the peak, center, and
FWHM in the table below. Any of these values can be fixed for any of the Gaussians being
fit. Initial estimates can also be manually specified by clicking Specify Estimates. This
brings up an additional GUI window (Figure 7.27), where slides can be used to specify initial
estimates for each Gaussian to be fit.

• For plotting purposes, one may wish to oversample the fit (i.e., plot a smooth Gaussian), you
can do so by increasing the Fit Samples/Channel to a high number to finely sample the fit
when plotting.

NOTE: Currently the tool works well for specifying a single Gaussian. Fitting multiple components
can become unstable and polynomial and multiple line-of-sight fitting are still under development.
This is an area of active development and future releases will offer improved capabilities.

7.4.4.4 Line Overlays

CASA ships with a local version of the Splatalogue spectral line database (www.splatalogue.net)
and this can be used to identify and overplot spectral transitions. This feature, shown in Figure
7.28, allows the user to search Splatalogue over the range of interest.

To overlay spectral lines:
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Figure 7.28: Line Overlays in the Spectral Profile Tool. The Line Overlay tab, shown at the
bottom, allows users to query the CASA copy of the Spaltalogue spectral line database. Enter the
redshift of your source (right panel), select and Astronomical Filter from the drop down menu, and
use shift+click+drag to select a frequency range (or do so manually). The ”Search” button will
bring up the dialog seen at the left top part of the image, which can in turn be used to graph the
candidate lines in the main Spectral Profile window (here CO v=0).

1. Select the Line Overlays tab in the Spectral Profiles tab.

2. If you know it, enter the redshift or velocity of your source in the ”Doppler Shift” panel.
Otherwise, the lines will be overlaid assuming a redshift of 0.

3. Specify a minimum and maximum frequency range to search, either by typing a range or by
holding shift and left click and dragging out a range in the spectrum (you will see a gray
box appear). If you don’t specify a range, the tool will search over the frequency range of
spectrum.

4. Optionally, you may select an astronomical filter from the list (for example, commonly used
extragalactic lines or lines often found in hot cores, see Splatalogue for more information).
This is usually a good idea because it pares the potentially very large list of candidate lines
to a smaller set of reasonable candidates.

5. Click ”Search” and the Spectral Profile will search Splatalogue for a list of Spectral lines that
that fit that Astronomical Filter in that frequency range for that redshift. A dialog will pop
up showing the list of candidate lines.

6. Highlight one or more of these transitions and click ”Graph Selected Lines.” A set of vertical
markers will appear in the main Spectral Profile window at the appropriate (redshifted)
frequencies for the line.



CHAPTER 7. VISUALIZATION WITH THE CASA VIEWER 420

We emphasize that this feature remains under active development. Look for improved performance
and an expanded feature set in the next release.

NOTE: You will want to click ”Clear Lines” between searches, especially if you update the redshift.

7.4.5 The Brightness Profile Tool

The “line” tool can be used to display 1-dimensional brightness profiles of images. The viewer
accepts even more than one line segments such as shown in Fig.7.29. The “region” dock will then
display a preview of the slice in the “Slice Cut” tab and the full “1-D Slice Tool” can be launched
from there. This panel allows one to select the interpolation method to connect the pixels, and a
number count for the sampled pixels in between markers. “Automatic” will show all pixels. The x-
axis of the display can be either the distance along the slice or the X and Y coordinate projections
(e.g. along RA and DEC). All segments are also listed at the bottom with their start and end
coordinates, the distance and the position angles of each slice segment. The color tool can be used
to give each segment a separate color.

Figure 7.29: 1-dimensional slice of an image. The 1D slicer tool shows the brightness distribution
along line segments.

7.4.6 The Collapse/Moments Tool

The CASA Viewer can collapse a data cube into an image, for instance allowing to look at the
emission integrated along the z axis or the mean velocity of emission along the line of sight. You
can access this functionality via the Collapse/Moments tool (accessed via the Tools menu or the
four arrow icons), shown in Figure 7.30.

The tool uses the same format as the Spectral Profile tool and will show the integrated spectrum
of whatever region or point is currently selected in the main Display Panel. To create a moment
map:
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Figure 7.30: The Collapse/Moments tool, accessed from the Main Toolbar or the Tools drop
down menu. The mean spectrum from the region in the Main Display Panel appears in the top
part of the tool. After selecting a range, a moment to calculate, and optionally data to exclude
click collapse to calculate a new image.

1. Select a range over which to integrate either manually using the left part of the window, by
adding an interval and typing in the values into the box or by holding SHIFT + Left Click
and dragging out the range of interest.

2. Pick the set of algorithms that you will use to collapse the image along the z axis. Clicking
toggles each moment method, and the collapse will create a new image for each selected
moment. For details on the individual collapse method, see the immoments task for more
details on each moment.

3. The moment may optionally include or exclude pixels within a certain range (for example, you
might include only values with signal-to-noise three or greater when calculating the velocity
dispersion). You can enter the values to include or exclude manually in the Thresholding
window on the right or you can open a histogram tool to specify this range graphically by
clicking Specify Graphically (before this can work, you must click ”Include” or ”Exclude”).

4. The results of the collapse be saved to a file, which consists of a string specifying the specific
moment tacked onto a root file name that you can specify using Select Root Output File.

5. When you are satisfied with you chosen options, press Collapse.

NOTE: Even if you don’t save the results of the collapse to a file, you can still save the map later
using the Save as... entry in the Data pull down menu from the main Viewer Display Panel.

NOTE: This area remains under active development and may still exhibit some stability issues in
CASA 4.1.
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7.4.7 The Histogram Tool

Figure 7.31: The Histogram tool, accessed from the Main Toolbar or the Tools drop down menu.
Details of the display and included pixels can be manipulated via the menus along the top of the
window. The right hand panel allows one to attempt to fit a distribution to the histogram.

CASA can calculate and visualize a histogram of pixel values inside a region of interest. To examine
this histogram, select Histogram from the Tools drop-down menu or the Histogram icon (looks
like a comb). This opens the full histogram tool; more limited versions are accessible from the
Region Manager Panel, the graphical color table manipulation tool, and the Collapse/Moments
tool.

The resulting Histogram Tool should look something like Figure 7.31. The menus along the top
(or the corresponding mouse clicks) allow one to:

• Zoom to the full range, a selected percentile, or a graphical range.

• Change the display of the histogram to show a log axis, display as either a line plot, an
outline, or a filled histogram. Change the number of bins in the histogram, or clear the plot
(to start over).

• Configure what data are fed into the histogram. You can use this menu to tell the histogram
to track the channel currently selected in the main Viewer Display Panel (click the ”Track
Channel” box) or to integrate across some range of channels (defaulting to the whole image).
You can also switch the 2-D footprint used between the whole Image, the Selected Region,
and All Regions.
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• Save (via the disk icon) an image of the histogram to a graphical file on disk.

The Histogram Tool also allows you to fit the distribution using either a Gaussian or a Poisson
distribution, for example to estimate the noise in the image (a Gaussian will be a good choice to
describe the noise in most radio data cubes). You can specify initial estimates or let the program
generate initial guesses. The fit is then overplotted on the histogram (colors can be adjusted by
clicking the color wheel icon in the toolbar) and details of the fit are printed to the text window
below the fit button.

7.4.8 The Two-D Fitting Tool

Figure 7.32: The interface to the two dimensional fitting tool (Tools:Fit... or the blue circles
icon). The interface allows you to specify and automatically generate (Find Sources) initial
estimates, to specify the range of pixel values to be included in the fit, and to specify the output
(log file, residual image, and visualization). Click Fit to start the fit.

NOTE: This functionality is still under very active development. Not all features are functional
at this point.

CASA can fit two dimensional Gaussians to an intensity distribution, and the Two-Dimensional
Fitting tool in the Viewer exposes this functionality interactively. This tool, accessed by the blue
circles icon or the Tools:Fit... menu item, has an interface like that shown in Figure 7.32. The
interface exposes several options:

1. You can select whether to fit only the selected region or the whole image plane and specify
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which channel of the cube you want to operate on. NOTE: The two dimensional fitter only
operates on a single channel at a time.

2. Initial Estimates: The box in the top left corner allows the user to specify initial estimates
by feeding in a file. The easiest way to make an appropriate file is to edit an existing one.
Even easier, you can use the Find Sources button to automatically generate a temporary
file of initial estimates. NOTE: This functionality is still under development. When it is
working, you click on Find Sources

3. Pixel Range: You can choose to only include a certain range of pixel intensity values in
the fit. For example, you might choose to only fit Gaussians to pixels above a few times the
measured noise level. You can use the Specify Graphically button to bring up an interactive
histogram of the region (a reduced functionality version of the full Histogram Tool).

4. Output: You can choose to save the output of the fit as a file to the specified directory and to
subtract the fit from the image and to subtract the fit from the original, creating a Residual
Image that gets stored as a CASA image and automatically loaded into the viewer. This
gives a way to tell how well your fit describes the total emission.

5. Visualization: You can toggle whether the fit is displayed on the viewer or not and change
the color of the marker.

Click Fit to start the fit. If the fit does not converge, try improving your initial estimates and
fitting again.

7.4.9 Interactive Position-Velocity Diagram Creation

Figure 7.33: Interactive creation of position-velocity cuts in the viewer. Use the P/V tool from
the Mouse Toolbar to define a cut, then use the pV tool from the Region Manager Panel to adjust
the cut (including the width). Click Generate P/V to build the position velocity cut and open it
in a new Viewer Display Panel (from which it can be saved to disk).

The route to create position-velocity cuts in the viewer is illustrated in Figure 7.33:
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1. Select the P/V cut tool from the Mouse Toolbar and use it to draw a line across a data cube
along the axis you want to visualize.

2. Open the Region Manager Panel and go to the pV tab. Highlight the cut you just drew.
You should see the end point coordinates listed, along with information on the length and
position angle of the cut. You can set the averaging width (in pixels) in a window at the
bottom of the tab.

3. When you are satisfied, hit Generate P/V. This will create a new Main Viewer Display
Panel showing the position velocity cut. The axes should be Offset and velocity.

The new image can be saved to disk with the Data:Save as... option.

7.5 Viewing Measurement Sets

Figure 7.34: The Load Data - Viewer panel as it appears if you select an MS. The only option
available is to load this as a Raster Image. In this example, clicking on the Raster Image button
would bring up the displays shown in Figure 7.2.
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Visibility data can also be displayed and flagged directly from the viewer. For Measurement Set
files the only option for display is ’Raster’ (similar to AIPS task TVFLG). An example of MS display
is shown in Figure 7.2; loading of an MS is shown in Figure 7.34.

Warning: Only one MS should be registered at a time on a Display Panel. Only one MS can be
shown in any case. You do not have to close other images/MSs, but you should at least ’unregister’
them from the Display Panel used for viewing the MS. If you wish to see other images or MSs at
the same time, create multiple Display Panel windows.

7.5.1 Data Display Options Panel for Measurement Sets

The Data Display Options panel provides adjustments for MSs similar to those for images,
and also includes flagging options. As with images, this window appears when you choose the
Data:Adjust menu or use the wrench icon from the Main Toolbar. It is also shown by default
when an MS is loaded. The right panel of Figure 7.2 shows a Data Options window. It has a tab
for each open MS, containing a set of categories. The options within each category can be either
’rolled up’ or expanded by clicking the category label.

For a Measurement Set, the categories are:

• Advanced

• MS and Visibility Selection

• Display Axes

• Flagging Options

• Basic Settings

• Axis Drawing and Labels

• Color Wedge

7.5.1.1 MS Options — Basic Settings

The Basic Settings roll-up is expanded by default. It contains entries similar to those for a raster
image (§ 7.4.1.2). Together with the brightness/contrast and colormap adjustment icons on the
Mouse Toolbar of the Display Panel, they are especially important for adjusting the color display
of your MS.

The available Basic options are:

• Data minimum/maximum

This has the same usage as for raster images. Lowering the data maximum will help brighten
weaker data values.



CHAPTER 7. VISUALIZATION WITH THE CASA VIEWER 427

• Scaling power cycles

This has exactly the same usage as for raster images (see § 7.4.1.2). Again, lowering this value
often helps make weaker data visible. If you want to view several fields with very different
amplitudes simultaneously, this is typically one of the best adjustments to make early, together
with the Colormap fiddling mouse tool, which is on the middle mouse button by default.

• Colormap

Greyscale or Hot Metal colormaps are generally good choices for MS data.

7.5.1.2 MS Options— MS and Visibility Selections

• Visibility Type

• Visibility Component

• Moving Average Size

This roll-up provides choice boxes for Visibility Type (Observed, Corrected, Model, Residual) and
Component (Amplitude, Phase, Real, or Imaginary).

Changes to Visibility Type or Component (changing from Phase to Amplitude, for example) require
the data to be retrieved again from the disk into memory, which can be a lengthy process. When
a large MS is first selected for viewing, the user must trigger this retrieval manually by pressing
the Apply button (located below all the options), after selecting the data to be viewed (see Field
IDs and Spectral Windows, below).

Tip: Changing visibility type between ’Observed’ and ’Corrected’ can also be used to assure that
data and flags are reloaded from disk. You should do this if you’re using another flagging tool
such as autoflag simultaneously, so that the viewer sees the other tool’s new edits and doesn’t
overwrite them with obsolete flags. The Apply button alone won’t reload unless something within
the viewer itself requires it; in the future, a button will be provided to reload flags from the disk
unconditionally.

You can also choose to view the difference from a running mean or the local RMS deviation of
either Phase or Amplitude. There is a slider for choosing the nominal number of time slots in the
’local neighborhood’ for these displays.

(Note: Insufficient Data is shown in the tracking area during these displays when there is no
other unflagged data in the local neighborhood to compare to the point in question. The moving
time windows will not extend across changes in either field ID or scan number boundaries, so you
may see this message if your scan numbers change with every time stamp. An option will be added
later to ignore scan boundaries).

• Field IDs

• Spectral Windows
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Figure 7.35: The MS for NGC4826 BIMA observations has been loaded into the viewer. We see
the first of the spw in the Display Panel, and have opened up MS and Visibility Selections in
the Data Display Options panel. The display panel raster is not full of visibilities because spw
0 is continuum and was only observed for the first few scans. This is a case where the different
spectral windows have different numbers of channels also.

You can retrieve and edit a selected portion of the MS data by entering the desired Spectral
Window and Field ID numbers into these boxes. Important: Especially with large MSs, often
the first thing you’ll want to do is to select spectral windows which all have the same number
of channels and the same polarization setup. It also makes sense to edit only a few fields at a
time. Doing this will also greatly reduce data retrieval times and memory requirements.

You can separate the ID numbers with spaces or commas; you do not need to enter enclosing
brackets. Changes to either entry box will cause the selected MS data to be reloaded from disk.

If you select, say, spectral windows 7, 8, 23, and 24, the animator, slice position sliders, and axis
labeling will show these as 0, 1, 2, and 3 (the ’slice positions’ or ’pixel coordinates’ of the chosen
spectral windows). Looking at the position tracking display is the best way to avoid confusion in
such cases. It will show something like: Sp Win 23 (s 2) when you are viewing spectral window
23 (plane 2 of the selected spectral windows).

Changes to MS selections will not be allowed until you have saved (or discarded) any previous
edits you have made (see Flagging Options -- Save Edits, below). A warning is printed on the
console (not the logger).
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Initially, all fields and spectral windows are selected. To revert to this ’unselected’ state, choose
’Original’ under the wrench icons next to the entry boxes.

See Figure 7.35 for an example showing the use of the MS and Visibility Selections controls
when viewing an MS.

7.5.1.3 MS Options — Display Axes

This roll-up is very similar to that for images: it allows the user to choose which axes (from Time,
Baseline, Polarization, Channel, and Spectral Window) are on the display and the animator. There
are also sliders here for choosing positions on the remaining axes. (It’s useful to note that the data
is actually stored internally in memory as an array with these five axes).

Figure 7.36: The MS for NGC4826 from Figure 7.35, now with the Display Axes open in the
Data Display Options panel. By default, channels are on the Animation Axis and thus in
the tapedeck, while spectral window and polarization are on the Display Axes sliders.

For MSs, changing the choice of axis on one control will automatically swap axes, maintaining
different axes on each control. Changing axes or slider/animator positions does not normally
require pressing Apply — the new slice is shown immediately. However, the display may be
partially or completely grey in areas if the required data is not currently in memory, either because
no data has been loaded yet, or because not all the selected data will fit into the allowed memory.



CHAPTER 7. VISUALIZATION WITH THE CASA VIEWER 430

Press the Apply button in this case to load the data (see § 7.5.1.6 and Max. Visibility Memory
at the end of § 7.5.1.5).

Figure 7.37: The MS for NGC4826, continuing from Figure 7.36. We have now put spectral
window on the Animation Axis and used the tapedeck to step to spw 2, where we see the data
from the rest of the scans. Now channels is on a Display Axes slider, which has been dragged to
show Channel 33.

Within the Display Axes rollup you may also select whether to order the baseline axis by antenna1-
antenna2 (the default) or by (unprojected) baseline length.

See Figures 7.36–7.37 showing the use of the Display Axes controls to change the axes on the
animation and sliders.

7.5.1.4 MS Options — Flagging Options

These options allow you to edit (flag or unflag) MS data. The Point Tool and Rectangle Region
Mouse Tools (§ 7.4.3.2) are used on the display to select the area to edit. When using the
Rectangle Region tool, double-click inside the selected rectangle to confirm the edit.

The options below determine how edits will be applied.

• Show Flagged Regions...
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You have the option to display flagged regions in the background color (as in TVFLG) or to
highlight them with color. In the former case, flagged regions look just like regions of no
data. With the (default) color option, flags are shown in shades of blue: darker blue for flags
already saved to disk, lighter blue for new flags not yet saved; regions with no data will be
shown in black.

• Flag or Unflag

This setting determines whether selected regions will be flagged or unflagged. This does not
affect previous edits; it only determines the effect which later edits will have. Both flagging
and unflagging edits can be accumulated and then saved in one pass through the MS.

• Flag/Unflag All...

These flagging extent checkboxes allow you to extend your edit over any of the five data axes.
For example, to flag all the data in a given time range, you would check all the axes except
Time, and then select the desired time range with the Rectangle Region mouse tool. Such
edits will extend along the corresponding axes over the entire selected MS (whether loaded
into memory or not) and optionally over unselected portions of the MS as well (Use Entire
MS, below). Use care in selecting edit extents to assure that you’re editing all the data you
wish to edit.

• Flag/Unflag Entire Antenna?

This control can be used to extend subsequent edits to all baselines which include the desired
antenna[s]. For example, if you set this item to ’Yes’ and then click the point tool on a
visibility position with baseline 3-19, the edit would extend over baselines 0-3, 1-3, 2-3, 3-3,
3-4, ... 3-nAntennas-1. Note that the second antenna of the selection (19) is irrelevant here
– you can click anywhere within the ’Antenna 3 block’, i.e., where the first antenna number
is 3, to select all baselines which include antenna 3.

This item controls the edit extent only along the baseline axis. If you wish to flag all the data
for a given antenna, you must still check the boxes to flag all Times, Channels, Polarizations
and Spectral Windows. There would be no point, however, in activating both this item and
the ’Flag All Baselines’ checkbox. You can flag an antenna in a limited range of times, etc.,
by using the appropriate checkboxes and selecting a rectangular region of visibilities with the
mouse.

Note: You do not need to include the entire ’antenna block’ in your rectangle (and you
may stray into the next antenna if you try). Anywhere within the block will work. To flag
higher-numbered antennas, it often helps to zoom in.

• Undo Last Edit

• Undo All Edits

The ’Undo’ buttons do the expected thing: completely undo the effect of the last edit (or all
unsaved edits). Please note, however, that only unsaved edits can be undone here; there is no
ability to revert to the flagging state at the start of the session once flags have been saved to
disk (unless you have previously saved a ’flag version’. The flag version tool is not available
through the viewer directly).
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• Use Entire MS When Saving Edits?

”Yes” means that saving the edits will flag/unflag over the entire MS, including fields (and
possibly spectral windows) which are not currently selected for viewing. Specifically, data
within time range(s) you swept out with the mouse (even for unselected fields) will be edited.

In addition, if ”Flag/Unflag All...” boxes were checked, such edits will extend throughout the
MS. Note that only unselected times (fields) can be edited without checking extent boxes for
the edits as well. Unselected spectral windows, e.g., will not be edited unless the edit also
has ”Flag/Unflag All Spectral Windows” checked.

Warning: Beware of checking “All Spectral Windows” unless you have also checked ”All
Channels” or turned “Entire MS” off; channel edits appropriate to the selected spectral
windows may not be appropriate to unselected ones. Set ”Use Entire MS” to “No” if your
edits need to apply only to the portion of the MS you have selected for viewing. Edits can
often be saved significantly faster this way as well.

Also note that checkboxes apply to individual edits, and must be checked before making the
edit with the mouse. “Use Entire MS”, on the other hand, applies to all the edits saved at
one time, and must be set as desired before pressing ”Save Edits”.

• Save Edits

MS editing works like a text editor in that you see all of your edits immediately, but nothing
is committed to disk until you press “Save Edits”. Feel free to experiment with all the other
controls; nothing but ’Save Edits’ will alter your MS on disk. As mentioned previously,
however, there is no way to undo your edits once they are saved, except by manually entering
the reverse edits (or restoring a previously-saved ’flag version’).

Also, you must save (or discard) your edits before changing the MS selections. If edits are
pending, the selection change will not be allowed, and a warning will appear on the console.

If you close the MS in the viewer, unsaved edits are simply discarded, without prior warning.
It’s important, therefore, to remember to save them yourself. You can distinguish unsaved
flags (when using the ’Flags In Color’ option), because they are in a lighter shade of blue.

The program must make a pass through the MS on disk to save the edits. This can take a
little time; progress is shown in the console window.

7.5.1.5 MS Options— Advanced

These settings can help optimize your memory usage, especially for large MSs. A rule of thumb
is that they can be increased until response becomes sluggish, when they should be backed down
again.

You can run the unix ’top’ program and hit ’M’ in it (to sort by memory usage) in order to examine
the effects of these settings. Look at the amount of RSS (main memory) and SWAP used by the X
server and ’casaviewer’ processes. If that sounds familiar and easy, then fiddling with these settings
is for you. Otherwise, the default settings should provide reasonable performance in most cases.
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• Cache size

The value of this option specifies the maximum number of different views of the data to
save so that they can be redrawn quickly. If you run an animation or scroll around zoomed
data, you will notice that the data displays noticeably faster the second time through because
of this feature. Often, setting this value to the number of animation frames is ideal Note,
however, that on multi-panel displays, each panel counts as one cached image.

Large images naturally take more room than small ones. The memory used for these images
will show up in the X server process. If you need more Visibility Memory (below) for a really
large ms, it is usually better to forgo caching a large number of views.

• Max. Visibility Memory

This option specifies how many megabytes of memory may be used to store visibility data from
the measurement set internally. Even if you do not adjust this entry, it is useful to look at it
to see how many megabytes are required to store your entire (selected) MS in memory. If the
slider setting is above this, the whole selected MS will fit into the memory buffer. Otherwise,
some data planes will be ’grayed out’ (see Apply Button, § 7.5.1.6 below), and the selected
data will have to be viewed one buffer at a time, which is somewhat less convenient. In most
cases, this means you should select fewer fields or spectral windows – see § 7.5.1.2.
The ’casaviewer’ process contains this buffer memory (it contains the entire viewer, but the
memory buffer can take most of the space).

7.5.1.6 MS Options — Apply Button

When viewing large MSs the display may be partially or completely grey in areas where the required
data is not currently in memory, either because no data has been loaded yet, or because not all the
selected data will fit into the allowed memory (see Max. Visibility Memory above). When the
cursor is over such an area, the following message shows in the position tracking area:

press ’Apply’ on Adjust panel to load data

Pressing the Apply button (which lies below all the options) will reload the memory buffer so that
it includes the slice you are trying to view.

The message No Data has a different meaning; in that case, there simply is no data in the selected
MS at the indicated position.

For large measurement sets, loading visibility data into memory is the most time-consuming step.
Progress feedback is provided in the console window. Again, careful selection of the data to be
viewed can greatly speed up retrieval.

7.6 Printing from the Viewer

You can select Data:Print from the drop down menu or click the Print icon to bring up the
Viewer Print Manager. From this panel, you can Print the contents of Display Panel to a
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Figure 7.38: Printing the display to a hardcopy of a file. From the Viewer Print Manager,
located in top right here and accessed by the print icon or from the Data drop down menu, you can
use the Save button to save an image or Print directly to a printer. To achieve the best results,
it is often helpful to adjust the settings in the Data Display Options and Viewer Canvas
Manager, shown at right.

hardcopy or Save them as an image in a format selected from the drop-down menu at the bottom
left of the window. Note that the save feature will overwrite the file in question without prompting.

The Viewer Print Manager allows you to adjust the DPI, orientation, and page format (Output
Media) for Postscript or PDF files and to scale the image to a desired pixel size for other images.

To achieve the best output it is usually advisable to adjust the settings in the Viewer Print
Manager, Data Display Options, and Viewer Canvas Manager . For PDF and Postscript
output, turning the DPI up all the way yields the best-looking results. For other images, a white
background often makes for better looking images than the default black. It is often necessary to
increase the Line Width in the Axis Label Properties (in the Data Display Options panel)
to ensure that the labels will be visible when printed. Increasing from the default of 1.4 to a value
around 2 often works well.
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Figure 7.38 shows an example of printing to a file while adjusting the Data Display Options and
Viewer Canvas Manager to improve the appearance of the plot.

7.7 Image Viewer (imview)

The imview task offers scriptable access to many viewer options. This enables the production of
customized plots without invoking the GUI and allows one to open the viewer to a carefully selected
state.

imview has the following inputs:

# imview :: View an image
raster = {} # (Optional) Raster filename (string)

# or complete raster config
# dictionary. The allowed dictionary
# keys are file (string), scaling
# (numeric), range (2 element numeric
# vector), colormap (string), and
# colorwedge (bool).

contour = {} # (Optional) Contour filename (string)
# or complete contour config
# dictionary. The allowed dictionary
# keys are file (string), levels
# (numeric vector), unit (float), and
# base (float).

zoom = 1 # (Optional) zoom can specify
# intermental zoom (integer), zoom
# region read from a file (string) or
# dictionary specifying the zoom
# region. The dictionary can have two
# forms. It can be either a simple
# region specified with blc (2 element
# vector) and trc (2 element vector)
# [along with an optional coord key
# ("pixel" or "world"; pixel is the
# default) or a complete region
# rectangle e.g. loaded with
# "rg.fromfiletorecord( )". The
# dictionary can also contain a
# channel (integer) field which
# indicates which channel should be
# displayed.

axes = -1 # (Optional) this can either be a
# three element vector (string) where
# each element describes what should
# be found on each of the x, y, and z
# axes or a dictionary containing
# fields "x", "y" and "z" (string).
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out = ’’ # (Optional) Output filename or
# complete output config dictionary.
# If a string is passed, the file
# extension is used to determine the
# output type (jpg, pdf, eps, ps, png,
# xbm, xpm, or ppm). If a dictionary
# is passed, it can contain the
# fields, file (string), scale
# (float), dpi (int), or orient
# (landscape or portrait). The scale
# field is used for the bitmap formats
# (i.e. not ps or pdf) and the dpi
# parameter is used for scalable
# formats (pdf or ps).

The raster and contour parameters specify which images to load and how these images should
be displayed. These parameters take python dictionaries as inputs. The fields in these dictionaries
specify how the image will be displayed.

An example call to imview looks like this:

imview(raster={’file’: ’ngc5921.clean.image’,
’range’: [-0.01,0.03],
’colormap’: ’Hot Metal 2’,
’scaling’: -1},

contour={’file’: ’ngc5921.clean.image’},
axes={’x’:’Declination’} ,
zoom={’channel’: 7, ’blc’: [75,75], ’trc’: [175,175],

’coord’: ’pixel’},
out=’myout.png’)

The argument to raster is enclosed in the curly braces { } . Within these braces are a number of
”key”:”value” pairs. Each sets an option in the viewer, with the GUI parameter to set defined by the
”key” and the value to set it to defined by ”value.” In the example above, ’file’:’ngc5921.clean.image’
sets the file name of the raster image, ’range’: [-0.01,0.03] sets the range of pixel values used for
the scaling.

contour works similar to ’raster’ but can accept multiple dictionaries in order to produce multiple
contour overlays on a single image. To specify multiple contour overlays, simply pass multiple
dictionaries (comma delimited) in to the contour argument:

contour={’file’: ’file1.image’, ’levels’: [1,2,3] },
{’file’: ’file2.image’, ’levels’: [0.006, 0.008, 0.010] }

zoom specifies the part of the image to be shown.

axes defines what axes are shown. By default, the viewer will show ’x’:’Right Ascension’, ’y’:’Declination’
but one may also view position-frequency images.
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out defines the filename of the output, with the extension setting the file type.

Currently, the following parameters are supported with additional functionality planned for future
releases:

raster -- (string) image file to open
(dict) file (string) => image file to open

scaling (float) => scaling power cycles
range (float*2) => data range
colormap (string) => name of colormap
colorwedge (bool) => show color wedge?

contour -- (string) file to load as a contour
(dict) file (string) => file to load

levels (float*N) => relative levels
base (numeric) => zero in relative levels
unit (numeric) => one in the relative levels

zoom -- (int) integral zoom level
(string) region file to load as the zoom region
(dict) blc (numeric*2) => bottom left corner

trc (numeric*2) => top right corner
coord (string) => pixel or world
channel (int) => channel to display

(dict) <region record> => record loaded
e.g. rg.fromfiletorecord( )

axes -- (string*3) dimension to display on the x, y, and z axes
(dict) x => dimension for x-axes

y => dimension for y-axes
z => dimension for z-axes

out -- (string) file with a supported extension
[jpg, pdf, eps, ps, png, xbm, xpm, ppm]

(dict) file (string) => filename
format (string) => valid ext (filename ext overrides)
scale (numeric) => scale for non-eps, non-ps output
dpi (numeric) => dpi for eps or ps output
orient (string) => portrait or landscape

Examples are also found in help imview.

7.8 Measurement Viewer (msview)

The Measurement Viewer msview is mostly a clone of the viewer at this stage. A difference is that
msview allows the user to select data before it is loaded into the GUI and displayed. A screenshot
is shown in Fig. 7.39 and selection parameters are field, spectral window, time range, uv
range, antenna, corr, scan, array, ms selection expression in the usual CASA selection
syntax (see Sect. 2.3).
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Figure 7.39: Data selection in msview.



Chapter 8

Single-dish Data Processing

This chapter deals with a description of the single-dish toolset of CASA. The target of CASA
single-dish development is to calibrate, reduce and image data taken with both the ALMA single-
dish telescopes and the Nobeyama single-dish telescope. The CASA single-dish tool suite is built
separately to the interferometer suite, although with a growing overlap of base code and toolsets.
Primarily this is because the single-dish part of CASA has historically made use the ATNF Spectral
Analysis Package (ASAP) to expedite development, although CASA SD tools are now moving to-
wards a structure more closely associated with the interferometer toolset, which use ”Measurement
Set” format. In CASA 4.5, the processing of ALMA single-dish data can be made completely in
Measurement Set format. The migration to the remaining (non-core) CASA SD toolset, including
analysis tools more ”advanced” reduction tools, will continue through the next CASA versions.
Importantly, ASAP is still supported in CASA 4.5 although it will be phased out in coming ver-
sions. In the cases ASAP format is used in any tools, the format conversion is intrinsically imported
within the tool, and any calls are invoked transparently to the operator.

For details on ASAP – including the User Guide, Reference Manual, and tutorial – see the ASAP
home page at ATNF:
http://svn.atnf.csiro.au/trac/asap/.

In this chapter, we detail the current status of CASA SD implementation and functionality. Cov-
ering CASA SD-specific environments, recent progress in design development.

For trouble-shooting, please be sure to check the list of known issues and features of ASAP and
the SDtasks presented in Sect. 1.2.1 and http://casa.nrao.edu/release_ki.shtml first.

8.1 Current status, new tasks/operations and CASA SD setup

8.1.1 Transition from ASAP Scantable format, and using Scantable format

All ALMA raw data, including data from the Total Power (TP) array of ALMA are in the ALMA
Science Data Model (ASDM) format. Prior to CASA 4.4, Total Power ASDMs were processed using
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ASAP toolkit, which required data conversion to Scantable format. As processing of interferometric
data is done in Measurement Set it is more practical from a software development and maintenance
point of view for the Total-power aspect of CASA to also employ Measurement Set format . Even
so, for CASA 4.5, we continue to support processing in Scantable format - however support for
Scantable format will be phased out over the following few CASA versions.

A number of environment variables used by CASA SD tools (see .asaprc). Within CASA, they
are accessible through keys and values of the Python dictionary sd.rcParams. e.g:
Set verbose mode (producing verbose feedback form CASA SD).

sd.rcParams[’verbose’] = True

Set so Scantable operations are done in memory or on disk (use ’disk’ when the dataset is large.)

sd.rcParams[’scantable.storage’] = ’memory’ (default)

(Note: setting sd.rcParams[’scantable.storage’] = ’disk’ may cause data to be overwritten
when using some tool and functions, even if sd.rcParams[’insitue’] = False ). See § 8.7 for
more details on ASAP-based CASA tasks which affect on-disk data. See § 8.1.1 for more details
on the ASAP environment variables.

8.1.2 Dictionaries

Many SDtasks return Python dictionaries. E.g. The results of line fitting (in sdfit) and region
statistics (in sdstat). The relevant parameters returned by the tasks can be extracted using the
appropriate keys:e.g.,

CASA <10>: line_stat=sdstat()
Current fluxunit = K
No need to convert fluxunits
Using current frequency frame
Using current doppler convention

CASA <11>: line_stat
Out[11]:

{’eqw’: 70.861755476162784,
’max’: 1.2750182151794434,
’mean’: 0.35996028780937195,
’median’: 0.23074722290039062,
’min’: -0.20840644836425781,
’rms’: 0.53090775012969971,
’stddev’: 0.39102539420127869,
’sum’: 90.350028991699219}

One can then use these values in scripts by accessing this dictionary, e.g.,

CASA <12>: print "Line max = %5.3f K" % (line_stat[’max’])
Line max = 1.275 K
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8.1.3 Line Formatting

CASA tasks operating on Measurement Set format are able to trap leading and trailing whitespace
on string parameters (such as infile) but ASAP does not. Note also; ASAP is case-sensitive, with
most parameters being upper-case (e.g.’ASAP’ used in sd.scantable.save

8.1.4 New Tasks, Features and functionality in CASA 4.5

As for CASA 4.4, development towards CASA 4.5 release has been dominated by the porting to
CASA Measurement Set format, without prioritzing development of new tasks. In this way the user
experience for processing single-dish data is more consistent with that for processing interferometer
data. A complete list of Measurement Set -capable tasks is at the end of this chapter.

The issue of non-linearity in the ALMA correlator is now solved at the point of data-taking. Single-
dish data taken before cycle 3 will still suffer from that problem, and will need to be properly treated
in processing (see section 8.2.1).

As the effort is largely diverted towards completing the transition to use Measurement Set format,
there are smaller improvements to existing functionality - such as the selection by observation intent
in the imaging task sdimaging (i.e. select using the ’purpose’ for a particular observation: target,
or reference, etc.), streamlining the feedback for the baselining task tsdbaseline.

To a very great extent, CASA SD shares even more tasks with CASA interferometer. These include
displaying data contents (listobs), computing and applying calibration tables (gencal, applycal),
data flagging and subselection (flagdata, mstransform) and moment image generation (imcontsub,
immoment; see Section 8.5). The drive towards merging the ’single-dish side’ and ’interferometer
side’ of CASA is ongoing.

8.2 SD data-taking in brief

As for interferometer data (see Chapter 2), single-dish data from ALMA is initially in a format
called the ALMA-Science Data Model (ASDM). These ASDMs must be converted at least to
Measurement Set for many single-dish tasks (Some CASA single-dish tasks also requires conversion
to Scantable format, but this happens transparently to the operator).

Single-dish observations taken with ALMA include the science target (obviously) along with ob-
servations of a quasar (for band 3) or Uranus. These quasar/Uranus observations are observed
differently, and processed separately to the science data, and are used to provide an empirical
calibration to scale from Kelvin to Janskys, as shown in Figures 8.1.

It is an ALMA policy that the measurements of the Jy/K calibrator be taken within a few days
of the science observations. Both the calibration and science observations also have their own
pointing, focus, Tsys and reference (short-term calibration) observations in the following order -
with the noted exception:
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Figure 8.1: Observations modes for science observations A) Left where the OFF position is distant
from the target field, and calibrator observations B), Right where the OFF positions are extracted
from the edges of the scanned area.

wh

1. Focus optimisation (data discarded from data reduction)

2. Pointing optimisation (data discarded from data reduction)

3. Tsys calibration

4. Pointing Measurement of Reference (OFF) science observations only, not calibrator

5. Tsys calibration

6. OTF Measurement of source field.

The OFF position is not observed during the observations of the calibrator (quasar/Uranus), be-
cause those observations are fast enough relative to the atmospheric stability, and those data are
calibrated relative to ”edge of map” data, rather than explicit OFF data.

8.2.1 Correlator non-linearity

In 2014 it was determined ASDM products of the ALMA correlator must be scaled to compensate
for nonlinear terms, and that the adjustments can be made at the point of data-taking - i.e. during
the observations. From cycle 3 and onwards, the scaling is done at the point of data-taking (i.e.
ont-the-fly calibration), however data taken before Cycle 3 should be checked to see if it is necessary
to scale the data in CASA. The adjustment to compensate for the non-linearity is effected simply
by multiplying the calibrated data by a factor of 1.25. This can be achieved in CASA 4.5 using the
gencal and applycal tasks.
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8.3 Overview of SD tools and tasks

In the following, we describe the core single-dish tasks, used most frequently in the contexts of
reduction tools and analysis tools. Non-core tasks (i.e. tasks non-essential for basic data reduction,
image generation and analysis) as well as tasks that are expected to be depreciated in the near
future are briefly described in Section 8.5, and the remainder of the entire single-dish ASAP-based
SD tool set are detailed in Section 8.7.

Core CASA reduction task descriptions

• tsdcal — generate sky and Tsys caltables for SD data, and apply them.

• sdimaging — create an image from the total power or spectral data.

• tsdbaseline — compute fit for per-spectrum baseline and optionally removes it.

Core CASA SD analysis task descriptions

• sdaverage — average, smooth and regrid SD spectra.

• tsdfit — line fitting to SD spectra.

• sdmath — do simple arithmetic for SD datasets.

• sdscale — scale SD data with a given factor.

• sdstat — compute statistics of regions of SD spectra.

• tsdsmooth — gaussian smoothing along spectral axis.

Other CASA tasks relevant for SD data reduction and analysis

• importasdm — Convert an ALMA Science Data Model (ASDM) into a visibility file (MS).

• listobs — List the summary of a data set in the logger or in a file.

• flagdata — All-purpose flagging task based on data-selections and flagging modes.

• split — Create a visibility subset from an existing visibility set.

• plotms — A plotter/interactive flagger for visibility data.

• gencal — Specify Calibration Values of Various Types.

• applycal — Apply calibrations solutions(s) to data.

• imhead — List, get and put image header parameters.

• imcontsub — Estimates and subtracts continuum emission from an image cube.

• immoments — Compute moments from an image.



CHAPTER 8. SINGLE-DISH DATA PROCESSING 444

8.4 Overview for Reducing ALMA Single-dish Data

As described in Section 8.2, Single-dish science data taken in Cycle 3 are calibrated with separate
observations of a quasar (band 3 observations), or Uranus (all other bands). Both the science
and calibrator datasets are separately processed (i.e. they have their own measurements of Tsys

separately applied). The Calibrator observations are compared with ALMA databases to determine
a factor to convert the native Kelvin units of the single-dish observations, into the Janskys units
of the measurements held in the ALMA database. This conversion step is necessary, to properly
scale for combination of the single-dish and interferometer datasets.

Therefore, the Calibrator observations should be conducted first, although they differ only in the
application of a ”baseline removal” step and the parameters of the image product (i.e. the calibrator
observations yield a 2-D continuum image, whereas the science observations yield a 3-D position-
position-velocity cube).

The workflow is shown in Figure 8.2, and each step is detailed below. The tasks applied for the
reduction are described in following sections which are organised by coarsely grouping the tasks
into levels of functionality.

The Analysis Utilities package will be used only during the imaging steps. The package can be
imported, and the ’stuffForScienceDataReduction’ class can be instantiated with:

import analysisUtils as aU
es = aU.stuffForScienceDataReduction()

Please access the Analysis Utils package from this link: https://casaguides.nrao.edu/index.
php/Analysis_Utilities

8.4.1 Brief Description of SD reduction

The following briefs each of the steps towards fully calibrated image datasets, as shown in Figure 8.2.
Note that this process occurs entirely in Measurement Set format.

1. importASDM, import ASDM flags
The conversion from ASDM to Measurement Set is done with the task importasdm (See
section 2.2.1). This task also imports various flags and other metadata unique to single-dish,
from the ADSM to the measurement set. This is accomplished with the bdflags2MS keyword.

2. Inspection of data and Tsys quality
To obtain a kind of overview, and determine spectral window identification numbers, etc. we
use the listobs task. This task has superseded the sd-based task sdlist. To examine the
quality of the Tsys (used to calibrate the data to the kelvin scale), we use the task gencal to
extract the Tsys data as a calibration table, then use plotbandpass to examine the stabilty.

https://casaguides.nrao.edu/index.php/Analysis_Utilities
https://casaguides.nrao.edu/index.php/Analysis_Utilities
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Figure 8.2: General steps for processing both calibrator and science data, and applying cali-
brations to science data. The right-most column describes the CASA 4.5 tasks called during each
stage.

3. ’a priori’ flagging (band edge, any atmospheric lines)
Typically, the edges of the bandpasses dive to zero power. This is a symptom of all tuned
radio telescopes and is simply a manifestation of the frequency-sampling function across the
baseband. This step is only important if the spectral window also samples the edge of the
baseband and in this case we Typically flag a few percent of each band - approximately 5-10%
of the affected edges of the spectral windows using the flagdata task (which has replaced
the task sdflag). The unflagged data should be examined with plotms to ensure the edges
of the bands are removed.

The case where a spectral line of scientific value falls close to the edge of the band, will omit
this step of course, and will need to adopt a more careful baseline correction effort at later
stages.
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4. Applying Tsys calibration
Applying the Tsys calibration is effected using the tsdcal task (replacing the sdcal and
sdcal2 tasks).

Ostensibly, we calibrate the data into brightness temperature in units of K, using the equation

TA∗ = Tsys × (ON −OFF )/OFF (8.1)

However note that additional calibrations need to be applied (described below), before the
data are correctly represented in TA* units.

where ON and OFF are the data on-source (i.e., during the raster scanning) and off-source
(on a reference position where only background emission exists), respectively.

The most difficult part of this step is matching the ”science” SPW’s and Tsys SPW’s. We
determine this with the output from listobs task, executed above, however we can use the
function Tsysspwmap to automatically map Tsys SPW’s to science SPW’s, and pass the results
of that function into tsdcal.

5. Correction for Correlator non-linearity (only data taken during, or before Cycle 3)
This step can be done at any stage after calibration. It’s included at this point because it
is a step common to both the calibrator and science datasets. The correction is applied by
passing the correction value (simply a factor of 1.25), via a gencal call, which generates the
correction as a calibration table, and a applycal call, which applies the calibration. This is
simplified using some basic python scripting, but it’s worth noting that the gencal call has
some internal mathematics that actually applies the square of the inverse supplied calibration
value - therefore the value passed into gencal must be the inverse square root of the desired
value: i.e. 1

x2 .

6. Baseline subtraction
Significant work has gone into improving the functionality of tsdbaseline, used to compute
and apply a residual baseline feature in the calibrated spectra. Note that ’baseline’ is
typical parlance in single-dish processing, referring to what is commonly low-order structure
in the frequency domain. The structure occurs primarily from the changing, turbulent and
wet atmosphere in the beam of the single-dish, and is therefore different for each single-dish
telescope. It is typical to attempt to remove a rather low-order polynomial or spline. Band
3 is almost immune to atmospheric fluctuations and so orders 1 or 2 are sufficient at those
bands. Higher orders are likely for higher bands.

After this stage is complete, the data will be calibrated in units of Kelvin, in antenna tem-
perature units: TA*

7. Imaging of Calibration data - calibration data only
The imaging step is quite involved, and will be described in the last stage below. The difference
in imaging the calibrator is that a single continuum image is generated - in contrast to the
science data where a spectal cube is created. Note that this step is not critical for generating
the science spectral data. It is only important if the single-dish data is to be combined with
interferometer data, where it must be converted into Janskys, for correct combination.
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8. Determination of K to Jy conversion - calibration data only
After imaging the calibration data, the peak brightness in the calibration image (in antenna
temperature, in kelvin) is extracted using imstat. The process differs a little if the calibrator
is a planet or a quasar, in that the planet observations must also be deconvolved (since the
planet is a significant size relative to the beam). To determine the JperK value, the known
flux density (in Jy) is compared with the extracted peak brightness temperature (in K), and
a scaling factor determined simply with fthe ratio lux (Jy) /Brightness (K). This value is
used to scale the science data in the next step.

9. Application of K to Jy conversion - science data only
As for the application of the nonlinearity correction, the conversion factor for Kelvin to Jy is
simply multiplication by a factor. Again, we pass the correction factor via a gencal call and
a applycal call, to generate and apply the calibration tables, respectively.

10. Imaging of Science data
For this step (and also for the step to image the calibrator, above), the analysis utils package
needs to be loaded.

Many of the parameters are not yet automatically determined by default, and so additional
tasks must be called (spatial sampling rates are determined with aU.getTPSampling, Beam
FWHM is determined with aU.PrimaryBeamArcsec) to allocate them to variables which
will be passed into the main task: sdimaging. Note that sdimaging can process multiple
calibrated datasets simultaneously, and there is no need to split the data into respective
antennas. That is: multiple calibrated datasets, with multiple single-dish antennas can be
processed transparently with sdimaging.

The metadata associated with the resulting image must also have the correct flux units written
in (imhead), and if the data are to be used to combine with interferometer data, the beam
parameters must also be correctly re-written (aU.sfBeam).

Further baselining is possible with imcontsub, and moment images can be generated from
the resulting calibrated data, with immoments,

8.5 Brief Description of functionality for relevant SD tasks

All of the tasks that operate on measurement set format work from a file on disk rather than from
a scantable in memory as the ASAP toolkit does (see § 8.7). When operating on Scantable format,
the tasks transparently invoke a call to sd.scantable to read the data. The scantable objects do
not persist within CASA after completion of the tasks and are destroyed to free up memory.

Although the Measurement Set can store data from multiple antennas even if it consists of only
single-dish spectra (auto-correlation data), the scantable cannot distinguish data from multiple
antennas. It causes a problem when the user processes the Measurement Set using tasks that
expect ASAP format. Therefore, when using tasks that can operate also on Scantable format to
process measurement set format, the id or name of the antenna that the user wants to process must
be explicitly specified. This can be done by antenna parameter. By default (antenna=0), data
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associate with antenna id 0 is imported. The antenna parameter takes no effect for other input
data formats.

In the following, we describe tasks that are exclusive to CASA single-dish. The discussion of other
tasks that are common to interferometer processing (e.g. flagmanager, importASDM) will not be
repeated here.

8.5.1 Gridding and imaging:
sdimaging, sdtpimaging, sdgrid,sdimprocess

Gridding data follows a few steps: firstly a grid with appropriate parameters is characterised after
consultation with metadata and user-inputs, and the grid is then iteratively populated with values
extracted and weighted from the actual data. The user has significant control over the various
gridding functions, and should bear in mind the resulting resolution is necessarily a convolution
of a number of sampling functions (the intrinsic sampling rate across the sky, the telescope beam
sampling function, the grid’s gridding function and the kernel weighting function). A number
of kernels are available in sdimaging and sdgrid: Primary Beam (PB), Spherical (SF), Box-car
(Box), Gaussian (Gauss), and Gaussian×Jinc:

Jinc(x) =
J1(π × x/c)
(π × x/c)

(8.2)

with a first order Bessel function: J1

The different functions are somewhat (but not completely) akin to the robust parameter in inter-
ferometric processing, where the weights are distributed across the function to optimise sensitivity,
or resolution. The actual shape of the gridding kernel is fully constrained In combination with
kernel truncation scales specified with convsupport for spherical kernels, truncate for Gaussian
and GJinc kernels, and in combination with kernel width scales, specified with gwidth for Gaussiian
and GJinc kernels, and with the jinc function parameter specified with jwidth.

The user would be advised to start with either a Spherical function (SF) or Primary Beam (PB)
function, and determine on their own basis, which functions are most appropriate for their purpose
and by comparison of the resulting RMS (obtained with imstat) to the theoretical value.

When building the calibrator continuum image, use sdimaging with mode=’channel’, nchan=1
and width=nchan, where nchan is equal to the number of channels in the spectral window (which
is shown in the listobs command).

The phasecenter parameter should be set to the centre of the image, this is automatically deter-
mined if left unset.

Please refer to the section on ’Dataset mathematics and manipulation’ below, for more information
about averaging and weighting parameters.
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Task sdtpimaging invokes a more fundamental application of gridding, and also attempts some
baseline subtraction. This task operates on single antennas, and is largely redundant with the
development of sdimaging, tsdbaseline and imcontsub.

Task sdimprocess is not a gridding task, but is an image−optimisation task that attempts a
fourier-based approach to removing scanning noise by either substituting fourier components from
data obtained over a variety of scanning directions (Emerson &; Grave 1988), or extrapolation in
the fourier domain if only one scanning direction is used (Sofue &; Reich 1979). It operates on
either CASA or FITS images and returns data in Measurement Set format.

8.5.2 Dataset mathematics and manipulation:
sdcoadd ,sdaverage, tsdsmooth, sdmath, sdscale, sdcoadd

It is anticipated that many, or all of these tasks will be unsupported in the near future, since the
migration to measurement set format will make them redundant, and ongoing development has
enabled other alternatives.

Task sdcoadd operates on both Measurement set and scantable format data, and simply returns
a single, format-free dataset from multiple input scantables. Some tolerances have to be applied
when attempting to keep the spectral windows in line, in the frequency domain. In the migration
to measurement set format, it is redundant with task imcat, but there are few occasions, if any,
where it need be invoked standard measurement set reduction.
Task concat achieves a similar function to sdcoadd.

Task sdaverage can be used to average and smooth (but not calibrate) data, instead of the aver-
aging functions implicit in
tt tsdcal. Note that due to the operation of the underlying ASAP libraries, averaging by polariza-
tion (polaverage = True), automatically averages in time too. There is no way to avoid this in
sdaverage, and the workflow will be to leave polarization averaging until the last step, and apply
it during gridding. Smoothing kernels include hanning, gaussian, boxcar and regrid.

The weighting parameters of averaging (’tintsys’, ’tsys’, ’tint’, ’var’ or ’median’) are attempts to
normalise the noise level between accumulated spectra.

From the radiometer equation, the variance in a signal is a function of the system temperature,
channel width and integration time:

Var(Tsys,dν, dT) =
T 2

sys

(dν × dT )
(8.3)

Where Tsys is the measured System temperature in K, dν here being the channel width in frequency
and dT is the integration time in seconds.

When averaging integrations with say, different Tsys, dν and/or dT, normalising the data correctly is
important. For data where the channel widths are identical, but the integration times are different,
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the averaged spectra are found with:

Tav(ν) = (T1(ν)× w1 + T2(ν)× w2)/(w1 + w2) (8.4)

where the ratio of weighting parameters, w1:w2 is found with the ratio of integration times,
dT1:dT2.

The other weighting schemes (’tsys’,’tintsys’ are analogues of the ’tint’ weighting, but instead
capture variation of Tsys. eg. normalising under Tsys weighting uses 1/T 2

sys.

The alternatives CASA SD considers, and some vague use cases are:

1. normalise by integration time and system temperature (tintsys): dT
T 2
sys

, when dν is known to
be invariant.

2. normalise by system temperature only (tsys); 1
T 2
sys

- this would be the case when dν, dt are
known to be invariant

3. normalise by integration time only (tint): dT; when Tsys and dν are known to be invariant

4. normalise by variance - an empirical calculation from the spectra, that should implicitly
capture any variations of any of the terms.

Task tsdsmooth applies a standard smoothing in the spectral domain, using (for now) a Gaussian
kernel. Note the smoothing is done by convolution in the Fourier domain and therefore masking
and blanking data can affect the outcome. Please use smooth masked data with care. For best
results. baselining the data before smoothing to ensure there are few large excursions to zero in
the spectral domain, which might contaminate the transformed data.

The task sdmath can perform basic arithmetic operations on Scantable or measurement set format
datasets. This task will be unsupported in the near future. The expr paramter is formed using
combinations of operators and optionally, datasets or variables; For two datasets containing, for
example, ”on” data and ”off” data (i.e. science and reference observations), the data can be
calibrated fvia the standard ”on-off/off” algorithm:

expr=’("orion_on_data.asap"-"orion_off_data.asap")/"orion_off_data.asap"
outfile=’orion_cal.asap’

Task sdscale simply scales the data by a user-supplied constant value. This function is actually re-
dundant with sdmath and also with gencal and applycal, and like sdmath , it will be unsupported
in the near future.
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8.5.3 Fitting: sdfit, tsdfit

From the user point of view, one of the key differences between sdfit and tsdfit is that sdfit
applies additional smoothing, and is not part of the transition to measurment set (i.e. it can operate
on Scantable format and Measurement set format). In the near future, sdfit will be unsupported.

In task tsdfit, fitting of (for now) gaussian profiles only, is done on a per-spectra basis, using
iterative calls to a ”line-finding” algorithm that passes the first guess for the requested number of
gaussians, into the line fitting algorithm. Both steps are done in the image domain.

8.5.4 Dataset output: sdplot, sdlist, sdstat

These three tasks are available for quick, or more detailed analysis of single-dish data are largely
superseded by plotms, listobs and imstat, which can do much of the same functionality with
some exceptions.

sdlist, used to obtain basic observational information about the dataset is superseded by listobs
for measurement set format data, but otherwise completes the same functionality. sdstat used
to obtain statistical information about the measurement set data has additional capability for
averaging that is lacking in imstat Similarly, sdplot which is used to plot the spectral information
of the data set has expanded capability for on-the-fly averaging before plotting that is lacking in
plotms.

These tasks will be maintained until the migration to measurement set format is complete

8.5.5 Data input and output: sdsave

Data can be transported across formats using sdsave. Output formats include Scantable, Measur-
ment set, SDFITS and ASCII. This task has little, if any application in core reduction of single-dish
data, but is useful if the user wishes to export data into ASCII format for offline processing, outside
CASA.

8.6 Import of NRO data

Importing NRO data is available, and both NEWSTAR and NOSTAR formats are supported, al-
though multibeam data is currently problematic, and older data using AOS may show some incon-
sistencies relative to the original (before-import) data. CASA currently supports Dual-polarization
data.

Note that an individual IFNO is assigned to each of arrays to identify data from an array. Note
that arrays are numbered by successive IFNOs. For example, if observation of three arrays, A01,
A03, and A05, are stored in a data set, their IFNOs will be 0, 1, and 2, respectively.
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The parameter, freqref, controls how frequency reference frame is set. The default is ’rest’. The
other option is ’vref’. If freqref is ’vref’, frequency reference frame takes from VREF field in
input NRO data. This parameter is only available in tool level, i.e. sd.scantable.

Note that at this point, processing of full polarization data needs to be done very carefully, and
with particular attention paid to the spectral window identification, which is unreliably transported
from NRO format to Measurement set format.

8.7 Using The ASAP Toolkit

ASAP is included with the CASA installation/build. It is loaded upon start-up, and the ASAP
functionality is under the Python ’sd’ tool.

The ASAP interface is essentially the same as that of the CASA toolkit, that is, there are groups
of functionality (aka tools) which have the ability to operate on your data. The complete list of
’sd’ tools are:

sd.AsapLog sd.asaplinefind sd.mask_or
sd.__builtins__ sd.asaplog sd.matplotlib
sd.__class__ sd.asaplog_post_dec sd.merge
sd.__date__ sd.asapmath sd.new_asaplot
sd.__delattr__ sd.asapplotter sd.opacity
sd.__dict__ sd.average_time sd.opacity_model
sd.__doc__ sd.calfs sd.os
sd.__file__ sd.calibrate sd.page
sd.__format__ sd.calnod sd.parameters
sd.__getattribute__ sd.calps sd.plotter
sd.__hash__ sd.commands sd.plotter2
sd.__init__ sd.coordinate sd.pylab
sd.__name__ sd.dosigref sd.quotient
sd.__new__ sd.dototalpower sd.rc
sd.__package__ sd.edgemarker sd.rcParams
sd.__path__ sd.env sd.rcParamsDefault
sd.__reduce__ sd.fitter sd.rcp
sd.__reduce_ex__ sd.flagplotter sd.re
sd.__repr__ sd.get_revision sd.sbseparator
sd.__revision__ sd.gui sd.scantable
sd.__setattr__ sd.inspect sd.selector
sd.__sizeof__ sd.interactivemask sd.setup_env
sd.__str__ sd.ipysupport sd.simplelinefinder
sd.__subclasshook__ sd.is_asap_cli sd.skydip
sd.__version__ sd.is_casapy sd.splitant
sd._asap sd.is_ipython sd.srctype
sd._is_sequence_or_number sd.linecatalog sd.sys
sd._n_bools sd.linefinder sd.toggle_verbose
sd._to_list sd.list_files sd.unique
sd.almacal sd.list_rcparameters sd.utils
sd.apexcal sd.list_scans sd.version
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sd.asapfitter sd.logging sd.welcome
sd.asapgrid sd.mask_and sd.xyplotter
sd.asapgrid2 sd.mask_not

A contextual description of the use and operation of these are given in Section 8.7.1

8.7.1 ASAP utility and tool descriptions

8.7.1.1 Rasterutil

Rasterutil is a module which enables you to select individual raster rows or rasters from raster-
scanned dataset. Suppose you have a Scantable ’foo.asap’ in which several rasters are scanned. To
know how many rasters or raster rows this dataset contains, execute first as follows:

s=sd.scantable(’foo.asap’, False)
import rasterutil
r=rasterutil.Raster(s)
r.detect() .

Now you are ready to go ahead. Numbers of raster rows or rasters are shown by typing ’r.nrow’ or
’r.nraster’, respectively. Once you run rasterutil.Raster.detect(), IDs are given in chronolog-
ical order both for each raster rows and rasters: a raster row can be specified by ID in range from
0 to r.nrow-1, while a raster can be specified by ID from 0 to r.nraster-1.

Here are sample commands to obtain a Scantable that contains specified raster row or raster only
or other stuffs to select the specified ones:

srow0=r.asscantable(rowid=0) #get \emph{Scantable} object containing the first raster row
sras1=r.asscantable(rasterid=1) #get \emph{Scantable} object containing the second raster
selrow2=r.asselector(rowid=2) #get selector object for selecting the third raster row
taqlras3=r.astaql(rasterid=3) #get TaQL query for selecting the 4th raster

Other useful commands include rasterutil.Raster.plot_rows(); data selected as a raster row
or raster can be visualized using asapplotter.

Within ASAP, data is stored in a Scantable, which holds all of the observational information and
provides functionality to manipulate the data and information. The building block of a Scantable
is an integration which is a single row of a Scantable. Each row contains just one spectrum of a
beam, IF and polarization.

Once you have a Scantable in ASAP, you can select a subset of the data based on scan numbers, or
source names; note that each of these selections returns a new ’scantable’ with all of the underlying
functionality:

CASA <5>: scan27=scans.get_scan(27) # Get the 27th scan
CASA <6>: scans20to24=scans.get_scan(range(20,25)) # Get scans 20 - 24
CASA <7>: scansOrion=scans.get_scan(’Ori*’) # Get all Orion scans
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To copy a scantable, do:

CASA <15>: ss=scans.copy()

8.7.1.2 Data Selection

In addition to the basic data selection above, data can be selected based on IF, beam, polarization,
scan number as well as values such as Tsys. To make a selection create a selector object choose
among various selection functions, e.g.,

sel = sd.selector() # initialize a selector object
# sel.<TAB> will list all options

sel.set_ifs(0) # select only the first IF of the data
scans.set_selection(sel) # apply the selection to the data
print scans # shows just the first IF

8.7.1.3 State Information

Some properties of a Scantable apply to all of the data, such as spectral units, frequency frame,
or Doppler type. This information can be set using the scantable.set xxxx methods. These are
currently:

CASA <1>: sd.scantable.set_<TAB>
sd.scantable.set_dirframe sd.scantable.set_selection
sd.scantable.set_doppler sd.scantable.set_sourcename
sd.scantable.set_feedtype sd.scantable.set_sourcetype
sd.scantable.set_fluxunit sd.scantable.set_spectrum
sd.scantable.set_freqframe sd.scantable.set_T$_{\rm sys}$
sd.scantable.set_instrument sd.scantable.set_unit
sd.scantable.set_restfreqs

For example, sd.scantable.set fluxunit sets the default units that describe the flux axis:

scans.set_fluxunit(’K’) # Set the flux unit for data to Kelvin

Choices are ’K’ or ’Jy’. Note: the scantable.set fluxunit function only changes the name of
the current fluxunit. To change fluxunit, use scantable.convert flux as described in § 8.7.2.2
instead (currently it is necessary to do some gymnastics for non-AT telescopes).

Use sd.scantable.set unit to set the units to be used on the spectral axis:

scans.set_unit(’GHz’) # Use GHz as the spectral axis for plots

The choices for the units are ’km/s’, ’channel’, or ’*Hz’ (e.g. ’GHz’, ’MHz’, ’kHz’, ’Hz’). This
does the proper conversion using the current frame and Doppler reference as can be seen when the
spectrum is plotted.

Set the frame in which the frequency (spectral) axis is defined by sd.scantable.set freqframe:
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CASA <2>: help(sd.scantable.set_freqframe)
Help on method set_freqframe in module asap.scantable:

set_freqframe(self, frame=None) unbound asap.scantable.scantable method
Set the frame type of the Spectral Axis.
Parameters:

frame: an optional frame type, default ’LSRK’. Valid frames are:
’REST’, ’TOPO’, ’LSRD’, ’LSRK’, ’BARY’,
’GEO’, ’GALACTO’, ’LGROUP’, ’CMB’

Examples:
scan.set_freqframe(’BARY’)

The most useful choices here are frame = ’LSRK’ and frame = ’TOPO’ (what ALMA actually
observes in). Note that the ’REST’ option is not yet available. The Doppler frame is set with
sd.scantable.set doppler:

CASA <3>: help(sd.scantable.set_doppler)
Help on method set_doppler in module asap.scantable:

set_doppler(self, doppler=’RADIO’) unbound asap.scantable.scantable method
Set the doppler for all following operations on this scantable.
Parameters:

doppler: One of ’RADIO’, ’OPTICAL’, ’Z’, ’BETA’, ’GAMMA’

Finally, there are a number of functions to query the state of the scantable. These can be found in
the usual way:

CASA <4>: sd.scantable.get_<TAB>
sd.scantable.get_abcissa sd.scantable.get_parangle
sd.scantable.get_antennaname sd.scantable.get_restfreqs
sd.scantable.get_azimuth sd.scantable.get_rms
sd.scantable.get_column_names sd.scantable.get_row
sd.scantable.get_coordinate sd.scantable.get_row_selector
sd.scantable.get_direction sd.scantable.get_scan
sd.scantable.get_directionval sd.scantable.get_selection
sd.scantable.get_elevation sd.scantable.get_sourcename
sd.scantable.get_fit sd.scantable.get_spectrum
sd.scantable.get_fluxunit sd.scantable.get_time
sd.scantable.get_inttime sd.scantable.get_T$_{\rm sys}$
sd.scantable.get_mask sd.scantable.get_T$_{\rm sys}$spectrum
sd.scantable.get_mask_indices sd.scantable.get_unit
sd.scantable.get_masklist sd.scantable.get_weather

These include functions to get the current values of the states mentioned above, as well as methods
to query the number of scans, IFs, and polarizations in the Scantable and their designations. See
the inline help of the individual functions for more information.
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8.7.1.4 Masks

Several functions (fitting, baseline subtraction, statistics, etc.) may be run on a range of channels
(or velocity/frequency ranges). You can create masks of this type using the create mask function:

# spave = an averaged spectrum
spave.set_unit(’channel’)
rmsmask=spave.create_mask([5000,7000]) # create a region over channels 5000-7000
rms=spave.stats(stat=’rms’,mask=rmsmask) # get rms of line free region

rmsmask=spave.create_mask([3000,4000],invert=True) # choose the region
# *excluding* the specified channels

The mask is stored in a simple Python variable (a list) and so can be manipulated using Python
facilities.

8.7.1.5 Scantable Management

Scantable can be listed via:

CASA <33>: sd.list_scans()
The user created scantables are:
[’scans20to24’, ’s’, ’scan27’]

As every Scantable will consume memory usage, if you will not use it any longer, you can explicitly
remove it via:

del <scantable name>

8.7.1.6 Scantable Mathematics

It is possible to do simple mathematics directly on scantables from the CASA command line using
the +,-,*,/ operators as well as +=, -=, *=, /=

CASA <10>: scan2=scan1+2.0 # add 2.0 to data
CASA <11>: scan *= 1.05 # scale spectrum by 1.05

Operands can be a numerical value and one- or two-dimensional Python list. For list operand, its
shape should be conform with the shape of spectral data stored in the scantable. Mathematics
between two scantables is also available. In that case, scantables must be conform with each other.

NOTE: In scantable mathematics, scantable must be put on the left. For example:

CASA<12>: scan2=scan1+2.0 # this works
CASA<13>: scan2=2.0+scan1 # this causes an error
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8.7.1.7 Scantable Save and Export

ASAP can export scantables in a variety of formats, suitable for reading into other packages. The
formats are:

• ASAP – This is the internal format used for ASAP. It is the only format that allows the
user to restore the data, fits, etc., without losing any information. The ASAP Scantable
is a CASA Table (memory-based table; but can be made as temporarily disk-based with
sd.rcParam[’scantable.storage’]). This function just converts it to a disk-based table. You
can access it with the CASA browsetable task or any other CASA table tasks.

• SDFITS – The Single-dish FITS format. This format was designed for interchange between
packages but few packages can actually read it.

• ASCII – A simple text based format suitable for the user to process using Python or other
means.

• Measurement Set (V2: CASA format) – Saves the data in a Measurement Set. All CASA
tasks which use an Measurement Set should work with this format.

Scantables are exported by the function, save:

CASA : scans.save(name=’foo.output.ms’,format=’MS2’)

8.7.2 Calibration

For some observatories, the calibration happens transparently as the input data contains the Tsys

measurements taken during the observations. The nominal ’Tsys’ values may be in Kelvin or Jansky.
The user may wish to apply a Tsys correction or apply gain-elevation and opacity corrections.

8.7.2.1 Tsys scaling

If the nominal Tsys measurement at the telescope is wrong due to incorrect calibration, the scale
function allows it to be corrected.

scans.scale(1.05,T$_{\rm sys}$=True) \# by default only the spectra are scaled
\# (and not the corresponding T$_{\rm sys}$) unless T$_{\rm sys}$=True

8.7.2.2 Flux and Temperature Unit Conversion

The function, convert flux, is available for converting measurements in Kelvin to Jansky (and
vice versa). It converts and scales data to the selected units. The user may need to supply the
aperture efficiency, telescope diameter, or the Jy/K factor
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scans.convert_flux(eta=0.48, d=35.) # Unknown telescope
scans.convert_flux(jypk=15) # Unknown telescope (alternative)
scans.convert_flux() # known telescope (mostly AT telescopes)
scans.convert_flux(eta=0.48) # if telescope diameter known
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Simulation

New in 4.4:

• Single dish imaging is accomplished in simalma and simobserve by calling the sdimaging task
with standard imaging parameters in ALMA, i.e., with spheroidal gridding, the cell size of 1/9 of
the FWHM of primary beam, and convolution support of 6 pixes.

The tasks available for simulating observations are:

• simobserve — simulate an interferometer or total power observation (§ 9.1)

• simanalyze — image and analyze simulated data sets (§ 9.1)

• simalma — simulate an ALMA observation including multiple configurations of the 12-m
interferometric array, the 7-m ACA, and total power measurements. Generate a combined
image from the simulated data sets (§ 9.2)

The capability of simulating observations and data sets from the JVLA and ALMA are an important
use-case for CASA. This not only allows one to get an idea of the capabilities of these instruments
for doing science, but also provides benchmarks for the performance and utility of the software to
process “realistic” data sets (with atmospheric and instrumental effects). Simulations can also be
used to tune parameters of the data reduction and therefore help to optimize the process. CASA
can calculate visibilities (create a measurement set) for any interferometric array, and calculate and
apply calibration tables representing some of the most important corrupting effects. simobserve
can also simulate total power observations, which can be combined with interferometric data in
simanalyze (i.e. one would run simobserve twice, simanalyze once). The task simalma is a task
to simulate an ALMA observation, including ALMA 12-m, ACA 7-m and total power arrays, and
generate a combined image. simalma also attempts to provide useful feedback on those different
observation components, to help the user better understand the observing considerations.

Inside the Toolkit:
The simulator methods are in the sm
tool. Many of the other tools are also
helpful when constructing and ana-
lyzing simulations.

CASA’s simulation capabilities continue to be improved
with each CASA release. For the most current informa-
tion, please refer to http://www.casaguides.nrao.edu,
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and click on “Simulating Observations in CASA”. Follow-
ing general CASA practice, the greatest flexibility and rich-
est functionality is at the Toolkit level. The most com-
monly used procedures for interferometric and single dish
simulation are encapsulated in the simobserve task.

9.1 Simulating ALMA observations with simobserve and simanalyze

The simobserve inputs are (submenus expand slightly differently for thermalnoise=manual and
single dish observing):

project = ’sim’ # root prefix for output file names
skymodel = ’’ # model image to observe

inbright = ’’ # scale surface brightness of
# brightest pixel e.g. "1.2Jy/pixel"

indirection = ’’ # set new direction
# e.g. "J2000 19h00m00 -40d00m00"

incell = ’’ # set new cell/pixel size
# e.g. "0.1arcsec"

incenter = ’’ # set new frequency of center
# channel e.g. "89GHz"
# (required even for 2D model)

inwidth = ’’ # set new channel width
# e.g. "10MHz" (required even
# for 2D model)

complist = ’’ # componentlist to observe
compwidth = ’8GHz’ # bandwidth of components

setpointings = True
integration = ’10s’ # integration (sampling) time
direction = ’’ # "J2000 19h00m00 -40d00m00"

# or "" to center on model
mapsize = [’’, ’’] # angular size of map or ""

# to cover model
maptype = ’ALMA’ # hexagonal, square (raster),

# ALMA, etc.
pointingspacing = ’’ # spacing in between

# pointings or "0.25PB" or ""
# for ALMA default
# INT=lambda/D/sqrt(3), SD=lambda/D/3

obsmode = ’int’ # observation mode to simulate
# [int(interferometer)|sd(singledish)|""(none)]

antennalist = ’alma.out10.cfg’ # interferometer antenna position file
refdate = ’2014/05/21’ # date of observation - not

# critical unless concatenating
# simulations
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hourangle = ’transit’ # hour angle of observation
# center e.g. "-3:00:00", "5h", "-4.5" (a
# number without units will
# be interpreted as hours), or "transit"

totaltime = ’7200s’ # total time of observation
# or number of repetitions

caldirection = ’’ # pt source calibrator [experimental]
calflux = ’1Jy’

thermalnoise = ’tsys-atm’ # add thermal noise:
# [tsys-atm|tsys-manual|""]

user_pwv = 1.0 # Precipitable Water Vapor in mm
t_ground = 269.0 # ambient temperature
seed = 11111 # random number seed

leakage = 0.0 # cross polarization (interferometer only)
graphics = ’both’ # display graphics at each

# stage to [screen|file|both|none]
verbose = False
overwrite = True # overwrite files starting with $project

This task takes an input model image or list of components, plus a list of antennas (locations and
sizes), and simulates a particular observation (specified by mosaic setup and observing cycles and
times). The output is a measurement set suitable for further analysis in CASA.

The simanalyze inputs are:

project = ’sim’ # root prefix for output file names
image = True # (re)image $project.*.ms to $project.image

vis = ’default’ # Measurement Set(s) to image
modelimage = ’’ # lower resolution prior

# image to use in clean e.g. existing total
# power image

imsize = 0 # output image size in pixels
# (x,y) or 0 to match model

imdirection = ’’ # set output image direction,
# (otherwise center on the model)

cell = ’’ # cell size with units or "" to equal model
interactive = False # interactive clean? (make

# sure to set niter>0 also)
niter = 0 # maximum number of

# iterations (0 for dirty image)
threshold = ’0.1mJy’ # flux level (+units) to stop cleaning
weighting = ’natural’ # weighting to apply to

# visibilities briggs will use robust=0.5
mask = [] # Cleanbox(es), mask

# image(s), region(s), or a level
outertaper = [] # uv-taper on outer baselines in uv-plane
stokes = ’I’ # Stokes params to image
featherimage = ’’ # image (e.g. total power) to
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# feather with new image

analyze = True # (only first 6 selected
# outputs will be displayed)

showuv = True # display uv coverage
showpsf = True # display synthesized (dirty)

# beam (ignored in single dish simulation)
showmodel = True # display sky model at original resolution
showconvolved = False # display sky model convolved with output beam
showclean = True # display the synthesized image
showresidual = False # display the clean residual

# image (ignored in single dish simulation)
showdifference = True # display difference between

# output cleaned image and input
# model sky image convolved
# with output clean beam

showfidelity = True # display fidelity

graphics = ’both’ # display graphics at each
# stage to [screen|file|both|none]

verbose = False
overwrite = True # overwrite files starting with $project

This task analyzes one or more measurement sets - interferometric and/or single dish. The output
is a synthesized image created from those visibilities, a difference image between the synthesized
image and your sky model convolved with the output synthesized beam, and a fidelity image. (see
ALMA memo 398 for description of fidelity, which is approximately the output image divided by
the difference between input and output)

9.2 Simulating ALMA observations with simalma

The task simalma simulates an ALMA observation by ALMA 12-m, ACA-7m and total power
arrays. It takes an input model image or a list of components, plus configurations of ALMA
antennas (locations and sizes), and simulates a particular ALMA observation (specified by mosaic
setup and observing cycles and times). The outputs are measurement sets. The task optionally
generates synthesized images from the measurement sets as simanalyze does.

Technically speaking, simalma internally calls simobserve and simanalyze as many times as nec-
essary to simulate and analyze an ALMA observation. Some of the simulation (simobserve) and
imaging (simanalyze) parameters are automatically set to values typical of ALMA observations in
simalma (see § 9.2.1 for more details). Thus, it has a simpler task interface compared to simobserve
plus simanalyze at the cost of limited flexibility. If you want to have more control on simulation
setup, it is available by manually running simobserve and simanalyze multiple times or by using
sm tools.

The simalma inputs are:



CHAPTER 9. SIMULATION 463

project = ’’ # root prefix for output file names
project = ’sim’ # root prefix for output file names
dryrun = False # dryrun=True will only

# produce the informative report, not run
# simobserve/analyze

skymodel = ’’ # model image to observe
inbright = ’’ # scale surface brightness of

# brightest pixel e.g. "1.2Jy/pixel"
indirection = ’’ # set new direction

# e.g. "J2000 19h00m00 -40d00m00"
incell = ’’ # set new cell/pixel size e.g. "0.1arcsec"
incenter = ’’ # set new frequency of center

# channel e.g. "89GHz" (required even
# for 2D model)

inwidth = ’’ # set new channel width
# e.g. "10MHz" (required even for 2D model)

complist = ’’ # componentlist to observe
compwidth = ’8GHz’ # bandwidth of components

setpointings = True
integration = ’10s’ # integration (sampling) time
direction = ’’ # "J2000 19h00m00 -40d00m00"

# or "" to center on model
mapsize = [’’, ’’] # angular size of map or "" to cover model

graphics = ’both’ # display graphics at each
# stage to [screen|file|both|none]

verbose = False
overwrite = False # overwrite files starting with $project

The task simalma is designed as a task that is invoked only once for a simulation setup. It always
sets up skymodel and pointings. That means that simalma is not supposed to be run multiple times
for a project, unlike simobserve and simanalyze. The task simalma may ignore or overwrite the
old results when it is run more than once with the same project name.

There are options in simalma to simulate observation of ACA 7-m and total power arrays, to apply
thermal noise, and/or to generate images from simulated measurement sets. One inputs a vector
of configurations, and a corresponding vector of totaltimes to observe each component. Thermal
noise is added to visibilities when pwv > 0. The ATM atmospheric model is constructed from the
characteristics of the ALMA site and a user defined Precipitable Water Vapour (pwv) value. Set
pwv = 0 to omit the thermal noise. Finally, when image = True, synthesized images are generated
from the simulated measurement sets.

9.2.1 Implementation details

As mentioned in the previous section, simalma automatically sets some of the simulation and
imaging parameters to values typical of ALMA observations. The implementations of antenna
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configurations, pointings, integration time, and imaging in CASA 4.4.0 are described in this section.

Antenna Configuration:

The configurations of the ALMA 12-m and 7-m arrays are defined by the antennalist parameter,
which can be a vector. Each element of the vector can be either the name of an antenna configuration
file or a desired resolution, e.g., ‘alma;cycle1;5arcsec’. Some examples:

• antennalist = [’alma.cycle2.5.cfg’,’aca.cycle2.i.cfg’]; totaltime = [’20min’,’2h’]’:
Will observe the 12-m array in configuration C32-5 for 20 minutes and the ACA 7-m array
for 2 hours.

• antennalist = [’alma;cycle2;0.5arcsec’,’aca.i.cfg’]; totaltime = [’20min’,’2h’]’:
Will observe the 12-m array in whatever cycle 2 configuration yields a zenith synthesized beam
as close as possible to 0.5 arcsec (at the center frequency of your skymodel) for 20 minutes
and the ACA 7-m array for 2 hours.

• antennalist = [’alma.cycle1.2.cfg’,’aca.cycle2.i.cfg’]; totaltime = ’20min’: Will
observe the 12-m array in cycle 1 configuration for 20 minutes and the ACA 7-m array for the
default of 2×(12-m time) = 1h20min. This parameter setting will also generate a warning
that the user is combining configurations from different ALMA Cycles (but the simulation
will run despite that).

Total power can either be included along with interferometric configurations e.g. antennalist
= [’alma.cycle1.2.cfg’,’aca.cycle2.i.cfg’,’alma.tp.cfg’], or by using the tpnant and
tptime parameters. The latter is preferred since it allows greater control (in particular the number
of total power antennas to use – if more than one is used, multiple total power observations will be
generated and combined in imaging).

Field Setup:

There are two ways to setup pointings, i.e., Rectangle Setup and Multi-Pointing.

In the Rectangle Setups, pointings are automatically calculated from the pointing centre (direction)
and the map size. A rectangular map region is covered by a hexagonal grid (maptype = ‘alma’)
with Nyquist sampling, i.e., 0.48 PB spacing (where PB ≡ 1.2 λ/D), in both ALMA 12-m and
ACA 7-m array simulations. A slightly larger area is mapped in ACA total power simulations
for later combination with interferometer visibilities. The map area is extended by 1 PB in each
direction and covered by a lattice grid with 0.225 PB spacing.

In Multi-Pointing, a list of pointings is defined in the direction parameter or read from a file (when
setpointings = False). The ALMA 12-m and ACA 7-m arrays observe the specified directions.
The ACA total power simulations map either (1) square regions of 2 PB extent centred at each of
the pointings, or (2) a rectangle region that covers all the pointings. Either (1) or (2), whichever
can be done with the smaller number of points, is selected. The pointing spacing in total power
simulations is, again, 0.225 PB in lattice grids.

It is advisable that for Total Power Simulations, the field is chosen sufficiently large, maybe padding
at least 1-2 primary beams on each side.
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Integration time:

The total observation time of each component or configuration is defined by the totaltime param-
eter as noted above. A scalar will trigger use of the Cycle 2 default time multipliers, 1:0.5:2:4 for
the first 12-m configuration, any additional 12-m configurations, any 7-m configuration, and any
total power observation.

In general, the integration time (dump interval) of simulations is defined by the integration pa-
rameter with an exception. Since the ACA total power array always observes larger areas compared
to the ALMA 12-m and ACA 7-m arrays, it is possible that the ACA total power array cannot
cover all pointings in the given observation time. In such a case, the integration time in the total
power simulation is scaled so that the all pointings are observed at least once in its observation
time, i.e., integration TP = tptime / (the number of total power pointings).

Imaging and combination of ALMA with ACA:

The CLEAN algorithm is used in simalma to generate images from visibilities. The visibilities are
weighted to UV-plane using Briggs weighting.

When ACA observations are simulated, visibilities of ACA 7-m are weighted by the relative sen-
sitivities to ALMA 12-m visibilities, and both data sets are concatenated before imaging. The
relative weight of ACA 7-m visibilities is defined in proportion to the difference of beam area, i.e.,
(7/12)2 = 0.34. This is because simalma uses a bandwidth and an integration time common to
both ALMA 12-m and ACA 7-m simulations.

The interferometer and total power images are combined using feather task when total power
observations are included. The total power image is scaled by the interferometer primary beam
coverage before combination. The final image product is the combined image corrected for the
interferometer primary beam coverage. The output image of the feather task is divided by the
interferometer primary beam coverage in the final step.
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Parallel Processing in CASA

Starting in CASA 4.5.0, a parallelized execution of a full data analysis from data import to imaging
is possible using a new infrastructure that is based on the Message Passing Interface (MPI). Briefly,
MPI is a standard which addresses primarily the message-passing parallel programming model in
a practical, portable, efficient and flexible way.

10.1 The CASA parallelization scheme

In order to run one analysis on multiple processors, one can parallelize the work by dividing the data
into several parts (“partitioning”) and then run a CASA instance on each part or have non-trivially
parallelized algorithms, which make use of several processors within a single CASA instance. Non-
trivial parallelization is presently only implemented in certain sections of the imaging code of CASA
based on OpenMP.

All other parallelization is achieved by partitioning the MeasurementSet (MS) of interest using the
task partition or at import time using importasdm. The resulting partitioned MS is called a
“Multi-MS” or “MMS”. Logically, an MMS has the same structure as an MS but internally it is
a group of several MSs which are virtually concatenated. Virtual concatenation of several MSs or
MMSs into an MMS can also be achieved via task virtualconcat.

Due to the virtual concatenation, the main table of an MMS appears like the union of the main
tables of all the member MSs such that when the MMS is accessed like a normal MS, processing can
proceed sequentially as usual. Each member MS or “Sub-MS” of an MMS, however, is at the same
time a valid MS on its own and can be processed as such. This is what happens when the MMS
is accessed by a parallelized task. The partitioning of the MMS is recognized and work is started
in parallel on the separate Sub-MSs, provided that the user has started CASA with mpicasa. See
how to start CASA in parallel in § 10.3.1.

The internal structure of an MMS can be inspected using the task listpartition. See § 2.2.8.
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10.2 Multi-MS creation

10.2.1 Partition

The partition task is the main task to create a “Multi-MS”. It takes an input Measurement Set
and creates an output “Multi-MS” based on the data selection parameters.

The inputs to partition are:

# partition :: Task to produce Multi-MSs using parallelism
vis = ’’ # Name of input measurement set
outputvis = ’’ # Name of output measurement set
createmms = True # Should this create a multi-MS output

separationaxis = ’auto’ # Axis to do parallelization across(scan, spw, auto)
numsubms = ’auto’ # The number of SubMSs to create (auto or any number)
flagbackup = True # Create a backup of the FLAG column in the MMS.

datacolumn = ’all’ # Which data column(s) to process.
field = ’’ # Select field using ID(s) or name(s).
spw = ’’ # Select spectral window/channels.
scan = ’’ # Select data by scan numbers.
antenna = ’’ # Select data based on antenna/baseline.
correlation = ’’ # Correlation: ’’ ==> all, correlation=’XX,YY’.
timerange = ’’ # Select data by time range.
intent = ’’ # Select data by scan intent.
array = ’’ # Select (sub)array(s) by array ID number.
uvrange = ’’ # Select data by baseline length.
observation = ’’ # Select by observation ID(s).
feed = ’’ # Multi-feed numbers: Not yet implemented.

10.2.1.1 The createmms parameter

The keyword createmms is by default set to True to create an output MMS. It contains three
sub-parameters, separationaxis, numsubms and flagbackup. Partition accepts three axis to do
separation across: ’auto’, ’scan’ or ’spw’. The default separationaxis=’auto’ will first separate
the MS in spws, then in scans. It tries to balance the spw and scan content in each Sub-MS also
taking into account the available fields.

The user may force the number of “Sub-MSs” in the output MMS by setting the sub-parameter
numsubms. The default ’auto’ is to create as many “Sub-MSs” as the number of engines used
when starting CASA, in an optimized way. Details on how to set the number of engines using
mpicasa are given in § 10.3.2.

The flagbackup sub-parameter will create a backup of the FLAG column and save it to the
.flagversions file.
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10.2.2 Importasdm

Task partition has been embedded in task importasdm so that at import time the user can already
create a MMS. Set the parameter createmms to True and the output of importasdm will be a MMS
created with default parameters. Sub-parameters separationaxis and numsubms are also available
in importasdm. From this point on in the data reduction chain, tasks that have been parallelized
will run automatically in parallel when they see an MMS and tasks that are not parallelized will
work in the same way as they normally do on a MS.

10.3 Parallelization control

10.3.1 Requirements

The following requirements are necessary for all the nodes to be included in the cluster:

• Password-less ssh access from the client (user) machine into all the hosts to be included in
the cluster.

NOTE: This is not necessary when using only localhost, i.e. if the cluster is deployed only
on the machine where casapy is running.

• All the input files must be located in a shared file-system, accessible from all the nodes
comprising the cluster, and mounted in the same path of the file-system.

• Mirrored CASA installation w.r.t. the CASA installation in the client (user) machine,
so that the following environmental variables are pointing to valid installations: PATH,
LD LIBRARY PATH, IPYTHONDIR, CASAPATH, CASAARCH, PYTHONHOME, CASAPY PYTHONDIR,
PGPLOT DEV, PGPLOT DIR, PGPLOT FONT.

10.3.2 Configuration and Start-Up

The main library used in CASA (4.4+) to achieve parallelization is the Message Passing Interface
(MPI). MPI is already included in the CASA distribution so that users do not need to install it.
The CASA distribution comes with a wrapper of the MPI executor, which is called mpicasa. This
wrapper does several settings behind the scenes in order to properly configure the environment to
run CASA in parallel.

The “cluster”, i.e. the collection of CASA instances which will run the jobs from parallelized tasks,
is set up via mpicasa. Mpicasa only needs to know how many nodes will be used in the processing.
The simplest example is to run CASA in parallel on the localhost using the available engines in
the machine. A typical example would be a desktop with 16 engines. If you want to use half of
the engines to run CASA in parallel, give this information to mpicasa and call CASA normally.
Example:

mpicasa -n <number_of_engines> path_to_casa/casa <casa_options>
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Where:

1. mpicasa: Wrapper around mpirun, which can be found in the casa installation directory.
Example: /home/user/casa-release-4.5.0-el6/

2. -n: MPI option to get the number of engines to use in the processing.

3. number of engines: The number of engines to be used in the localhost machine.

NOTE: MPI uses one engine as the MPI Client, which is where the user will see messages
printed in the terminal or in the logger. The other engines are used for the parallel work and
are called MPI Servers. Because of this, usually we give number of engines + 1.

4. casa: Full path to the CASA executable, casa or casapy.

5. casa options: CASA options such as: -c, –nogui, –log2term, etc.

It is also possible to use other nodes, which can form a “cluster”. Following the requirements from
§ 10.3.1, replace the “-n” option of mpicasa with a “-hostfile host file”, as shown below:

mpicasa -hostfile <host_file> path_to_casa/casa <casa_options>

Where:

1. host file: It is a text file containing the name of the nodes forming the cluster and the
number of engines to use in each one of the nodes.

Example:

orion slots=5
antares slots=4
sirius slots=4

The above configuration file will set up a cluster comprised of three nodes (orion, antares and
sirius), deploying the engines per node as follows: At host “orion” up to 5 engines will be deployed
(including the MPI Client). If the processing requires more engines, it will take them from “antares”
and once all the 4 engines in “antares” are used, it will use up to 4 engines in “sirius”.

To get help do:

mpicasa --help
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10.3.3 Examples of running CASA in parallel

The following is a list of typical examples on how to run CASA in parallel. Once CASA is started
with mpicasa and the “Multi-MS” is created, there is no difference between running CASA in serial
and in parallel. You can find an example of a parallelized analysis in the following regression script
located in a sub-directory of your CASA distribution.

alma-m100-analysis-hpc-regression.py

Example 1. Run the above regression script in parallel, using 8 engines in parallel and 1 engine as
the MPI Client.

mpicasa -n 9 path_to_casa/casa --nogui --log2term -c alma-m100-analysis-hpc-regression.py

Example 2. Start CASA as described in §10.3.2, for an interactive session, using 5 engines on the
local machine.

mpicasa -n 5 path_to_casa/casa --nogui --log2term

Run importasdm to create a “Multi-MS” and save the online flags to a file. The output will be
automatically named uid A002 X888a.ms, which is an MMS partitioned across spw and scan. The
online flags are saved in the file uid A002 X888a cmd.txt.

CASA <2>: importasdm(’uid__A002_X888a’, createmms=True, savecmds=True)

List the contents of the MMS using listobs. In order to see how the MMS is partitioned, use
listpartition.

CASA <3>: listobs(’uid__A002_X888a.ms’, listfile=’uid__A002_X888a.listobs’)
CASA <4>: listpartition(’uid__A002_X888a.ms’)

Apply the online flags produced by importasdm, using flagdata in list mode. Flagdata is par-
allelized so that each engine will work on a separated “Sub-MS” to apply the flags from the
uid A002 X888a cmd.txt file. You will see messages in the terminal (also saved in the casapy-
###.log file), containing the strings MPIServer-1, MPIServer-2, etc., for all the engines that
process in parallel.

CASA <5>: flagdata(’uid__A002_X888a.ms’, mode=’list’, inpfile=’uid__A002_X888a_cmd.txt’)

Flag auto-correlations and the high Tsys antenna also using list mode for optimization.

CASA <6>: flagdata(’uid__A002_X888a.ms’, mode=’list’,
inpfile=["autocorr=True","antenna=’DA62’"])
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Create all calibration tables in the same way as for a normal MS. Task gaincal is not parallelized,
therefore it will work on the MMS as if it was a normal MS.

CASA <7>: gaincal(’uid__A002_X888a.ms’, caltable=’cal-delay_uid__A002_X888a.K’,
field=’*Phase*’,spw=’1,3,5,7’, solint=’inf’,combine=’scan’,
refant=therefant, gaintable=’cal-antpos_uid__A002_X888a’,
gaintype=’K’))

Apply all the calibrations to the MMS. Applycal will work in parallel on each “Sub-MS” using the
available engines.

CASA <8>: applycal(vis=’uid__A002_X888a.ms’, field=’0’, spw=’9,11,13,15’,
gaintable=[’uid__A002_X888a.tsys’,

’uid__A002_X888a.wvr.smooth’,
’uid__A002_X888a.antpos’],

gainfield=[’0’, ’’, ’’], interp=’linear,linear’,
spwmap=[tsysmap,[],[]], calwt=True, flagbackup=False)

Split out science spectral windows. The difference here is that we use split2 instead of split.
For the 4.5 release some of the parallelized tasks have an index 2 such as split2, cvel2 and
hanningsmooth2. Starting in version 4.6 these tasks will be renamed to split, cvel and hanningmooth,
respectively so that no other change will be needed when running a script in parallel. Tasks split2,
cvel2 and hannigsmooth2 will recognize if the input is an MMS and will process it in parallel,
creating also an output MMS.

CASA <9>: split2(vis=’uid__A002_X888a.ms’, outputvis=’uid__A002_X888a.ms.split’,
datacolumn=’corrected’, spw=’9,11,13,15’, keepflags=True)

Run clean or tclean normally to create your images.
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Obtaining, Installing, and
Customizing CASA

A.1 Installation On Linux

To install CASA for Linux, we have packaged up a binary distribution of CASA which is available
as a downloadable tar file. We believe this binary distribution works with most Linux distributions.
While the binary distribution is the only supported public distribution, most CASA developers use
RPMs for many third-party packages installed with yum to do development on RedHat Enterprise
Linux. Installing the developer RPMs requires root access and we only provide developer support
for organizations which have a cooperative agreement to participate in the development of CASA.
We are currently working on the development of a distribution for developers similar to our standard
binary distribution, but it is not yet ready for testing.

A.1.1 Installation

You do not have to have root or sudo permission, you can easily install CASA, delete it, move it,
and it works for many versions of Linux. The one caveat is that CASA on Linux currently will not
run if the Security-Enhanced Linux option of the linux operating system is set to enforcing. For
the non-root install to work. SElinux must be set to disabled or permissive (in /etc/selinux/config)
or you must run (as root):

setsebool -P allow_execheap=1

Otherwise, you will encounter errors like:

casapy: error while loading shared libraries:
/opt/casa/casapy-20.0.5653-001/lib/liblapack.so.3.1.1:
cannot restore segment prot after reloc: Permission denied
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The non-root installation is thought to work on a wide variety of linux platforms, see Sect. 1.2 for
the latest supported OSs.

A.1.1.1 Using more than one Linux version of CASA

Up to CASA 3.3.0, CASA .rpm files prohibited installing more than one CASA release at a time.
Starting with CASA 3.4.0, CASA .rpm files allow previously installed CASA releases to remain
installed.

To start a specific CASA version, type

casapy --release <VERSION>

or

casapy -r <VERSION>

where ¡VERSION¿ is a placeholder for the CASA version to be invoked, e.g. 3.3.0.

The programs asdm2MS, casabrowser, casalogger, casaplotms, casapy, casapyinfo, and casaviewer
all take the two new command line options: -r and --release. These options allow users to select
a CASA program to run from the installed CASA releases.

A.1.2 Unsupported platforms

The non-root install may work on other platforms not listed, please let us know if you find that
this binary distribution of CASA works on other linux platforms. Also note, that the plotting tasks
like plotxy and plotcal are the ones that typically give problems for new platforms, so a check of
these after attempting an unsupported platform installation is advisable.

A.1.3 Download & Unpack

You can download the distribution tar file from

http://casa.nrao.edu/casa_obtaining.shtml

This directory will contain two tar files one will be the 32-bit version of CASA and the other will
be the 64-bit version of CASA. The file name of the 64-bit version ends with -64b.tar.gz. After
downloading the appropriate tar file, untar it with

tar -zxf casapy-*.tar.gz

This will extract a directory with the same basename as the tar file. Change to that directory and
add it to your path with, for example,

http://casa.nrao.edu/casa_obtaining.shtml
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PATH=‘pwd‘:\$PATH.

After that, you should be able to start CASA by running

casapy

A.2 Installation on Mac OS

CASA for Macintosh is distributed as self-contained Macintosh application. For installation pur-
poses, this means that you can install CASA by simply dragging the application to your hard disk.
It should be as easy as copying a file.

1. Download the CASA disk image for your OS version from our download site http://casa.
nrao.edu/casa_obtaining.shtml

2. Open the disk image file (if your browser does not do so automatically).

3. Drag the CASA application to the Applications folder of your hard disk.

4. Eject the CASA disk image.

5. Double-click the CASA application to run it for the first time. This ensures everything is
properly updated if you had installed a previous version.

6. Optional: Create symbolic links to the CASA version and its executables (Administrator
privileges are required), which will allow you to run casapy, casaviewer, casaplotms, etc.
from any terminal command line. To do so, run !create-symlinks from a CASA prompt.
(In CASA 4.2.2 and earlier you will be prompted to update the symlinks on double clicking
the Application)

You may need to unload the dbus before the copy will work

launchctl remove org.freedesktop.dbus-session
launchctl remove org.freedesktop.dbus-system

Versions after 12115 are 64bit only and will not work on older mac intel machines The first time
you launch the CASA application, it will prompt you to set up an alias to the casapy command.
You will be taken through the process of creating several casapy symbolic links, it is advisable to
do so as this will allow you to run casapy from a terminal window by typing casapy. Additionally,
the viewer (casaviewer), table browser (casabrowser), plotms (casaplotms), and buildmytasks will
also be available via the command line. Creating the symbolic links will require that you have
administrator privileges.

http://casa.nrao.edu/casa_obtaining.shtml
http://casa.nrao.edu/casa_obtaining.shtml
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A.2.0.1 Using more than one Mac version of CASA

By dragging the CASA.app into the Applications folder, any previous version of CASA will be
replaced. If one would like to keep older versions, one can simply rename them, e.g., to CASA-
3.3.0.app. Double clicking any of the CASA*.app applications will prompt to update the symlinks
to that specific CASA version. So any startup of casapy, casaviewer, casaplotms will point
to that version. If one decides to switch to a different version, just double click the respective
CASA*.app and follow the instructions to update the symlinks.

A.3 Startup

in a terminal type

casapy

and the world of CASA will open its doors for you.

There are a number of options to casapy (see casapy --help): Options are:

--rcdir directory
--logfile logfilename specify the name of the log

file if other than casapy-DATE.log
--maclogger will use the Mac Console program for the logger
--log2term output the logger text in the terminal
--nologger run without launching the logger
--nologfile does not create a logfile
--nogui will not open the logger GUI
--colors=[NoColor|Linux|LightBG] selects color theme for prompt task inputs
--noipython does not launch ipython

(useful when combined with the -c option)
--release <VERSION> launches CASA version

<VERSION> when installed as Linux rpm
-r <VERSION> alias for --release
-c filename-or-expression execute a CASA python script from the command line
--help print this text and exit

E.g. you can execute a CASA script script.py directly with the command

casapy -c script.py

You can also launch the plotms and viewer GUIs separately without starting CASA itself. To do
so, type:

casaplotms
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to launch plotms and

casaviewer

for the viewer.

A.4 Startup Customization

There are two initialization files that are loaded upon startup. The first is loaded very early in the
startup of casapy:

~/.casa/prelude.py

This allows for limited customization of the casapy environment, e.g. setting the path to an
alternate logger. The second startup file should be used for most purposes:

~/.casa/init.py

This file is loaded just before the casapy prompt is display. This is the place where users can load
their own python modules and casa tasks. For example /.casa/init.py might contain:

import os
sys.path.insert(1,os.environ[’HOME’]+os.sep+"python")
import analysisUtils as aU

and analysisUtils.py might contain:

import numpy as np
from mpfit import mpfit
from pylab import *
from numpy.fft import fft
from scipy import polyfit
import taskinit as ti
from importasdm import importasdm

Many options can also be set in the file

~/.casarc

E.g.
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#
# Set these so that bug(), ask(), etc. know who you are
#
userinfo.name: Sheila User
userinfo.email: suser@nrao.edu
userinfo.org: NRAO

#NOTE: Fill this value in as appropriate - the units are MB
#It is important that you not set this value larger than your actual
#physical memory
#system.resources.memory: 2000
#help.popup.type: mb3long

#catalog
catalog.gui.auto: T
catalog.confirm: T
catalog.view.PostScript: ghostview
catalog.edit.ascii: xterm -e vi

#logger
#logger.file: ./aips++.log
#logger.height: 12
logger.default: screen

#progress meter GUI pop-ups - disable
progress.show: F

#toolmanager - disable
toolmanager.gui.auto: F

#Use current working directory for cache/scratch files
user.aipsdir: .
user.cache: .
user.directories.work: .
user.initfiles: almainit.g

#viewer
display.axislabels: on
display.colormaps.defaultcolormap: Hot Metal 1

#development

#ms.async: ddd ./ms %s
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A.5 Updating the data repository

Each CASA release for linux comes with an up to date data repository (containing information
such as observatory coordinates, calibrator models, leap second tables, etc.). However, the files
that make up the data repository are updated regularly. Therefore, if you install (or have installed)
a release that is a few weeks to a month old, it makes sense to update the data repository because
it is very easy.

To do so, issue the following command from the CASA prompt:

CASA <2>: !update-data
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Python and CASA

CASA uses Python, IPython and matplotlib within the package. IPython is an enhanced, inter-
active shell to Python which provides many features for efficient command line interaction, while
matplotlib is a Python 2-D plotting library for publication quality figures in different hardcopy
formats.

From www.python.org: ”Python is an interpreted, interactive, object-oriented programming lan-
guage”. Python is used as the underlying command line interface/scripting language to CASA.
Thus, CASA inherits the features and the annoyances of Python. For example, since Python is
inherently 0-based in its indexing of arrays, vectors, etc, CASA is also 0-based; any Index inputs
(e.g., start (for start channel), fieldIndex, antennaID, etc) will start with 0. Another example is
that indenting of lines means something to Python, of which users will have to be aware.

Currently, CASA uses python 2.6 (2.5 for the Mac OS 10.5 version). Some key links to python are:

• http://python.org – Main Python page

• https://docs.python.org/2/reference/ – Python Reference

• https://docs.python.org/2/tutorial/ – Python Tutorial

• http://ipython.scipy.org – IPython page

• http://matplotlib.sourceforge.net – matplotlib page

Each of the features of these components behave in the standard way within CASA. In the following
sections, we outline the key elements for analysis interactions; see the Python references and the
IPython page for the full suite of functionality.

B.1 Python Packages

The following python packages are included in CASA: ipython, nose, pyfits, pytz, dbus, numpy, sci-
entific python, twisted, zope.interface, foolscap, matplotlib, scipy. For their version numbers, please
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check the CASA page https://safe.nrao.edu/wiki/bin/view/Software/CasaDevelopmentDependencies.

B.2 Automatic parentheses

Automatic parenthesis is enabled for calling functions with argument lists; this feature is intended
to allow less typing for common situations. IPython will display the interpretation of the line,
beneath the one typed, as indicated by the ’-------->’. Default behavior in CASA is to have
automatic parenthesis enabled.

B.3 Indentation

Python pays attention to indentation of lines in scripts or when you enter them interactively. It
uses indentation to determine the level of nesting in loops. Be careful when cutting and pasting,
if you get the wrong indentation, then unpredictable things can happen (usually it just gives an
error).

A blank line can be used to return the indentation to a previous level. For example, expanded pa-
rameters in tasks cause indentation in subsequent lines in the interface. For example, the following
snippet of inputs from clean can be cut and pasted without error due to the blank line after the
indented parameters:

mode = ’channel’ # Type of selection
nchan = -1 # Number of channels to select
start = 0 # Start channel
step = 1 # Increment between channels/velocity
width = 1 # Channel width

alg = ’clark’ # Algorithm to use

If the blank line were not there, an error would result if you pasted this at the casapy prompt.

B.4 Lists and Ranges

Sometimes, you need to give a task a list of indices. For example, some tasks and tools expect a
comma-separated Python list, e.g.

scanlist = [241, 242, 243, 244, 245, 246]

You can use the Python range function to generate a list of consecutive numbers, e.g.

scanlist = range(241,247)

giving the same list as above, e.g.

https://safe.nrao.edu/wiki/bin/view/Software/CasaDevelopmentDependencies
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CASA <1>: scanlist=range(241,247)
CASA <2>: print scanlist
[241, 242, 243, 244, 245, 246]

Note that range starts from the first limit and goes to one below the second limit (Python is
0-based, and range is designed to work in loop functions). If only a single limit is given, the first
limit is treated as 0, and the one given is used as the second, e.g.

CASA <3>: iflist=range(4)
CASA <4>: print iflist
[0, 1, 2, 3]

You can also combine multiple ranges by summing lists

CASA <5>: scanlist=range(241,247) + range(251,255)
CASA <6>: print scanlist
[241, 242, 243, 244, 245, 246, 251, 252, 253, 254]

B.5 Dictionaries

Python dictionaries are data structures that contain key:value pairs, sort of like a hash array.
These are useful to store mini-databases of things. In CASA, the parameter values are kept in a
dictionary behind the scenes.

To initialize a dictionary, say we call it mydict, for use:

CASA <7>: mydict = {}

To add members:

CASA <8>: mydict[’source’] = ’0137+331’
CASA <9>: mydict[’flux’] = 5.4

To see its contents:

CASA <10>: mydict
Out[10]: {’flux’: 5.4000000000000004, ’source’: ’0137+331’}

CASA <11>: print mydict
{’source’: ’0137+331’, ’flux’: 5.4000000000000004}

To access a specific entry:

CASA <12>: print mydict[’flux’]
5.4
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B.5.1 Saving and Reading Dictionaries

To save a simple dictionary to a file:

CASA <13>: dictfile = open(’mydictfile.py’,’w’)
CASA <14>: print >>dictfile,"mydict = ",mydict
CASA <15>: dictfile.close()
CASA <16>: !cat mydictfile.py
IPython system call: cat mydictfile.py
mydict = {’source’: ’0137+331’, ’flux’: 5.4000000000000004}

CASA <17>: mydict = {}
CASA <18>: run mydictfile.py
CASA <19>: mydict
Out[19]: {’flux’: 5.4000000000000004, ’source’: ’0137+331’}

More complex dictionaries, like those produced by imstat that contain NumPy arrays, require a
different approach to save. The pickle module lets you save general data structures from Python.
For example:

CASA <20>: import pickle
CASA <21>: xstat
Out[21]:

{’blc’: array([0, 0, 0, 0]),
’blcf’: ’15:24:08.404, +04.31.59.181, I, 1.41281e+09Hz’,
’flux’: array([ 4.0795296]),
’max’: array([ 0.05235516]),
’maxpos’: array([134, 134, 0, 38]),
’maxposf’: ’15:21:53.976, +05.05.29.998, I, 1.41374e+09Hz’,
’mean’: array([ 1.60097857e-05]),
’medabsdevmed’: array([ 0.00127436]),
’median’: array([ -1.17422514e-05]),
’min’: array([-0.0104834]),
’minpos’: array([160, 1, 0, 30]),
’minposf’: ’15:21:27.899, +04.32.14.923, I, 1.41354e+09Hz’,
’npts’: array([ 3014656.]),
’quartile’: array([ 0.00254881]),
’rms’: array([ 0.00202226]),
’sigma’: array([ 0.0020222]),
’sum’: array([ 48.26399646]),
’sumsq’: array([ 12.32857318]),
’trc’: array([255, 255, 0, 45]),
’trcf’: ’15:19:52.390, +05.35.44.246, I, 1.41391e+09Hz’}

CASA <22>: mydict
Out[22]: {’flux’: 5.4000000000000004, ’source’: ’0137+331’}

CASA <23>: pickfile = ’myxstat.pickle’
CASA <24>: f = open(pickfile,’w’)
CASA <25>: p = pickle.Pickler(f)
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CASA <26>: p.dump(xstat)
CASA <27>: p.dump(mydict)
CASA <28>: f.close()

The dictionaries are now saved in pickle file myxstat.pickle in the current directory.

To retrieve:

CASA <29>: xstat2 = {}
CASA <30>: mydict2 = {}
CASA <31>: f = open(pickfile)
CASA <32>: u = pickle.Unpickler(f)
CASA <33>: xstat2 = u.load()
CASA <34>: mydict2 = u.load()
CASA <35>: f.close()
CASA <36>: xstat2
Out[36]:

{’blc’: array([0, 0, 0, 0]),
’blcf’: ’15:24:08.404, +04.31.59.181, I, 1.41281e+09Hz’,
’flux’: array([ 4.0795296]),
’max’: array([ 0.05235516]),
’maxpos’: array([134, 134, 0, 38]),
’maxposf’: ’15:21:53.976, +05.05.29.998, I, 1.41374e+09Hz’,
’mean’: array([ 1.60097857e-05]),
’medabsdevmed’: array([ 0.00127436]),
’median’: array([ -1.17422514e-05]),
’min’: array([-0.0104834]),
’minpos’: array([160, 1, 0, 30]),
’minposf’: ’15:21:27.899, +04.32.14.923, I, 1.41354e+09Hz’,
’npts’: array([ 3014656.]),
’quartile’: array([ 0.00254881]),
’rms’: array([ 0.00202226]),
’sigma’: array([ 0.0020222]),
’sum’: array([ 48.26399646]),
’sumsq’: array([ 12.32857318]),
’trc’: array([255, 255, 0, 45]),
’trcf’: ’15:19:52.390, +05.35.44.246, I, 1.41391e+09Hz’}

CASA <37>: mydict2
Out[37]: {’flux’: 5.4000000000000004, ’source’: ’0137+331’}

Thus, you can make scripts that save information and use it later, like for regressions.

Note that these examples use Python file-handling and IO, as well as importing modules such as
pickle. See your friendly Python reference for more on this kind of stuff. It’s fairly obvious how
it works.
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B.6 Control Flow: Conditionals, Loops, and Exceptions

There are a number of ways to control the flow of execution in Python, including conditionals (if),
loops (for and while), and exceptions (try). We will discuss the first two below.

B.6.1 Conditionals

The standard if block handles conditional execution or branches in Python:

if <expression>:
<statements>

elif <expression>:
<statements>

elif <expression>:
<statements>

...
else:

<statements>

Insert a pass statement if you want no action to be taken for a particular clause. The <expression>
should reduce down to True or False.

For example,

if ( importmode == ’vla’ ):
# Import the data from VLA Export to MS
default(’importvla’)
print "Use importvla to read VLA Export and make an MS"

archivefiles = datafile
vis = msfile
bandname = exportband
autocorr = False
antnamescheme = ’new’
project = exportproject

importvla()
elif ( importmode == ’fits’ ):

# Import the data from VLA Export to MS
default(’importuvfits’)
print "Use importuvfits to read UVFITS and make an MS"

fitsfile = datafile
vis = msfile

importuvfits()
else:
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# Copy from msfile
print "Copying "+datafile+" to "+msfile
os.system(’cp -r ’+datafile+’ ’+msfile)
vis = msfile

chooses branches based on the value of the importmode Python variable (set previously in script).

B.6.2 Loops

The for loop

for iter in seq:
<statements>

iterates over elements of a sequence seq, assigning each in turn to iter. The sequence is usually a
list of values.

For example,

splitms = ’polcal_20080224.cband.all.split.ms’
srclist = [’0137+331’,’2136+006’,’2202+422’,’2253+161’,’0319+415’,’0359+509’]
spwlist = [’0’,’1’]

for src in srclist:

for spwid in spwlist:

imname = splitms + ’.’ + src + ’.’ + spwid + ’.clean’
clean(vis=splitms,field=src,spw=spwid,imagename=imname,

stokes=’IQUV’,psfmode=’hogbom’,imagermode=’csclean’,
imsize=[288,288],cell=[0.4,0.4],niter=1000,
threshold=1.3,mask=[134,134,154,154])

# Done with spw

# Done with sources

As usual, blocks are closed by blank lines of the previous indentation level.

You can use the range (§ B.4) Python function to generate a numerical loop:

vis = ’polcal_20080224.cband.all.ms’
for i in range(0,6):

fld = str(i)
plotxy(vis,field=fld,xaxis=’uvdist’,yaxis=’amp’)

# Done with fields [0, 1, 2, 3, 4, 5]
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There is also a while loop construct

while <expression>:
<statements>

which executes the statement block while the <expression> is True. The while loop can also take
an else block.

For example,

# Do an explicit set of clean iterations down to a limit
prevrms = 1.e10
while rms > 0.001 :

clean(vis=splitms,field=src,spw=spwid,imagename=imname,
stokes=’IQUV’,psfmode=’hogbom’,imagermode=’csclean’,
imsize=[288,288],cell=[0.4,0.4],niter=200,
threshold=1.3,mask=[134,134,154,154])

offstat=imstat(imname+’.residual’,box=’224,224,284,284’)
rms=offstat[’sigma’][0]
if rms > prevrms:

break # the rms has increased, stop

prevrms = rms

# Clean until the off-source rms residual, reaches 0.001 Jy

Note that you can exit a loop using the break statement, as we have here when the rms increases.

B.7 System shell access

For scripts, the os.system methods are the preferred way to access system shell commands (see
§ B.7.1).

In interactive mode, any input line beginning with a ’ !’ character is passed verbatim (minus the ’ !’)
to the underlying operating system. Several common commands (ls, pwd, less) may be executed
with or without the ’!’. Note that the cd command must be executed without the ’!’, and the
cp command must use ’!’ as there is a conflict with the cp tool in casapy.

For example:

CASA [1]: pwd
/export/home/corsair-vml/jmcmulli/data
CASA [2]: ls n*
ngc5921.ms ngc5921.py
CASA [3]: !cp -r ../test.py .
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B.7.1 Using the os.system methods

To use this, you need the os package. This should be loaded by default by casapy, but if not you
can use

import os

in your script.

For example, in our scripts we use this to clean up any existing output files

# The prefix to use for all output files
prefix=’ngc5921.usecase’

# Clean up old files
os.system(’rm -rf ’+prefix+’*’)

Note that the os package has many useful methods. You can see these by using tab-completion:

CASA <2>: os.<tab>
os.EX_CANTCREAT os._Environ os.fdatasync os.remove
os.EX_CONFIG os.__all__ os.fdopen os.removedirs
os.EX_DATAERR os.__builtins__ os.fork os.rename
os.EX_IOERR os.__class__ os.forkpty os.renames
os.EX_NOHOST os.__delattr__ os.fpathconf os.rmdir
os.EX_NOINPUT os.__dict__ os.fstat os.sep
os.EX_NOPERM os.__doc__ os.fstatvfs os.setegid
os.EX_NOUSER os.__file__ os.fsync os.seteuid
os.EX_OK os.__getattribute__ os.ftruncate os.setgid
os.EX_OSERR os.__hash__ os.getcwd os.setgroups
os.EX_OSFILE os.__init__ os.getcwdu os.setpgid
os.EX_PROTOCOL os.__name__ os.getegid os.setpgrp
os.EX_SOFTWARE os.__new__ os.getenv os.setregid
os.EX_TEMPFAIL os.__reduce__ os.geteuid os.setreuid
os.EX_UNAVAILABLE os.__reduce_ex__ os.getgid os.setsid
os.EX_USAGE os.__repr__ os.getgroups os.setuid
os.F_OK os.__setattr__ os.getloadavg os.spawnl
os.NGROUPS_MAX os.__str__ os.getlogin os.spawnle
os.O_APPEND os._copy_reg os.getpgid os.spawnlp
os.O_CREAT os._execvpe os.getpgrp os.spawnlpe
os.O_DIRECT os._exists os.getpid os.spawnv
os.O_DIRECTORY os._exit os.getppid os.spawnve
os.O_DSYNC os._get_exports_list os.getsid os.spawnvp
os.O_EXCL os._make_stat_result os.getuid os.spawnvpe
os.O_LARGEFILE os._make_statvfs_result os.isatty os.stat
os.O_NDELAY os._pickle_stat_result os.kill os.stat_float_times
os.O_NOCTTY os._pickle_statvfs_result os.killpg os.stat_result
os.O_NOFOLLOW os._spawnvef os.lchown os.statvfs
os.O_NONBLOCK os.abort os.linesep os.statvfs_result
os.O_RDONLY os.access os.link os.strerror
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os.O_RDWR os.altsep os.listdir os.symlink
os.O_RSYNC os.chdir os.lseek os.sys
os.O_SYNC os.chmod os.lstat os.sysconf
os.O_TRUNC os.chown os.major os.sysconf_names
os.O_WRONLY os.chroot os.makedev os.system
os.P_NOWAIT os.close os.makedirs os.tcgetpgrp
os.P_NOWAITO os.confstr os.minor os.tcsetpgrp
os.P_WAIT os.confstr_names os.mkdir os.tempnam
os.R_OK os.ctermid os.mkfifo os.times
os.SEEK_CUR os.curdir os.mknod os.tmpfile
os.SEEK_END os.defpath os.name os.tmpnam
os.SEEK_SET os.devnull os.nice os.ttyname
os.TMP_MAX os.dup os.open os.umask
os.UserDict os.dup2 os.openpty os.uname
os.WCONTINUED os.environ os.pardir os.unlink
os.WCOREDUMP os.errno os.path os.unsetenv
os.WEXITSTATUS os.error os.pathconf os.urandom
os.WIFCONTINUED os.execl os.pathconf_names os.utime
os.WIFEXITED os.execle os.pathsep os.wait
os.WIFSIGNALED os.execlp os.pipe os.wait3
os.WIFSTOPPED os.execlpe os.popen os.wait4
os.WNOHANG os.execv os.popen2 os.waitpid
os.WSTOPSIG os.execve os.popen3 os.walk
os.WTERMSIG os.execvp os.popen4 os.write
os.WUNTRACED os.execvpe os.putenv
os.W_OK os.extsep os.read
os.X_OK os.fchdir os.readlink

B.7.2 Directory Navigation

In addition, filesystem navigation is aided through the use of bookmarks to simplify access to
frequently-used directories:

CASA [4]: cd /home/ballista/jmcmulli/other_data
CASA [4]: pwd
/home/ballista/jmcmulli/other_data
CASA [5]: bookmark other_data
CASA [6]: cd /export/home/corsair-vml/jmcmulli/data
CASA [7]: pwd
/export/home/corsair-vml/jmcmulli/data
CASA [8]: cd -b other_data
(bookmark:data) -> /home/ballista/jmcmulli/other_data

For python scripts, there is a special command to change a directory.

os.system(’cd ~/directory’)

will NOT work but the following will:
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os.chdir(’~/directory’)

B.7.3 Shell Command and Capture

See also § B.9 for the use of the command history.

1. sx shell command, !!shell command - this captures the output to a list

CASA [1]: sx pwd # stores output of ’pwd’ in a list
Out[1]: [’/home/basho3/jmcmulli/pretest’]

CASA [2]: !!pwd # !! is a shortcut for ’sx’
Out[2]: [’/home/basho3/jmcmulli/pretest’]

CASA [3]: sx ls v* # stores output of ’pwd’ in a list
Out[3]:

[’vla_calplot.jpg’,
’vla_calplot.png’,
’vla_msplot_cals.jpg’,
’vla_msplot_cals.png’,
’vla_plotcal_bpass.jpg’,
’vla_plotcal_bpass.png’,
’vla_plotcal_fcal.jpg’,
’vla_plotcal_fcal.png’,
’vla_plotvis.jpg’,
’vla_plotvis.png’]

CASA [4]: x=_ # remember ’_’ is a shortcut for the output from the last command

CASA [5]: x
Out[5]:

[’vla_calplot.jpg’,
’vla_calplot.png’,
’vla_msplot_cals.jpg’,
’vla_msplot_cals.png’,
’vla_plotcal_bpass.jpg’,
’vla_plotcal_bpass.png’, ’vla_plotcal_fcal.jpg’,
’vla_plotcal_fcal.png’,
’vla_plotvis.jpg’,
’vla_plotvis.png’]

CASA [6]: y=Out[2] # or just refer to the enumerated output

CASA [7]: y
Out[7]: [’/home/basho3/jmcmulli/pretest’]

2. sc - captures the output to a variable; options are ’-l’ and ’-v’

CASA [1]: sc x=pwd # capture output from ’pwd’ to the variable ’x’
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CASA [2]: x
Out[2]: ’/home/basho3/jmcmulli/pretest’

CASA [3]: sc -l x=pwd # capture the output from ’pwd’ to the variable ’x’ but
# split newlines into a list (similar to sx command)

CASA [4]: x
Out[4]: [’/home/basho3/jmcmulli/pretest’]

CASA [5]: sc -v x=pwd # capture output from ’pwd’ to a variable ’x’ and
# show what you get (verbose mode)

x ==
’/home/basho3/jmcmulli/pretest’

CASA [6]: x
Out[6]: ’/home/basho3/jmcmulli/pretest’

B.8 Logging

There are two components to logging within CASA. Logging of all command line inputs is done
via IPython.

Upon startup, CASA will log all commands to a file called ipython.log. This file can be changed
via the use of the /.casa/ipython/ipythonrc file. This log file can be edited and re-executed as
appropriate using the execfile feature (§ B.12).

Logging can be turned on and off using the logon, logoff commands.

The second component is the output from applications which is directed to the file ./casapy.log.
See § 1.5.2 for more on the casalogger.

B.9 History and Searching

Numbered input/output history is provided natively within IPython. Command history is also
maintained on-line.

CASA [11]: x=1

CASA [12]: y=3*x

CASA [13]: z=x**2+y**2

CASA [14]: x
Out[14]: 1
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CASA [15]: y
Out[15]: 3

CASA [16]: z
Out[16]: 10

CASA [17]: Out[14] # Note: The ’Out’ vector contains command output
Out[17]: 1

CASA [18]: _15 # Note: The return value can be accessed by _number
Out[18]: 3

CASA [19]: ___ # Note: The last three return values can be accessed as:
Out[19]: 10 # _, __, ___

Command history can be accessed via the ’hist’ command. The history is reset at the beginning
of every CASA session, that is, typing ’hist’ when you first start CASA will not provide any
commands from the previous session. However, all of the commands are still available at the
command line and can be accessed through the up or down arrow keys, and through searching.

CASA [22]: hist
1 : __IP.system("vi temp.py") # Note:shell commands are designated in this way
2 : ipmagic("run -i temp.py") # Note:magic commands are designated in this way
3 : ipmagic("hist ")
4 : more temp.py
5 : __IP.system("more temp.py")
6 : quickhelp() # Note: autoparenthesis are added in the history
7 : im.open(’ngc5921.ms’)
8 : im.summary()
9 : ipmagic("pdoc im.setdata")
10: im.close()
11: quickhelp()
12: ipmagic("logstate ")
13: x=1
14: y=3*x
15: z=x**2+y**2
16: x
17: y
18: z
19: Out[16]
20: _17
21: ___

The history can be saved as a script or used as a macro for further use:

CASA [24]: save script.py 13:16
File ‘script.py‘ exists. Overwrite (y/[N])? y
The following commands were written to file ‘script.py‘:
x=1
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y=3*x
z=x**2+y**2

CASA [25]: !more script.py
x=1
y=3*x
z=x**2+y**2

Note that the history commands will be saved up to, but not including the last value (i.e., history
commands 13-16 saves commands 13, 14, and 15).

There are two mechanisms for searching command history:

1. Previous/Next: use Ctrl-p (previous,up) and Ctrl-n (next,down) to search through only
the history items that match what you have typed so far (min-match completion). If you use
Ctrl-p or Ctrl-n at a blank prompt, they behave just like the normal arrow keys.

2. Search: Ctrl-r opens a search prompt. Begin typing and the system searches your history
for lines that contain what you’ve typed so far, completing what it can. For example:

CASA [37]: <CTRL-r>

(reverse-i-search)‘’:

Typing anything after the colon will provide you with the last command matching the char-
acters, for example, typing ’op’ finds:

(reverse-i-search)‘op’: im.open(’ngc5921.ms’)

Subsequent hitting of Ctrl-r will search for the next command matching the characters.

B.10 Macros

Macros can be made for easy re-execution of previous commands. For example to store the com-
mands 13-15 to the macro ’example’:

CASA [31]: macro example 13:16
Macro ‘example‘ created. To execute, type its name (without quotes).
Macro contents:
x=1
y=3*x
z=x**2+y**2

CASA [32]: z
Out[32]: 6

CASA [33]: z=10
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CASA [34]: example
Out[34]: Executing Macro...

CASA [35]: z
Out[35]: 6

CASA [36]:

B.11 On-line editing

You can edit files on-line in two ways:

1. Using the shell access via ’ !vi’

2. Using the ed function; this will edit the file but upon closing, it will try to execute the file;
using the ’script.py’ example above:

CASA [13]: ed script.py # this will bring up the file in your chosen editor
# when you are finished editing the file,
# it will automatically
# execute it (as though you had done a
# execfile ’script.py’

Editing... done. Executing edited code...

CASA [14]: x
Out[14]: 1

CASA [15]: y
Out[15]: 3

CASA [16]: z
Out[16]: 6

B.12 Executing Python scripts

Python scripts are simple text files containing lists of commands as if typed at the keyboard. Note:
the auto-parentheses feature of IPython cannot be used in scripts, that is, you should make sure
all function calls have any opening and closing parentheses.

# file is script.py
# My script to plot the observed visibilities
plotxy(’ngc5921.ms’,’uvdist’) #yaxis defaults to amplitude

This can be done by using the execfile command to execute this script. execfile will execute the
script as though you had typed the lines at the CASA prompt.
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CASA [5]: execfile ’script.py’
--------> execfile(’script.py’)

If you don’t want to launch CASA and execute your script from the command line, you can use
the ’-c’ option:

unix$ casapy -c ’script.py’

B.13 How do I exit from CASA?

You can exit CASA by using the quit command. This will bring up the query

Do you really want to exit ([y]/n)?

to give you a chance in case you did not mean to exit. You can also quit using %exit or CTRL-D.

If you don’t want to see the question "Do you really want to exit [y]/n?", then just type
Exit or exit followed by return, and CASA will stop right then and there.



Appendix C

Appendix: Models, Conventions, and
Reference Frames

This appendix lists the available parameters, conventions, reference frames, and information on
flux standards used in CASA.

C.1 Flux Density Models for setjy

setjy adds a source model given the source name, frequency, a standard (really, a set of models),
and possibly a time. At cm wavelengths the flux density (FD) calibrators are typically one of several
bright extragalactic sources. These objects are comparatively faint and less well characterized at
shorter wavelengths, so for (sub)mm astronomy it is common to use Solar System objects.

Reliably setting the FD scale with astronomical calibrators requires that they be bright, not too
resolved, and have simple dependencies on frequency and time. These criteria are somewhat mutu-
ally exclusive, so the number of calibrator sources supported by setjy is fairly small, although it
could certainly be added to. This appendix is for describing the models that setjy uses. Choosing
a FD calibrator of course has to be done before the observation and the observatory may provide
additional information.

C.1.1 Long wavelength calibration

Synchrotron sources can vary over a light crossing time, so ones used as FD calibrators must have
most of their emission coming from an extended region. The additional requirement that they be
nearly unresolved therefore forces them to be distant, meaning that candidates which also have
high apparent fluxes are quite rare. The following standards mostly share the same set of objects,
and monitor their FDs every few years to account for variations. No interpolation is done between
epochs, though - you are encouraged to choose the standard which observed your FD calibrator
closest to the time you observed it at. The measurements are interpolated in frequency, however,
using second to fourth degree polynomials of the frequency’s logarithm.

495
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Table C.1: Recognized Flux Density Calibrators. Note that the VLA uses J2000 calibrator names.
CASA accepts all strings that contain the names below. E.g. ’PKS 1934-638’ will be recognized

3C Name B1950 Name J2000 Name Alt. J2000 Name Standards
3C48 0134+329 0137+331 J0137+3309 1,3,4,5,6, 7
3C123 0433+295 0437+296 J0437+2940 2
3C138 0518+165 0521+166 J0521+1638 1,3,4,5,6
3C147 0538+498 0542+498 J0542+4951 1,3,4,5,6, 7
3C196 0809+483 0813+482 J0813+4813 1,2,7
3C286 1328+307 1331+305 J1331+3030 1,2,3,4,5,6, 7
3C295 1409+524 1411+522 J1411+5212 1,2,3,4,5,6, 7

– 1934-638 – J1939-6342 1,3,4,5,6
3C380 1828+487 1829+487 J1829+4845 7

Standards are: (1) Perley-Butler 2010, (2) Perley-Butler 2013, (3) Perley-Taylor 99, (4) Perley-
Taylor 95, (5) Perley 90, (6) Baars, (7) Scaife-Heald 2012

C.1.1.1 Baars

The only standard to not have the year in the name. It is 1977.

The models are second order polynomials in log(ν), valid between 408 MHz and 15 GHz.

The paper is Baars, J. W. M., Genzel, R., Pauliny-Toth, I. I. K., & Witzel, A. 1977, A&A, 61, 99
with a commentary by Kellermann, K. I. 1999, A&A 500, 143.

C.1.1.2 Perley 90

This standard also includes 1934-638 from Reynolds (7/94) and 3C138 from Baars, J. W. M.,
Genzel, R., Pauliny-Toth, I. I. K., & Witzel, A. 1977, A&A, 61, 99.

Details can be found at http://www.vla.nrao.edu/astro/calib/manual/baars.html.

C.1.1.3 Perley-Taylor 95

Perley and Taylor (1995.2); plus Reynolds (1934-638; 7/94) Details can be found at http://www.
vla.nrao.edu/astro/calib/manual/baars.html.

C.1.1.4 Perley-Taylor 99

Perley and Taylor (1999.2); plus Reynolds (1934-638; 7/94) Details can be found at http://www.
vla.nrao.edu/astro/calib/manual/baars.html.

http://www.vla.nrao.edu/astro/calib/manual/baars.html
http://www.vla.nrao.edu/astro/calib/manual/baars.html
http://www.vla.nrao.edu/astro/calib/manual/baars.html
http://www.vla.nrao.edu/astro/calib/manual/baars.html
http://www.vla.nrao.edu/astro/calib/manual/baars.html
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C.1.1.5 Perley-Butler 2010

A preliminary version of Perley-Butler 2013 (SC.1.1.6). This version has also coefficients for sources
that showed some degree of variability, see Perley, R. A., & Butler, B. J. 2012, ApJS, submitted
(http://arxiv.org/abs/1211.1300).

C.1.1.6 Perley-Butler 2013

Flux scale for the constant flux sources 3C123, 3C196, 3C286, and 3C295. The models are time-
dependent.

Reference: Perley, R. A., & Butler, B. J. 2013, ApJS, 206, 16

C.1.1.7 Scaife-Heald 2012

Low frequency, 30-300MHz, calibrators 3C48, 3C147, 3C196, 3C286, 3C295, and 3C380.

Reference: Scaife, A. M., & Heald, G. H. 2012, MNRAS, 423, 30

C.1.2 Short wavelength calibration

The usual approach in this regime is to use models that are, to first order, thermal sources in
the Solar System. Their apparent brightness of course varies in time with their distance from the
Earth (and Sun), and orientation if they are not perfect spheres with zero obliquity. However,
most of them have almost constant surface properties, so once those properties are measured their
apparent brightness distributions can in principle be predicted for any time, given an ephemeris.
Planets, in particular, however, have more complex spectra and effects such as atmospheric lines,
magnetic fields, seasons, polar caps and surface features need to be taken into account when they
are available and significant. In CASA the Solar System objects supported by setjy are available
through the ‘Butler-JPL-Horizons 2010’, and ’Butler-JPL-Horizons 2012’ standards. The models
are described in ALMA Memo 594 available on https://science.nrao.edu/facilities/alma/
aboutALMA/Technology/ALMA_Memo_Series/alma594/abs594.

C.2 Velocity Reference Frames

CASA supported velocity frames are listed in Table C.2.

C.2.1 Doppler Types

CASA supported Doppler types are listed in Table C.3.

http://arxiv.org/abs/1211.1300
https://science.nrao.edu/facilities/alma/aboutALMA/Technology/ALMA_Memo_Series/alma594/abs594
https://science.nrao.edu/facilities/alma/aboutALMA/Technology/ALMA_Memo_Series/alma594/abs594
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Table C.2: Velocity frames in CASA

Name Description
REST Laboratory
LSRK local standard of rest (kinematic)
LSRD local standard of rest (dynamic)
BARY barycentric
GEO geocentric
TOPO topocentric
GALACTO galactocentric
LGROUP Local Group
CMB cosmic microwave background dipole
Undefined undefined frame

Table C.3: Doppler types in CASA

Name Description
RADIO
Z
RATIO
BETA
GAMMA
OPTICAL
TRUE
RELATIVISTIC

C.3 Time Reference Frames

CASA supported time reference frames are listed in Table C.4.

C.4 Coordinate Frames

CASA supported time coordinate frames are listed in Table C.5.

Note that TOPO refers to a time stamp at a given observation date. If more than one observation
is concatenated this may lead to vastly erroneous values. Any conversion from TOPO to other
frames such as BARY and LSRK should be performed for each individual observation, prior to
concatenation or simultaneous imaging.
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Table C.4: Time reference frames in CASA

Name Description
LAST
LMST
GMST1
GAST
UT1
UT2
UTC
TAI
TDT
TCG
TDB
TCB
IAT
GMST
TT
ET
UT

C.5 Physical Units

CASA also recognizes physical units. They are listed in Tables C.6, C.7, and C.8.

C.6 Physical Constants

The physical constants included in CASA can be found in Table C.9.
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Table C.5: Coordinate frames in CASA

Name Description
J2000 mean equator and equinox at J2000.0 (FK5)
JNAT geocentric natural frame
JMEAN mean equator and equinox at frame epoch
JTRUE true equator and equinox at frame epoch
APP apparent geocentric position
B1950 mean epoch and ecliptic at B1950.0.
B1950 VLA mean epoch(1979.9)) and ecliptic at B1950.0
BMEAN mean equator and equinox at frame epoch
BTRUE true equator and equinox at frame epoch
GALACTIC Galactic coordinates
HADEC topocentric HA and declination
AZEL topocentric Azimuth and Elevation (N through E)
AZELSW topocentric Azimuth and Elevation (S through W)
AZELNE topocentric Azimuth and Elevation (N through E)
AZELGEO geodetic Azimuth and Elevation (N through E)
AZELSWGEO geodetic Azimuth and Elevation (S through W)
AZELNEGEO geodetic Azimuth and Elevation (N through E)
ECLIPTC ecliptic for J2000 equator and equinox
MECLIPTIC ecliptic for mean equator of date
TECLIPTIC ecliptic for true equator of date
SUPERGAL supergalactic coordinates
ITRF coordinates wrt ITRF Earth frame
TOPO apparent topocentric position
ICRS International Celestial reference system
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Table C.6: Prefixes

Prefix Name Value
Y (yotta) 1024

Z (zetta) 1021

E (exa) 1018

P (peta) 1015

T (tera) 1012

G (giga) 109

M (mega) 106

k (kilo) 103

h (hecto) 102

da (deka) 10
d (deci) 10−1

c (centi) 10−2

m (milli) 10−3

u (micro) 10−6

n (nano) 10−9

p (pico) 10−12

f (femto) 10−15

a (atto) 10−18

z (zepto) 10−21

y (yocto) 10−24
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Table C.7: SI Units

Unit Name Value
$ (currency) 1
% (percent) 0.01
%% (permille) 0.001
A (ampere) 1 A
AE (astronomical unit) 149597870659 m
AU (astronomical unit) 149597870659 m
Bq (becquerel) 1 s−1

C (coulomb) 1 s A
F (farad) 1 m−2 kg−1 s4 A2

Gy (gray) 1 m2 s−2

H (henry) 1 m2 kg s−2 A−2

Hz (hertz) 1 s−1

J (joule) 1 m2 kg s−2

Jy (jansky) 10−26 kg s−2

K (kelvin) 1 K
L (litre) 0.001 m3

M0 (solar mass) 1.98891944407×1030 kg
N (newton) 1 m kg s−2

Ohm (ohm) 1 m2 kg s−3 A−2

Pa (pascal) 1 m−1 kg s−2

S (siemens) 1 m−2 kg−1 s3 A2

S0 (solar mass) 1.98891944407×1030 kg
Sv (sievert) 1 m2 s−2

T (tesla) 1 kg s−2 A−1

UA (astronomical unit) 149597870659 m
V (volt) 1 m2 kg s−3 A−1

W (watt) 1 m2 kg s−3

Wb (weber) 1 m2 kg s−2 A−1

(undimensioned) 1
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Table C.7: SI Units – continued

Unit Name Value
a (year) 31557600 s
arcmin (arcmin) 0.000290888208666 rad
arcsec (arcsec) 4.8481368111×10−6 rad
as (arcsec) 4.8481368111e×10−6 rad
cd (candela) 1 cd
cy (century) 3155760000 s
d (day) 86400 s
deg (degree) 0.0174532925199 rad
g (gram) 0.001 kg
h (hour) 3600 s
l (litre) 0.001 m3

lm (lumen) 1 cd sr
lx (lux) 1 m−2 cd sr
m (metre) 1 m
min (minute) 60 s
mol (mole) 1 mol
pc (parsec) 3.08567758065×1016 m
rad (radian) 1 rad
s (second) 1 s
sr (steradian) 1 sr
t (tonne) 1000 kg
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Table C.8: Custom Units

Unit Name Value
” (arcsec) 4.8481368111×10−6 rad
” 2 (square arcsec) 2.35044305391×10−11 sr
’ (arcmin) 0.000290888208666 rad
” (arcsec) 4.8481368111×10−6 rad
” 2 (square arcsec) 2.35044305391×10−11 sr
’ 2 (square arcmin) 8.46159499408×10−8 sr
: (hour) 3600 s
:: (minute) 60 s
::: (second) 1 s
Ah (ampere hour) 3600 s A
Angstrom (angstrom) 1e-10 m
Btu (British thermal unit (Int)) 1055.056 m2 kg s−2

CM (metric carat) 0.0002 kg
Cal (large calorie (Int)) 4186.8 m2 kg s−2

FU (flux unit) 10−26 kg s−2

G (gauss) 0.0001 kg s−2 A−1

Gal (gal) 0.01 m s−2

Gb (gilbert) 0.795774715459 A
Mx (maxwell) 10−8 m2 kg s−2 A−1

Oe (oersted) 79.5774715459 m−1 A
R (mile) 0.000258 kg−1 s A
St (stokes) 0.0001 m2 s−1
Torr (torr) 133.322368421 m−1 kg s−2

USfl oz (fluid ounce (US)) 2.95735295625×10−5 m3

USgal (gallon (US)) 0.003785411784 m3
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Table C.8: Custom Units – continued

Unit Name Value
WU (WSRT flux unit) 5× 10−29 kg s−2

abA (abampere) 10 A
abC (abcoulomb) 10 s A
abF (abfarad) 109 m−2 kg−1 s4 A2

abH (abhenry) 10−9 m2 kg s−2 A−2

abOhm (abohm) 10−9 m2 kg s−3 A−2

abV (abvolt) 10−8 m2 kg s−3 A−1

ac (acre) 4046.8564224 m2

arcmin 2 (square arcmin) 8.46-2159499408×10−8 sr
arcsec 2 (square arcsec) 2.35044305391×10−11 sr
ata (technical atmosphere) 98066.5 m−1.kg.s−2

atm (standard atmosphere) 101325 m−1.kg.s−2

bar (bar) 100000 m−1.kg.s−2

beam (undefined beam area) 1
cal (calorie (Int)) 4.1868 m2 kg s−2

count (count) 1
cwt (hundredweight) 50.80234544 kg
deg 2 (square degree) 0.000304617419787 sr
dyn (dyne) 10−5 m kg s−2

eV (electron volt) 1.60217733×10−19 m2 kg s−2

erg (erg) 10−7 m2 kg s−2

fl oz (fluid ounce (Imp)) 2.84130488996×10−5 m3

ft (foot) 0.3048 m
fu (flux unit) 10−26 kg s−2

fur (furlong) 201.168 m
gal (gallon (Imp)) 0.00454608782394 m3
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Table C.8: Custom Units – continued

Unit Name Value
ha (hectare) 10000 m2

hp (horsepower) 745.7 m2 kg s−3

in (inch) 0.0254 m
kn (knot (Imp)) 0.514773333333 m s−1

lambda (lambda) 1
lb (pound (avoirdupois)) 0.45359237 kg
ly (light year) 9.46073047×1015 m
mHg (metre of mercury) 133322.387415 m−1 kg s−2

mile (mile) 1609.344 m
n mile (nautical mile (Imp)) 1853.184 m
oz (ounce (avoirdupois)) 0.028349523125 kg
pixel (pixel) 1
sb (stilb) 10000 m−2 cd
sq arcmin (square arcmin) 8.46159499408×10−8 sr
sq arcsec (square arcsec) 2.35044305391×10−11 sr
sq deg (square degree) 0.000304617419787 sr
statA (statampere) 3.33564095198×10−10 A
statC (statcoulomb) 3.33564095198×10−10 s A
statF (statfarad) 1.11188031733×10−12 m−2 kg−1 s4 A2

statH (stathenry) 899377374000 m2 kg s−2 A−2

statOhm (statohm) 899377374000 m2 kg s−3 A−2

statV (statvolt) 299.792458 m2 kg s−3 A−1

u (atomic mass unit) 1.661×10−27 kg
yd (yard) 0.9144 m
yr (year) 31557600 s
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Table C.9: Physical Constants

Constant Name Value
pi 3.14.. 3.14159
ee 2.71.. 2.71828
c light vel. 2.99792×108 m s−1

G grav. const 6.67259×1011 N m2 kg−2

h Planck const 6.62608×10−34 J s
HI HI line 1420.41 MHz
R gas const 8.31451 J K−1 mol−1

NA Avogadro # 6.02214×1023 mol−1

e electron charge 1.60218×10−19 C
mp proton mass 1.67262×10−27 kg
mp me mp/me 1836.15
mu0 permeability vac. 1.25664×10−6 H m−1

eps0 permittivity vac. 1.60218×10−19 C
k Boltzmann const 1.38066×10−23 J K−1

F Faraday const 96485.3 C mol−1

me electron mass 9.10939×10−31 kg
re electron radius 2.8179e×10−15 m
a0 Bohrs radius 5.2918×10−11 m
R0 solar radius 6.9599×108 m
k2 IAU grav. const2 0.000295912 AU3 d−2 S0−1



Appendix D

Appendix: CASA Region File Format

The CASA region file format provides a flexible, easily edited set of region definitions which are
accepted across CASA tasks. Region files may be written by hand or using the CASA viewer.

Alert: Whereas the region format is supported by all the data processing tasks, the viewer
implementation is still limited to rectangles, ellipses, and some markers.

For a file to be recognized as a valid CASA region text file, the first line must contain the string:

#CRTF

”CRTF” stands for ”CASA Region Text Format”. One may also include an optional version number
at the end of the string, so it reads #CRTFv0; this indicates the version of the format definition.

Region files have two different kinds of definitions, ”regions” and ”annotations”, each of which is
one line long. To indicate an annotation, a line must begin with "ann". Lines that begin with the
comment character (#) are not considered for processing or display.

The second line of a file may define global parameters that are to be used for all regions and
annotations in that file, in which case the line starts with the word "global". The parameters set
here may also be overridden by keywords in a specific line, in which case the keywords pertain only
to that one line.

• Regions: all regions are considered by tasks. They will be displayed by visualization tasks
as well as used to create masks, etc., as appropriate.

• Annotations: these are used by display tasks, and are for visual reference only.

D.1 Region definitions

All regions lines will follow this general arrangement:

508
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{shape} {additional parameter=value pairs}

The possible parameter/value pairs are described in more detail below. Note that most parameters
beyond the shape and its coordinates can be defined globally.

Possible units for coordinates are:

• sexagesimal, e.g. 18h12m24s for right ascension or -03.47.27.1 for declination

• decimal degrees, e.g. 140.0342deg for both RA and Dec

• radians, e.g. 2.37666rad for both RA and Dec

• pixels, e.g. 204pix

Possible units of length are:

• degrees, e.g. 23deg

• arcminutes, e.g. 23arcmin

• arcseconds, e.g. 23arcsec

• radians, e.g. 0.00035rad

• pixels, e.g. 23pix

Units must always be included when defining a region. If any fractional pixels are covered, the
entire pixel will be selected. For purely single-pixel work there are alternate methods which may
be preferable to using regions, eg. ia.topixel, ia.toworld, ia.pixelvalue.

D.2 Allowed shapes

• Rectangular box; the two coordinates are two opposite corners:

box[[x1, y1], [x2, y2]]

• Center box; [x, y] define the center point of the box and [x width, y width] the width of the
sides:

centerbox[[x, y], [x width, y width]]

• Rotated box; [x, y] define the center point of the box; [x width, y width] the width of the
sides; rotang the rotation angle:

rotbox[[x, y], [x width, y width], rotang]
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• Polygon; there could be many [x, y] corners; note that the last point will connect with the
first point to close the polygon:

poly[[x1, y1], [x2, y2], [x3, y3], ...]

• Circle; center of the circle [x,y], r is the radius:

circle[[x, y], r]

• Annulus; center of the circle is [x, y], [r1, r2] are inner and outer radii:

annulus[[x, y], [r1, r2]]

• Ellipse; center of the ellipse is [x, y]; semi-major and semi-minor axes are [bmaj, bmin]; po-
sition angle of the major axis is pa:

ellipse[[x, y], [bmaj, bmin], pa]

D.3 Annotation definitions

In addition to the definitions for regions [above], the following are always treated as annotations:

• Line; coordinates define the end points of the line:

line[[x1, y1], [x2, y2]]

• Vector; coordinates define end points; second coordinate pair is location of tip of arrow:

vector[[x1, y1], [x2, y2]]

• Text; coordinates define leftmost point of text string:

text[[x, y], ’my text’]

• Symbol; coordinates define location of symbol (see Sec.D.7.1 for a list of allowed symbols):

symbol[[x, y], {symbol}]
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D.4 Global definitions

Definitions to be used throughout the region file are placed on a line beginning with ’global’, usually
at the top of the file. These definitions may also be used on any individual region or annotation
line; in this case, the value defined on that line will override the predefined global (but only for
that line). If a ’global’ line occurs later in the file, subsequent lines will obey those definitions.

• Coordinate reference frame:

– Possible values: J2000, JMEAN, JTRUE, APP, B1950, B1950 VLA, BMEAN, BTRUE,
GALACTIC, HADEC, AZEL, AZELSW, AZELNE, AZELGEO, AZELSWGEO, AZEL-
NEGEO, JNAT, ECLIPTIC, MECLIPTIC, TECLIPTIC, SUPERGAL, ITRF, TOPO,
ICRS

– Default: image value

coord = J2000

• Frequency/velocity axis:

– Possible values: REST, LSRK, LSRD, BARY, GEO, TOPO, GALACTO, LGROUP,
CMB

– Default: image value

frame=TOPO

• Frequency/velocity range:

– Possible units: GHz, MHz, kHz, km/s, Hz, channel, chan (=channel)

– Default: image range

range=[min, max]

• Correlation axis:

– Possible values: I, Q, U, V, RR, RL, LR, LL, XX, XY, YX, YY, RX, RY, LX, LY, XR,
XL, YR, YL, PP, PQ, QP, QQ, RCircular, LCircular, Linear, Ptotal, Plinear, PFtotal,
PFlinear, Pangle

– Default: all planes present in image

corr=[X, Y]

• Velocity calculation:

– Possible values: RADIO, OPTICAL, Z, BETA, GAMMA
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– Default: image value

veltype=RADIO

• Rest frequency:

– Default: image value

restfreq=1.42GHz

• Line characteristics:

– Possible values: any line style recognized by matplotlib: ’-’=solid, ’--’=dashed, ’:’=dotted

– Default: linewidth=1, linestyle=’-’

linewidth=1
linestyle=’-’

• Symbol characteristics:

– Symbol size and thickness:

symsize = 1
symthick = 1

• Region, symbol, and text color:

– Possible values: any color recognized by matplotlib, including hex values

– Default: color=green

color=red

• Text font characteristics:

– Possible values: see Sect. D.7.2.

– ’usetex’ is a boolean parameter that determines whether or not the text line should be
interpreted as LaTeX, and would require working LaTeX, dvipng, and Ghostscript in-
stallations (equivalent to the text.usetex parameter in matplotlib).

font=Helvetica
fontsize=10pt
fontstyle=bold
usetex=True/False
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• Label position:

– Possible values: ’left’, ’right’, ’top’, ’bottom’

– Default: ’top’
labelpos=’right’

• Label color:

– Default: color of associated region.

– Allowed values: same as values for region colors.
labelcolor=’green’

• Label offset:

– Default: [0,0].

– Allowed values: any positive or negative number, in units of pixels.
labeloff=[1, 1]

D.5 Allowed additional parameters

These must be defined per region line:

• Labels: text label for a region; should be placed so text does not overlap with region boundary

label=’string’

• ”OR/NOT” operators: A ”+” at the beginning of a line will flag it with a boolean ”OR”
(default), and a ”-” will flag it with a boolean ”NOT”. Overlapping regions will be treated
according to their sequence in the file; i.e., ((((entireImage OR line1) OR line2) NOT line3)
OR line4). This allows some flexibility in building ”non-standard” regions. Note that a task
(e.g., clean) will still consider all lines: if one wishes to remove a region from consideration,
it should be commented out (”#”).

• Default: OR (+)

D.6 Examples

A file with both global definitions and per-line definitions:

#CRTFv0
global coord=B1950 VLA, frame=BARY, corr=[I, Q], color=blue
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# A simple circle region:
circle[[18h12m24s, -23d11m00s], 2.3arcsec]

# A box region, this one only for annotation:
ann box[[140.0342deg, -12.34243deg], [140.0360deg, -12.34320deg]]

# A rotated box region, for a particular range of velocities:
rotbox[[12h01m34.1s, 12d23m33s], [3arcmin, 1arcmin], 12deg], range=[-1240km/s, 1240km/s]

# An annular region, overriding some of the global defaults:
annulus[[17h51m03.2s, -45d17m50s], [0.10deg, 4.12deg]], corr=[I,Q,U,V], color=red,
label=’My label here’

# Cuts an ellipse out of the previous regions, but only for Q and a particular frequency
range:
-ellipse[[17:51:03.2, -45.17.50], [0.25deg, 1.34deg], 45rad], range=[1.420GHz, 1.421GHz],
corr=[Q], color=green, label=’Removed this’

# A diamond marker, in J2000 coordinates:
symbol[[32.1423deg, 12.1412deg], D], linewidth=2, coord=J2000, symsize=2

D.7 Fonts and Symbols

D.7.1 Allowed symbols

’.’ point marker
’,’ pixel marker
’o’ circle marker
’v’ triangle down marker
’^’ triangle up marker
’<’ triangle left marker
’>’ triangle right marker
’1’ tri down marker
’2’ tri up marker
’3’ tri left marker
’4’ tri right marker
’s’ square marker
’p’ pentagon marker
’*’ star marker
’h’ hexagon1 marker
’H’ hexagon2 marker
’+’ plus marker
’x’ x marker
’D’ diamond marker
’d’ thin diamond marker
’|’ vline marker
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’ ’ hline marker

D.7.2 Allowed fonts

D.7.2.1 Allowed fonts for Linux

”Century Schoolbook L”, ”Console”, ”Courier”, ”Courier 10 Pitch”, ”Cursor”, ”David CLM”,
”DejaVu LGC Sans”, ”DejaVu LGC Sans Condensed”, ”DejaVu LGC Sans Light”, ”DejaVu LGC
Sans Mono”, ”DejaVu LGC Serif”, ”DejaVu LGC Serif Condensed”, ”Dingbats”, ”Drugulin CLM”,
”East Syriac Adiabene”, ”Ellinia CLM”, ”Estrangelo Antioch”, ”Estrangelo Edessa”, ”Estrangelo
Nisibin”, ”Estrangelo Nisibin Outline”, ”Estrangelo Talada”, ”Fangsong ti”, ”Fixed [Sony]”, ”Fixed
[Eten]”, ”Fixed [Misc]”, ”Fixed [MNKANAME]”, ”Frank Ruehl CLM”, ”fxd”, ”Goha-Tibeb Ze-
men”, ”goth p”, ”Gothic [Shinonome]”, ”Gothic [mplus]”, ”hlv”, ”hlvw”, ”KacstArt”, ”Kacst-
Book”, ”KacstDecorative”, ”KacstDigital”, ”KacstFarsi”, ”KacstLetter”, ”KacstPoster”, ”Kac-
stQura”, ”KacstQuraFixed”, ”KacstQuran”, ”KacstTitle”, ”KacstTitleL”, ”Liberation Mono”,
”Liberation Sans”, ”Liberation Serif”, ”LKLUG”, ”Lohit Bengali”, ”Lohit Gujarati”, ”Lohit Hindi”,
”Lohit Kannada”, ”Lohit Malayalam”, ”Lohit Oriya”, ”Lohit Punjabi”, ”Lohit Tamil”, ”Lohit Tel-
ugu”, ”LucidaTypewriter”, ”Luxi Mono”, ”Luxi Sans”, ”Luxi Serif”, ”Marumoji”, ”Miriam CLM”,
”Miriam Mono CLM”, ”MiscFixed”, ”Monospace”, ”Nachlieli CLM”, ”Nimbus Mono L”, ”Nim-
bus Roman No9 L”, ”Nimbus Sans L”, ”Nimbus Sans L Condensed”, ”PakTypeNaqsh”, ”Pak-
TypeTehreer”, ”qub”, ”Sans Serif”, ”Sazanami Gothic”, ”Sazanami Mincho”, ”Serif”, ”Serto Bat-
nan”, ”Serto Jerusalem”, ”Serto Jerusalem Outline”, ”Serto Mardin”, ”Standard Symbols L”,
”sys”, ”URW Bookman L”, ”URW Chancery L”, ”URW Gothic L”, ”URW Palladio L”, ”Utopia”,
”Yehuda CLM”,

D.7.2.2 Allowed fonts for MacOS X

”Abadi MT Condensed Light”, ”Adobe Caslon Pro”, ”Adobe Garamond Pro”, ”Al Bayan”, ”Amer-
ican Typewriter”, ”Andale Mono”, ”Apple Braille”, ”Apple Chancery”, ”Apple LiGothic”, ”Apple
LiSung”, ”Apple Symbols”, ”AppleGothic”, ”AppleMyungjo”, ”Arial”, ”Arial Black”, ”Arial He-
brew”, ”Arial Narrow”, ”Arial Rounded MT Bold”, ”Arial Unicode MS”, ”Arno Pro”, ”Ayuthaya”,
”Baghdad”, ”Baskerville”, ”Baskerville Old Face”, ”Batang”, ”Bauhaus 93”, ”Bell Gothic Std”,
”Bell MT”, ”Bernard MT Condensed”, ”BiauKai”, ”Bickham Script Pro”, ”Big Caslon”, ”Birch
Std”, ”Blackoak Std”, ”Book Antiqua”, ”Bookman Old Style”, ”Bookshelf Symbol 7”, ”Braggado-
cio”, ”Britannic Bold”, ”Brush Script MT”, ”Brush Script Std”, ”Calibri”, ”Calisto MT”, ”Cam-
bria”, ”Candara”, ”Century”, ”Century Gothic”, ”Century Schoolbook”, ”Chalkboard”, ”Chalk-
duster”, ”Chaparral Pro”, ”Charcoal CY”, ”Charlemagne Std”, ”Cochin”, ”Colonna MT”, ”Comic
Sans MS”, ”Consolas”, ”Constantia”, ”Cooper Black”, ”Cooper Std”, ”Copperplate”, ”Copper-
plate Gothic Bold”, ”Copperplate Gothic Light”, ”Corbel”, ”Corsiva Hebrew”, ”Courier”, ”Courier
New”, ”Curlz MT”, ”DecoType Naskh”, ”Desdemona”, ”Devanagari MT”, ”Didot”, ”Eccentric
Std”, ”Edwardian Script ITC”, ”Engravers MT”, ”Euphemia UCAS”, ”Eurostile”, ”Footlight MT
Light”, ”Franklin Gothic Book”, ”Franklin Gothic Medium”, ”Futura”, ”Garamond”, ”Garamond
Premier Pro”, ”GB18030 Bitmap”, ”Geeza Pro”, ”Geneva”, ”Geneva CY”, ”Georgia”, ”Giddyup
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Std”, ”Gill Sans”, ”Gill Sans MT”, ”Gill Sans Ultra Bold”, ”Gloucester MT Extra Condensed”,
”Goudy Old Style”, ”Gujarati MT”, ”Gulim”, ”GungSeo”, ”Gurmukhi MT”, ”Haettenschweiler”,
”Harrington”, ”HeadLineA”, ”Hei”, ”Heiti SC”, ”Heiti TC”, ”Helvetica”, ”Helvetica CY”, ”Hel-
vetica Neue”, ”Herculanum” ”Hiragino Kaku Gothic Pro”, ”Hiragino Kaku Gothic ProN”, ”Hi-
ragino Kaku Gothic Std”, ”Hiragino Kaku Gothic StdN”, ”Hiragino Maru Gothic Pro”, ”Hiragino
Maru Gothic ProN”, ”Hiragino Mincho Pro”, ”Hiragino Mincho ProN”, ”Hiragino Sans GB”,
”Hobo Std”, ”Hoefler Text”, ”Impact”, ”Imprint MT Shadow”, ”InaiMathi”, ”Kai”, ”Kailasa”,
”Kino MT”, ”Kokonor”, ”Kozuka Gothic Pro”, ”Kozuka Mincho Pro”, ”Krungthep”, ”KufiStan-
dardGK”, ”Letter Gothic Std”, ”LiHei Pro”, ”LiSong Pro”, ”Lithos Pro”, ”Lucida Blackletter”,
”Lucida Bright”, ”Lucida Calligraphy”, ”Lucida Console”, ”Lucida Fax”, ”Lucida Grande”, ”Lu-
cida Handwriting”, ”Lucida Sans”, ”Lucida Sans Typewriter”, ”Lucida Sans Unicode”, ”Marker
Felt”, ”Marlett”, ”Matura MT Script Capitals”, ”Meiryo”, ”Menlo”, ”Mesquite Std”, ”Microsoft
Sans Serif”, ”Minion Pro”, ”Mistral”, ”Modern No. 20”, ”Monaco”, ”Monotype Corsiva”, ”Mono-
type Sorts”, ”MS Gothic”, ”MS Mincho”, ”MS PGothic”, ”MS PMincho”, ”MS Reference Sans
Serif”, ”MS Reference Specialty”, ”Mshtakan”, ”MT Extra”, ”Myriad Pro”, ”Nadeem”, ”New
Peninim MT”, ”News Gothic MT”, ”Nueva Std”, ”OCR A Std”, ”Onyx”, ”Optima”, ”Orator Std”,
”Osaka”, ”Papyrus”, ”PCMyungjo”, ”Perpetua”, ”Perpetua Titling MT”, ”PilGi”, ”Plantagenet
Cherokee”, ”Playbill”, ”PMingLiU”, ”Poplar Std”, ”Prestige Elite Std”, ”Raanana”, ”Rockwell”,
”Rockwell Extra Bold”, ”Rosewood Std”, ”Sathu”, ”Silom”, ”SimSun”, ”Skia”, ”Stencil”, ”Sten-
cil Std”, ”STFangsong”, ”STHeiti”, ”STKaiti”, ”STSong”, ”Symbol”, ”Tahoma”, ”Tekton Pro”,
”Thonburi”, ”Times”, ”Times New Roman”, ”Trajan Pro”, ”Trebuchet MS”, ”Tw Cen MT”, ”Ver-
dana”, ”Webdings”, ”Wide Latin”, ”Wingdings”, ”Wingdings 2”, ”Wingdings 3”, ”Zapf Dingbats”,
”Zapfino”
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The Measurement Equation and
Calibration

The visibilities measured by an interferometer must be calibrated before formation of an image.
This is because the wavefronts received and processed by the observational hardware have been
corrupted by a variety of effects. These include (but are not exclusive to): the effects of transmission
through the atmosphere, the imperfect details amplified electronic (digital) signal and transmission
through the signal processing system, and the effects of formation of the cross-power spectra by
a correlator. Calibration is the process of reversing these effects to arrive at corrected visibilities
which resemble as closely as possible the visibilities that would have been measured in vacuum by
a perfect system. The subject of this chapter is the determination of these effects by using the
visibility data itself.

E.1 The HBS Measurement Equation

The relationship between the observed and ideal (desired) visibilities on the baseline between an-
tennas i and j may be expressed by the Hamaker-Bregman-Sault Measurement Equation1:

~Vij = Jij
~V IDEAL

ij

where ~Vij represents the observed visibility, ~V IDEAL
ij represents the corresponding ideal visibilities,

and Jij represents the accumulation of all corruptions affecting baseline ij. The visibilities are
indicated as vectors spanning the four correlation combinations which can be formed from dual-
polarization signals. These four correlations are related directly to the Stokes parameters which
fully describe the radiation. The Jij term is therefore a 4×4 matrix.

Most of the effects contained in Jij (indeed, the most important of them) are antenna-based, i.e.,
they arise from measurable physical properties of (or above) individual antenna elements in a
synthesis array. Thus, adequate calibration of an array of Nant antennas forming Nant(Nant− 1)/2
baseline visibilities is usually achieved through the determination of only Nant factors, such that

1Hamaker, J.P., Bregman, J.D. & Sault, R.J. (1996), Astronomy and Astrophysics Supplement, v.117, p.137-147
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Jij = Ji⊗J∗
j . For the rest of this chapter, we will usually assume that Jij is factorable in this way,

unless otherwise noted.

As implied above, Jij may also be factored into the sequence of specific corrupting effects, each hav-
ing their own particular (relative) importance and physical origin, which determines their unique
algebra. Including the most commonly considered effects, the Measurement Equation can be writ-
ten:

~Vij = Mij Bij Gij Dij Eij Pij Tij
~V IDEAL

ij

where:

• Tij = Polarization-independent multiplicative effects introduced by the troposphere, such
as opacity and path-length variation.

• Pij = Parallactic angle, which describes the orientation of the polarization coordinates on
the plane of the sky. This term varies according to the type of the antenna mount.

• Eij = Effects introduced by properties of the optical components of the telescopes, such as
the collecting area’s dependence on elevation.

• Dij = Instrumental polarization response. ”D-terms” describe the polarization leakage
between feeds (e.g. how much the R-polarized feed picked up L-polarized emission, and vice
versa).

• Gij = Electronic gain response due to components in the signal path between the feed
and the correlator. This complex gain term Gij includes the scale factor for absolute flux
density calibration, and may include phase and amplitude corrections due to changes in the
atmosphere (in lieu of Tij). These gains are polarization-dependent.

• Bij = Bandpass (frequency-dependent) response, such as that introduced by spectral filters
in the electronic transmission system

• Mij = Baseline-based correlator (non-closing) errors. By definition, these are not factorable
into antenna-based parts.

Note that the terms are listed in the order in which they affect the incoming wavefront (G and B
represent an arbitrary sequence of such terms depending upon the details of the particular electronic
system). Note that M differs from all of the rest in that it is not antenna-based, and thus not
factorable into terms for each antenna.

As written above, the measurement equation is very general; not all observations will require
treatment of all effects, depending upon the desired dynamic range. E.g., bandpass need only be
considered for continuum observations if observed in a channelized mode and very high dynamic
range is desired. Similarly, instrumental polarization calibration can usually be omitted when
observing (only) total intensity using circular feeds. Ultimately, however, each of these effects
occurs at some level, and a complete treatment will yield the most accurate calibration. Modern
high-sensitivity instruments such as ALMA and JVLA will likely require a more general calibration
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treatment for similar observations with older arrays in order to reach the advertised dynamic ranges
on strong sources.

In practice, it is usually far too difficult to adequately measure most calibration effects absolutely (as
if in the laboratory) for use in calibration. The effects are usually far too changeable. Instead, the
calibration is achieved by making observations of calibrator sources on the appropriate timescales
for the relevant effects, and solving the measurement equation for them using the fact that we have
Nant(Nant − 1)/2 measurements and only Nant factors to determine (except for M which is only
sparingly used). (Note: By partitioning the calibration factors into a series of consecutive effects,
it might appear that the number of free parameters is some multiple of Nant, but the relative algebra
and timescales of the different effects, as well as the multiplicity of observed polarizations and
channels compensate, and it can be shown that the problem remains well-determined until, perhaps,
the effects are direction-dependent within the field of view. Limited solvers for such effects are under
study; the calibrater tool currently only handles effects which may be assumed constant within the
field of view. Corrections for the primary beam are handled in the imager tool.) Once determined,
these terms are used to correct the visibilities measured for the scientific target. This procedure is
known as cross-calibration (when only phase is considered, it is called phase-referencing).

The best calibrators are point sources at the phase center (constant visibility amplitude, zero
phase), with sufficient flux density to determine the calibration factors with adequate SNR on the
relevant timescale. The primary gain calibrator must be sufficiently close to the target on the sky so
that its observations sample the same atmospheric effects. A bandpass calibrator usually must be
sufficiently strong (or observed with sufficient duration) to provide adequate per-channel sensitivity
for a useful calibration. In practice, several calibrators are usually observed, each with properties
suitable for one or more of the required calibrations.

Synthesis calibration is inherently a bootstrapping process. First, the dominant calibration term
is determined, and then, using this result, more subtle effects are solved for, until the full set of
required calibration terms is available for application to the target field. The solutions for each
successive term are relative to the previous terms. Occasionally, when the several calibration terms
are not sufficiently orthogonal, it is useful to re-solve for earlier types using the results for later
types, in effect, reducing the effect of the later terms on the solution for earlier ones, and thus better
isolating them. This idea is a generalization of the traditional concept of self-calibration, where
initial imaging of the target source supplies the visibility model for a re-solve of the gain calibration
(G or T ). Iteration tends toward convergence to a statistically optimal image. In general, the
quality of each calibration and of the source model are mutually dependent. In principle, as long
as the solution for any calibration component (or the source model itself) is likely to improve
substantially through the use of new information (provided by other improved solutions), it is
worthwhile to continue this process.

In practice, these concepts motivate certain patterns of calibration for different types of observation,
and the calibrater tool in CASA is designed to accommodate these patterns in a general and
flexible manner. For a spectral line total intensity observation, the pattern is usually:

1. Solve for G on the bandpass calibrator

2. Solve for B on the bandpass calibrator, using G



APPENDIX E. APPENDIX: THE MEASUREMENT EQUATION AND CALIBRATION 520

3. Solve for G on the primary gain (near-target) and flux density calibrators, using B solutions
just obtained

4. Scale G solutions for the primary gain calibrator according to the flux density calibrator
solutions

5. Apply G and B solutions to the target data

6. Image the calibrated target data

If opacity and gain curve information are relevant and available, these types are incorporated in
each of the steps (in future, an actual solve for opacity from appropriate data may be folded into
this process):

1. Solve for G on the bandpass calibrator, using T (opacity) and E (gain curve) solutions already
derived.

2. Solve for B on the bandpass calibrator, using G, T (opacity), and E (gain curve) solutions.

3. Solve for G on primary gain (near-target) and flux density calibrators, using B, T (opacity),
and E (gain curve) solutions.

4. Scale G solutions for the primary gain calibrator according to the flux density calibrator
solutions

5. Apply T (opacity), E (gain curve), G, and B solutions to the target data

6. Image the calibrated target data

For continuum polarimetry, the typical pattern is:

1. Solve for G on the polarization calibrator, using (analytical) P solutions.

2. Solve for D on the polarization calibrator, using P and G solutions.

3. Solve for G on primary gain and flux density calibrators, using P and D solutions.

4. Scale G solutions for the primary gain calibrator according to the flux density calibrator
solutions.

5. Apply P , D, and G solutions to target data.

6. Image the calibrated target data.

For a spectro-polarimetry observation, these two examples would be folded together.

In all cases the calibrator model must be adequate at each solve step. At high dynamic range
and/or high resolution, many calibrators which are nominally assumed to be point sources become
slightly resolved. If this has biased the calibration solutions, the offending calibrator may be imaged
at any point in the process and the resulting model used to improve the calibration. Finally, if
sufficiently strong, the target may be self-calibrated as well.
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E.2 General Calibrater Mechanics

The calibrater tasks/tool are designed to solve and apply solutions for all of the solution types
listed above (and more are in the works). This leads to a single basic sequence of execution for all
solves, regardless of type:

1. Set the calibrator model visibilities

2. Select the visibility data which will be used to solve for a calibration type

3. Arrange to apply any already-known calibration types (the first time through, none may yet
be available)

4. Arrange to solve for a specific calibration type, including specification of the solution timescale
and other specifics

5. Execute the solve process

6. Repeat 1-4 for all required types, using each result, as it becomes available, in step 2, and
perhaps repeating for some types to improve the solutions

By itself, this sequence doesn’t guarantee success; the data provided for the solve must have suffi-
cient SNR on the appropriate timescale, and must provide sufficient leverage for the solution (e.g.,
D solutions require data taken over a sufficient range of parallactic angle in order to separate the
source polarization contribution from the instrumental polarization).



Appendix F

Data Weights

F.1 Introduction

Visibility weight initialization and calibration has undergone several improvements in CASA 4.2.2
and (pending) CASA 4.3. This appendix briefly describes the formal weight definitions, and the
changes occurring in these CASA versions. If data sets shall be combined that were reduced with
different CASA versions, the weights may need to be adjusted accordingly. This can be achieved,
e.g. by running the same version of statwt (§ 4.7.9) on all datasets before combination. The best
option, however, is to use a single CASA version for all reductions, preferrably 4.2.2 or later.

Note that post-calibration weights, e.g. imaging weights or tapers are not covered by this appendix.

F.2 SIGMA and WEIGHT columns

Formally, in CASA 4.2.2 and later, the SIGMA column in the measurement set will reflect the
per-channel noise of the DATA as it depends on the channel bandwidth ∆ν and the length of an
integration ∆t:

SIGMA =
1√

2∆ν∆t
. (F.1)

The factor of
√

2 is for cross-correlation only and auto-correlation data follows SIGMA = 1/
√

∆ν∆t.

SIGMA will only be updated if the time and channel widths are modified along with any DATA
column manipulation, e.g. through averaging, binning, smoothing, etc. (tasks like mstransform,
cvel, split, exportuvfits,...).

The WEIGHT column reflects how much weight each CORRECTED DATA sample should receive when
data are combined (e.g., in averaging). To start with, WEIGHT is initialized from the SIGMA column
via:
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≤CASA 4.2.1 CASA 4.2.2/4.3 ≥CASA 4.4 (WEIGHT SPECTRUM)

Initialization 1 2∆ν∆t 2∆ν∆t

System Temperature 1
<
√

Tsys,k>2
k

1
<Tsys,k>k

1
Tsys,k

Gains ||G||2 ||G||2 ||G||2

Bandpass 1
<||B||−1>2

k
< ||B||2 >k < ||B||2 >k

Table F.1: Antenna-based WEIGHT calibration factor definitions for different CASA versions. For
System Temperator and Bandpass, k is the channel index. ALMA has channelized Tsys; EVLA
does not.

WEIGHT =
1

SIGMA2 = 2∆ν∆t (F.2)

Data calibration by applycal (§ 4.6.1) with calwt=T will calculate and modify the WEIGHT values
but not SIGMA. Calibration applies multiplicative factors and the WEIGHT of a visibility on a baseline
between antennas i and j is calculated via

WEIGHTij =
ωiωj

SIGMA2
ij

(F.3)

where ωi and ωj are the antenna-based calibration factors derived by applycal (ωi = ωj for auto-
correlation data). In Table F.1 we list the definitions of antenna-based ω for different calibration
procedures and CASA versions. When more than one calibration is appied, the product of the
relevant weight factors is used.

F.2.1 Weights in CASA 4.2.1 and Earlier

The SIGMA and WEIGHT columns are initialized with values of “1”. Traditionally, this convention
was adequate for datasets with uniform sampling in time in frequency; a global weight scale factor
would not affect calibration and imaging fidelity. In data manipulation operations (e.g., split,
etc.), SIGMA was treated as a per-channel value and WEIGHT as a per-spw (all channels) weight.
Combined with unit initialization, this difference in definition could lead to incongruent weight
scales for different spectral windows, in particular if bandwidth and channel count varied. CASA
4.2.1 is not recommended for datasets which have variety in spectral window bandwidth and chan-
nelization and for which spectral windows are to be combined in imaging.
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F.2.2 Weights in CASA 4.2.2

In CASA 4.2.2 the SIGMA and WEIGHT columns are properly initialized via the definition in Eqs. F.1
and F.2. Both are defined as per-channel values. Also, the weight calibration factors have been
subtly updated to improve robustness, as indicated in Table F.1.

F.2.3 Weights in CASA 4.3

In CASA 4.3 frequency variations of the WEIGHT and SIGMA values are (optionally) captured in
additional WEIGHT SPECTRUM and SIGMA SPECTRUM columns. This allows accommodation of vari-
ations of effective sensitivity on a channel by channel basis (e.g. band edges, atmospheric lines,
spectral Tsys variation etc.). WEIGHT SPECTRUM will be recognized in the applycal task as well
as in mstransform and clean. Calibration solvers, however, will not yet calculate and modify
WEIGHT SPECTRUM.

F.2.4 Weights in CASA 4.4 and later

Full support of WEIGHT SPECTRUM. Also, statwt will be enhanced to permit calculating weights on
a channel-dependent basis.



Appendix G

Cal Library Syntax

G.1 Introduction

The ”Cal Library” is a new means of expressing calibration application instructions. It has
nominally been available in applycal and the calibration solve tasks since CASA 4.1, via the
docallib=True parameter, as an alternative to the traditional parameters (e.g., gaintable, etc.)
that most users continue to use. As of CASA 4.5, we have deployed use of the Cal Library for
on-the-fly calibration in plotms and mstransform. In CASA 4.5, our intent is to demonstrate the
Cal Library and begin familiarizing users with it. The capabilities remain limited in some ways,
and new features, additional flexibility, and broader deployment in more tasks will be offered in
CASA 4.6 and later releases.

This appendix describes basic use of the Cal Library.

Alert: Please note the section on current (CASA 4.5) limitations.

G.2 Basic Cal Library Usage

The Cal Library is a means of specifying calibration instructions in an ascii file, rather than via the
traditional gaintable/gainfield/interp/spwmap/calwt parameters that often become clumsy
when many caltables are involved, and which have rather limited flexibility. Instead of specifying
the traditional parameters, the file name is specified in the callib parameter in applycal or
plotms (in applycal one must also specifiy docallib=T). For example, to correct an MS called
my.ms, with a Cal Library file called mycal.txt:

applycal(vis=’my.ms’,docallib=T,callib=’mycal.txt’)

In a Cal Library file, each row expresses the calibration apply instructions for a particular caltable
and (optionally) a specific selection of data in the MS to which it is to be applied.

For example, if mycal.txt contains:

525
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caltable=’cal.G’ tinterp=’linear’ calwt=True

this will arrange a caltable called cal.G to be applied (with no detailed selection) to all MS data
with linear interpolation in time, and with the weights also calibrated. It corresponds to these
settings for the traditional parameters in applycal:

applycal(vis=’my.ms’,gaintable=’cal.G’,gainfield=’’,interp=’linear’,
spwmap=[],calwt=True)

If a bandpass table, cal.B, is also available for application, one might use the following Cal Library
file:

caltable=’cal.G’ tinterp=’linear’ calwt=True
caltable=’cal.B’ finterp=’linear’ calwt=False

This example arranges the same instructions for cal.G, and adds a bandpass table that will be inter-
polated linearly in frequency (the default for time-dependent interpolation is linear, if the bandpass
table contains more than one time sample), without weight calibration. The corresponding form
with the traditional parameters is:

applycal(vis=’my.ms’,gaintable=[’cal.G’,’cal.B’], gainfield=[’’,’’],
interp=[’linear’,’linear,linear’],
spwmap=[],calwt=[True,False])

In general, the Cal LIbrary file should be easier to read and manage than the traditional parameters
as the number of specified caltables grows.

A more complicated example, involving non-trivial spwmap as well as field selection (fldmap) in the
caltable:

caltable=’cal.G’ tinterp=’linear’ fldmap=’nearest’ spwmap=[0,1,1,3] calwt=True
caltable=’cal.B’ finterp=’linear’ fldmap=’3’ spwmap=[0,0,0,0] calwt=False

In this case, solutions from cal.G will be selected based on directional proximity (’nearest’) for
each MS field via the fldmap parameter, and spw 2 will be calibrated by spw 1 solutions. For cal.B,
solutions from field id 3 will be used exclusively, with spw 0 calibrating all MS spws (of which there
are apparently 4). The corresponding settings for the traditional parameters is as follows:

applycal(vis=’my.ms’,gaintable=[’cal.G’,’cal.B’], gainfield=[’nearest’,’3’],
interp=[’linear’,’linear,linear’],
spwmap=[[0,1,1,3],[0,0,0,0]],calwt=[True,False])

Comment lines may be included in the cal library file by starting a line with the # character.
(Partial line comments are not supported, as yet.) Existing cal library lines can be turned off (for
experimentation purposes by making those lines comments with #.
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G.3 More Advanced Cal Library Usage

The real power of the Cal Library arises from the ability to specify calibration instructions for a
caltable per MS selection. This enables consolidating what would be multiple applycal executions
using the traditional parameters into a single execution. Extending the example from above, if the
MS field ’cal’ should be calibrated by cal.G with ’nearest’ interpolation in time, and the field
’sci’ with ’linear’ interpolation in time, the following Cal Library file will achieve this:

caltable=’cal.G’ field=’cal’ tinterp=’nearest’ fldmap=’nearest’ spwmap=[0,1,1,3] calwt=True
caltable=’cal.G’ field=’sci’ tinterp=’linear’ fldmap=’nearest’ spwmap=[0,1,1,3] calwt=True
caltable=’cal.B’ finterp=’linear’ fldmap=’3’ spwmap=[0,0,0,0] calwt=False

Note that the algorithm for selecting solutions from the caltable (fldmap=’nearest’, which may
resolve differently for the two MS fields) hasn’t been changed, but it could be. In fact, any of the
calibration parameters can be adjusted per MS selection, except calwt, which if set to True for
any MS selection, will be forced to True for all (to maintain weight consistency within the MS).
MS selection by spw, intent, and obs id can also be used (see the glossary below).

The pair of applycal executions corresponding to this Cal Library would be:

applycal(vis=’my.ms’,field=’cal’,gaintable=[’cal.G’,’cal.B’], gainfield=[’nearest’,’3’],
interp=[’nearest’,’linear,linear’], spwmap=[[0,1,1,3],[0,0,0,0]],calwt=[True,False])

applycal(vis=’my.ms’,field=’sci’,gaintable=[’cal.G’,’cal.B’], gainfield=[’nearest’,’3’],
interp=[’linear’,’linear,linear’], spwmap=[[0,1,1,3],[0,0,0,0]],calwt=[True,False])

G.4 General Rules (current, as of CASA 4.5)

• Each non-comment line in the Cal Library file must contain a valid (existing) caltable name.

• Blank lines (i.e., containing whitespace only) will be ignored.

• All parameters (see glossary below) are name/value pairs using an equals sign, delimited with
spaces (no commas!)

• Only those parameters (see glossary) for which non-default values are required need be spec-
ified

• Each set of coordinated instructions must occur on a single line (there is no line continuation
operator, as yet)

• If detailed MS selection is used, care must be exercised to ensure it is mutually exclusive over
all MS rows for the same caltable; there is currently no internal checking for redundancy, and
only the last calibration instructions for a particular MS selection will be invoked

• Full-line comments are supported by inserting the # character as the first non-whitespace
character in the line. This mechanism can be used to turn off ordinary cal library lines.
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G.5 Limitations (current, as of CASA 4.5)

• Application of parallactic angle corrections is not yet supported within the Cal Library file
(this only affects use in plotms, where there is no parang parameter)

• Some parametrized calibration tables (BPOLY, GSPLINE) are not yet supported

G.6 Conversion from Existing applycal Scripts

To convert exiting applycal commands, a simple experimental function, applycaltocallib is
available. To access it, type (within CASA):

from callibrary import applycaltocallib

Then, chose a filename for the cal library file, and supply existing settings for applycal parameters
(field, spw, intent, gaintable, gainfield, interp, spwmap, calwt) to the applycaltocallib
function:

callibfile=’mycallib.txt’
applycaltocallib(filename=callibfile,append=F,

field,spw,intent,gaintable,gainfield,
interp,spwmap,calwt)

If append=F, the specified filename will be overwritten, if it already exists. If append=T, new
entries will be appended to the existing filename. Only parameters with non-trivial applycal
settings need be included. In general, if gaintable is a python list, it is best if gainfield, interp,
spwmap, and calwt (where non-trivially set) are also lists.

For example, if your conventional script contains the following applycal executions (duplicated
from above):

applycal(vis=’my.ms’,field=’cal’,
gaintable=[’cal.G’,’cal.B’], gainfield=[’nearest’,’3’],
interp=[’nearest’,’linear,linear’],
spwmap=[[0,1,1,3],[0,0,0,0]],
calwt=[True,False])

applycal(vis=’my.ms’,field=’sci’,
gaintable=[’cal.G’,’cal.B’], gainfield=[’nearest’,’3’],
interp=[’linear’,’linear,linear’],
spwmap=[[0,1,1,3],[0,0,0,0]],
calwt=[True,False])

...these can be edited to applycaltocallib executions as:
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callibfile=’mycallib.txt’
applycaltocallib(filename=’mycallib.txt’,append=F,

field=’cal’,
gaintable=[’cal.G’,’cal.B’], gainfield=[’nearest’,’3’],
interp=[’nearest’,’linear,linear’],
spwmap=[[0,1,1,3],[0,0,0,0]],
calwt=[True,False])

applycaltocallib(filename=’mycallib.txt’,append=T,
field=’sci’,
gaintable=[’cal.G’,’cal.B’],

gainfield=[’nearest’,’3’],
interp=[’linear’,’linear,linear’],
spwmap=[[0,1,1,3],[0,0,0,0]],
calwt=[True,False])

After running them, mycallib.txt will contain:

caltable=’cal.B’ calwt=False field=’cal’ tinterp=’linear’ finterp=’linear’ fldmap=’3’ spwmap=[0, 0, 0, 0]

caltable=’cal.G’ calwt=True field=’cal’ tinterp=’nearest’ fldmap=’nearest’ spwmap=[0, 1, 1, 3]

caltable=’cal.B’ calwt=False field=’sci’ tinterp=’linear’ finterp=’linear’ fldmap=’3’ spwmap=[0, 0, 0, 0]

caltable=’cal.G’ calwt=True field=’sci’ tinterp=’linear’ fldmap=’nearest’ spwmap=[0, 1, 1, 3]

Note that the cal.B table is specified separately for the ’cal’ and ’sci’ fields with otherwise the
same parameters; thus, those two lines could be manually consolidated to a single line with unified
field selection, yielding:

caltable=’cal.B’ calwt=False field=’cal,sci’ tinterp=’linear’ finterp=’linear’ fldmap=’3’ spwmap=[0, 0, 0, 0]

caltable=’cal.G’ calwt=True field=’cal’ tinterp=’nearest’ fldmap=’nearest’ spwmap=[0, 1, 1, 3]

caltable=’cal.G’ calwt=True field=’sci’ tinterp=’linear’ fldmap=’nearest’ spwmap=[0, 1, 1, 3]

The field selection for the first row could be removed entirely if cal.B will be used uniformly for all
fields in the MS (equivalently, field=’’). This sort of row consolidation is optional, but it may
have useful memory efficiency benefits when running applycal, and so is recommended.

The applycaltocallib function should be considered experimental and used with care, and the
resulting file examined thoroughly for correctness, since this function will not do any internal
duplication checking or other sanity checks. All other current constraints and limitations on cal
libraries (as noted above) will apply.

G.7 Glossary

This is a list of recognized Cal Library parameters. For each, the default is indicated. Additional
parameters enhancing flexibility will be added in CASA 4.5 and later.

• caltable — the name of the caltable for which the instructions on the current line apply; no
default; required
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G.7.1 MS selection

Use these parameters to implement calibration instructions specific to particular MS selections
(using standard MS Selection syntax, except where noted).

• field — the MS field selection for which the calibration instructions on the current line
apply; default=’’ (all fields)

• spw — the MS spw selection for which the calibration instructions on the current line apply;
default=’’ (all spws) Note that channel selection will be ignored, since the Cal Library does
not support variety in calibration application at channel granularity.

• intent — the MS intent selection for which the calibration instructions on the current line
apply; default=’’ (all intents)

• obs — the MS observation id selection for which the calibration instructions on the current
line apply; default=’’ (all intents)

G.7.2 Interpolation/application

• tinterp — the time-dependent interpolation mode; default=’linear’ options: ’linear’,’nearest’

• finterp — the chan-dependent interpolation mode (only relevant for channelized caltables);
default=’linear’ options: ’nearest’, ’linear’, ’cubic’, ’spline’

• calwt — weight calibration; default=True options: True, False

G.7.3 Calibration Mapping

The following *map parameters enable selection on the caltable. For each *map parameter, the
basic specification is an ordered list indicating the caltable selection indices intended for each MS
index on that axis. E.g., spwmap=[0,1,1,3] means MS spws 0,1,3 will each be be calibrated by
the same spw index from the caltable, and MS spw 2 will be calibrated by cal spw 1. The *map
parameters support other short-hand options as well, as indicated below. For defaults, “index
identity” means that each MS index will be calibrated by the corresponding caltable index, and
“no explicit mapping” means that no filter will be applied to that axis, and all available solutions
on the axis will be included.

• spwmap — spectral window mapping; default=index identity

• fldmap — field mapping; default=[] (no explicit mapping); additional options: ’nearest’
or a string indicating selection on the caltable (same as traditional gainfield options)

• antmap — antenna id mapping; default=index identity

• obsmap — obs id mapping; default=[] (no explicit mapping)
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Annotated Example Scripts

http://casaguides.nrao.edu is the source for a variety of data reduction examples for ALMA,
the VLA, simulations, and other data.
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Appendix I

CASA Dictionaries

BETA ALERT: These tend to become out of date as we add new tasks or change names.

I.1 AIPS – CASA dictionary

In Table I.1 we provide a comparison of CASA and AIPS commands. The data reduction recipes
and break-down of jobs in individual tasks, however, is not the same in both packages. Nevertheless,
the table may give AIPS users a good start if they search for functionality in CASA.

I.2 MIRIAD – CASA dictionary

Table I.2 provides a list of common Miriad tasks, and their equivalent CASA tool or tool function
names. The two packages differ in both their architecture and calibration and imaging models,
and there is often not a direct correspondence. However, this index does provide a scientific user
of CASA who is familiar with MIRIAD, with a simple translation table to map their existing data
reduction knowledge to the new package.

I.3 CLIC – CASA dictionary

Table I.3 provides a list of common CLIC tasks, and their equivalent CASA tool or tool function
names. The two packages are very similar since the CASA software to reduce IRAM data is based
on the CLIC reduction procedures.
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Table I.1: AIPS – CASA dictionary

AIPS Task CASA task/tool Description
APROPOS taskhelp List tasks with a short description of their purposes

BLCAL blcal Calculate a baseline-based gain calibration solution
BLCHN blcal Calculate a baseline-based bandpass calibration solution
BPASS bandpass Calibrate bandpasses
CALIB gaincal Calibrate gains (amplitudes and phases)
CLCAL applycal Apply calibration to data
COMB immath Combine images
CPASS bandpass Calibrate bandpasses by polynomial fitting
DBCON concat Concatenate u-v datasets

DEFAULT default Load a task with default parameters
FILLM importvla Import old-format VLA data
FITLD importuvfits Import a u-v dataset which is in FITS format
FITLD importfits Import an image which is in FITS format
FITTP exportuvfits Write a u-v dataset to FITS format
FITTP exportfits Write an image to FITS format
FRING — Calibrate group delays and phase rates.
GETJY fluxscale Determine flux densities for other cals

GO go Run a task
HELP help Display the help page for a task

IMAGR clean Image and deconvolve
IMFIT imfit Fit gaussian components to an image

IMHEAD vishead View header for u-v data
IMHEAD imhead View header for an image
IMLIN imcontsub Subtract continuum in image plane
IMLOD importfits Import a FITS image
IMSTAT imstat Measure statistics on an image

INP inp View task parameters
JMFIT imfit Fit gaussian components to an image
LISTR listobs Print basic data
MCAT ls List image data files

MOMNT immoments Compute moments from an image
OHGEO imregrid Regrids an image onto another image’s geometry
PBCOR immath Correct an image for the primary beam
PCAL polcal Calibrate polarization

POSSM plotcal Plot bandpass calibration tables
POSSM plotms Plot spectra
PRTAN listobs Print antenna locations
PRTAN plotants Plot antenna locations
QUACK flagdata Remove first integrations from scans

RENAME mv Rename an image or dataset
SETJY setjy Set flux densities for flux cals
SMOTH imsmooth Smooth an image
SNPLT plotcal Plot gain calibration tables
SPFLG viewer Flag raster image of time v. channel
SPLIT split Write out u-v files for individual sources
TASK inp Load a task with current parameters
TGET tget Load a task with parameters last used for that task
TVALL viewer Display image
TVFLG viewer Flag raster image of time v. baseline
UCAT ls List u-v data files
UVFIX fixvis Compute u, v, and w coordinates
UVFLG flagdata Flag data
UVLIN uvcontsub Subtract continuum from u-v data
UVLSF uvcontsub Subtract continuum from u-v data
UVPLT plotms Plot u-v data
UVSUB uvsub Subtracts model u-v data from corrected u-v data
WIPER plotms Plot and flag u-v data

ZAP rmtables Delete data files
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Table I.2: MIRIAD – CASA dictionary

MIRIAD Task Description CASA task/tool
blflag Interactive baseline based editor/flagger mp raster displays
cgcurs Interactive image analysis viewer
cgdisp Image display, overlays viewer
clean Clean an image clean
fits FITS image filler importfits, exportfits, importuvfits, exportuvfits

gpboot Set flux density scale fluxscale
gpcal Polarization leakage and gain calibration gaincal

gpcopy copy calibration tables not needed
gpplt Plot calibration solutions plotcal

imcomb Image combination immaths
imfit Image-plane component fitter imfit
impol Create polarization images clean
imstat Image statistics imstats
imsub Extract sub-image ia.subimage
invert Synthesis imaging clean
linmos linear mosaic combination of images clean
maths Calculations involving images immath
mfcal Bandpass and gain calibration bandpass
prthd Print header of image or uvdata imhead, listobs, vishead
restor Restore a clean component model clean
selfcal selfcalibration of visibility data clean, gaincal, etc.

Table I.3: CLIC–CASA dictionary

CLIC Function Description CASA task/tool
load Load data importfits, importasdm, importuvfits
print Print text summary of data listobs
flag Flag data plotms, flagdata, viewer

phcor Atmospheric phase correction gaincal
rf Radio frequency bandpass bandpass

phase Phase calibration gaincal
flux Absolute flux calibration setjy, fluxscale
ampl Amplitude calibration gaincal
table Split out calibrated data (uv table) split



Appendix J

Writing Tasks

ALERT: This prescription for writing and incorporating tasks in CASA is for the power-user.
This procedure is also likely to change in future releases.

It is possible to write your own task and have it appear in casapy. For example, if you want to create
a task named “yourtask”, then must create two files, yourtask.xml and a task yourtask.py. The
.xml file is use to describe the interface to the task and the task yourtask.py does the actual
work. The argument names must be the same in both the yourtask.xml and task yourtask.py
file. The yourtask.xml file is used to generate all the interface files so yourtask will appear in the
casapy system. It is easiest to start from one of the existing tasks when constructing these. You
would make the name of the function in the yourtask.py be “yourtask” in this example.

We have provided the buildmytasks command in order to assemble your Python and XML into
a loadable Python file. Thus, the steps you need to execute (again for an example task named
“yourtask”):

• Create python code for task as task yourtask.py

• Create xml for task as yourtask.xml

• Execute buildmytasks from the casapy prompt: !buildmytasks

• Initialize your new task inside casapy: execfile ’mytasks.py’

After this, you should see the help and inputs inside casapy, e.g. inp yourtask should work. Note
that for the final step you invoke the file called mytasks.py, regardless of what you named the
actual task. You now have a shiny new task yourtask that you can run and use in the same way
as all other CASA tasks.

Note that if multiple custom tasks are stored in the same directory, they will all be built by
!buildmytasks and will all be initialized by executing mytasks.py. To build and initialize only a
single task, instead use ‘!buildmytasks taskname; you are then free to rename mytasks.py (e.g.
load taskname.py) and repeat this procedure for your other tasks. Our recommendation, for those
of you who are managing multiple custom tasks, is to have each task live in its own directory. The
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mytasks.py file need not be in the current working directory to initialize your task, since you can
provide the full path upon initialization (e.g. execfile ’/full path to my task/mytasks.py’.

J.1 The XML file

The key to getting your task into casapy is constructing a task interface description XML file.

Some XML basics, an xml element begins with <element> and ends with </element>. If an XML
element contains no other XML element you may specify it via <element/>. An XML element
may have zero or more attributes which are specified by attribute=”attribute value”. You must
put the attribute value in quotes, i.e. <element myattribute=”attribute value”>.

All task xml files must start with this header information.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" ?>
<casaxml xmlns="http://casa.nrao.edu/schema/psetTypes.html"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://casa.nrao.edu/schema/casa.xsd
file:///opt/casa/code/xmlcasa/xml/casa.xsd">

and the file must have the end tag

</casaxml>

Inside a <task> tags you will need to specify the following elements.

<task>

Attributes

type required, allowed value is ”function”
name required

Subelements

shortdescription required
description required
input optional
output optional
returns optional
constraints optional

<shortdescription> - required by <task>; A short one-line description describing your task

Attributes
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None

Subelements

None

<description> - required] by <task>, Also used by <param>a; A longer description describing
your task with multiple lines

Attributes

None

Subelements

None

<input> - optional element used by <task>; An input block specifies which parameters are used
for input

Attributes

None

Subelements

<param> , optional

<output> - optional An output element that contains a list of parameters that are ”returned”
by the task.

Attributes

None

Subelements

<param> , optional

<returns> - optional Value returned by the task

Attributes

type optional; as specified in <param>

Subelements

<description> , optional

<constraints> - optional A constraints element that lets you constrain params based on the
values of other params.

Attributes

None

Subelements

<when> , required.

<param> - optional The input and output elements consist of param elements.
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Attributes

type , required; allowed values are record, variant, string int, double, bool, intArray,
doubleArray, boolArray, stringArray

name , required;
subparam , optional; allowed values True, False, Yes or No.
kind , optional;
mustexist , optional; allowed values True, False, Yes or No.

All param elements require name and type attributes.

Subelements

<description> , required;
<value> , optional;
<allowed> , optional;

<value> - optional Value returned by the task

Attributes

type , required; as specified in <param> attributes.

Subelements

<value> , optional

<allowed> - optional; Block of allowed values

Attributes

enum , required; maybe enum or range. If specified as enum only specific values are
allowed If specified as range then the value tags may have min and max attributes.

Subelements

<value> , optional

<when> - optional When blocks allow value specific handling for parameters

Attributes

param , required; Specifies special handling for a <param>

Subelements

<equals> , optional
<notequals> , optional

<equals> - optional Reset parameters if equal to the specified value

Attributes

value , required; the value of the parameter

Subelements

<default> , required
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<notequals> - optional Reset specified parameters if not equal to the specified value

Attributes

value , required; The value of the parameter

Subelements

<default> , optional

<default> - optional Resets default values for specified parameters

Attributes

param , required; Name of the <param> to be reset.

Subelements

<value> , required, the revised value of the <param>.

<example> - optional An example block, typically in python

Attributes

lang optional; specifies the language of the example, defaults to python.

Subelements

None

J.2 The task yourtask.py file

You must write the python code that does the actual work. The task *.py file function call
sequence must be the same as specified in the XML file. We may relax the requirement that the
function call sequence exactly match the sequence in the XML file in a future release.

The task *.py file should contain the following preamble

import os
from taskinit import *

plus any other global function imports you will need such as

import time

followed by the task function def. See Sect. J.3.2 for an example.

J.3 Example: The clean task

Note that the following is for illustration only and does not reflect the current implementation of
clean – a task that is always developing further on a quick pace.
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J.3.1 File clean.xml

Clean.xml gives a fairly comprehensive example of how to construct the XML file.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" ?>
<casaxml xmlns="http://casa.nrao.edu/schema/psetTypes.html"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://casa.nrao.edu/schema/casa.xsd
file:///opt/casa/code/xmlcasa/xml/casa.xsd">

<!-- This is the param set for clean -->
<!-- This does the equivalent of -->
<!-- imgr:=imager(’anyfile.ms’); -->
<!-- imgr.setdata(mode=’channel’,nchan=100,start=1,step=1,fieldid=1) -->
<!-- imgr.setimage(nx=512,ny=,cellx=’1arcsec’,celly=’1arcsec’,stokes=’I’,-->
<!-- mode=’channel’,start=35,step=1,nchan=40, -->
<!-- fieldid=[1]) -->
<!-- imgr.weight(’natural’); -->
<!-- imgr.clean(algorithm=’csclean’,niter=500,model=’field1’) -->

<task type="function" name="clean">

<shortdescription>Deconvolve an image with selected algorithm</shortdescription>

<description>
Form images from visibilities. Handles continuum and spectral line cubes.
</description>

<input>

<param type="string" name="vis" kind="ms" mustexist="true">
<description>name of input visibility file</description>
<value></value>
</param>

<param type="string" name="imagename">
<description>Pre-name of output images</description>
<value></value>

</param>

<param type="string" name="field">
<description>Field Name</description>
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<value></value>
</param>

<param type="any" name="spw">
<description>Spectral windows:channels: \’\’ is all </description>
<any type="variant"/>
<value type="string"></value>

</param>
<param type="bool" name="selectdata">

<description>Other data selection parameters</description>
<value>False</value>

</param>

<param type="string" name="timerange" subparam="true">
<description>Range of time to select from data</description>
<value></value>

</param>
<param type="string" name="uvrange" subparam="true">

<description>Select data within uvrange </description>
<value></value>

</param>
<param type="string" name="antenna" subparam="true">

<description>Select data based on antenna/baseline</description>
<value></value>

</param>
<param type="string" name="scan" subparam="true">

<description>scan number range</description>
<value></value>

</param>

<param type="string" name="mode">
<description>

Type of selection (mfs, channel, velocity, frequency)
</description>
<value>mfs</value>
<allowed kind="enum">
<value>mfs</value>
<value>channel</value>
<value>velocity</value>
<value>frequency</value>

</allowed>
</param>
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<param type="int" name="niter">
<description>Maximum number of iterations</description>
<value>500</value>
</param>

<param type="double" name="gain">
<description>Loop gain for cleaning</description>
<value>0.1</value>

</param>

<param type="double" name="threshold" units="mJy">
<description>Flux level to stop cleaning. Must include units</description>
<value>0.0</value>

</param>

<!-- Getting rid of this
<param type="bool" name="csclean">
<description>Use Cotton-Schwab style reconciliation with UV-data</description>
<value>False</value>

</param>
-->

<param type="string" name="psfmode">
<description>method of PSF calculation to use during minor cycles</description>
<value>clark</value>
<allowed kind="enum">
<value>clark</value>
<value>hogbom</value>

</allowed>
</param>

<param type="string" name="imagermode">
<description> Use csclean or mosaic. If \’\’, use psfmode</description>
<value></value>
<allowed kind="enum">

<value></value>
<value>csclean</value>
<value>mosaic</value>

</allowed>

</param>
<param type="string" name="ftmachine" subparam="true">
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<description>Gridding method for the image</description>
<value>mosaic</value>
<allowed kind="enum">
<value>mosaic</value>
<value>ft</value>
<value>sd</value>
<value>both</value>

</allowed>

</param>
<param type="bool" name="mosweight" subparam="true">
<description>Individually weight the fields of the mosaic</description>
<value>False</value>

</param>
<param type="string" name="scaletype" subparam="true">
<description>Controls scaling of pixels in the image plane.

default=\’SAULT\’;
example: scaletype=\’PBCOR\’ Options: \’PBCOR\’,\’SAULT\’</description>

<value>SAULT</value>
<allowed kind="enum">
<value>SAULT</value>
<value>PBCOR</value>

</allowed>
</param>

<param type="intArray" name="multiscale">
<description>set deconvolution scales (pixels),
default: multiscale=[] (standard CLEAN)</description>

<value type="vector">
<value></value>

</value>

</param>
<param type="int" name="negcomponent" subparam="true">
<description>

Stop cleaning if the largest scale finds this number of neg components
</description>
<value>0</value>

</param>

<param type="bool" name="interactive">
<description>use interactive clean (with GUI viewer)</description>
<value>False</value>
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</param>

<param type="any" name="mask">
<description>cleanbox(es), mask image(s), and/or region(s) used in cleaning
</description>
<any type="variant"/>
<value type="stringArray"></value>

</param>

<param type="int" name="nchan" subparam="true">
<description>Number of channels (planes) in output image</description>
<value>1</value>

</param>

<param type="any" name="start" subparam="true">
<description>First channel in input to use</description>
<any type="variant"/>
<value type="int">0</value>

</param>

<param type="any" name="width" subparam="true">
<description>Number of input channels to average</description>
<any type="variant"/>
<value type="int">1</value>

</param>

<param type="intArray" name="imsize">
<description>x and y image size in pixels, symmetric for single value
</description>
<value type="vector">

<value>256</value><value>256</value>
</value>

</param>

<param type="doubleArray" name="cell" units="arcsec">
<description>x and y cell size. default unit arcsec</description>
<value type="vector"><value>1.0</value><value>1.0</value></value>
</param>

<param type="any" name="phasecenter">
<description>Image phase center: position or field index</description>
<any type="variant"/>
<value type="string"></value>
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</param>

<param type="string" name="restfreq">
<description>rest frequency to assign to image (see help)</description>
<value></value>

</param>

<param type="string" name="stokes">
<description>Stokes params to image (eg I,IV, QU,IQUV)</description>
<value>I</value>

<allowed kind="enum">
<value>I</value>
<value>IV</value>
<value>QU</value>
<value>IQUV</value>
<value>RR</value>
<value>LL</value>
<value>RRLL</value>
<value>XX</value>
<value>YY</value>
<value>XXYY</value>

</allowed>
</param>

<param type="string" name="weighting">
<description>Weighting to apply to visibilities</description>
<value>natural</value>
<allowed kind="enum">

<value>natural</value>
<value>uniform</value>
<value>briggs</value>
<value>briggsabs</value>
<value>radial</value>
<value>superuniform</value>

</allowed>
</param>

<param type="double" name="robust" subparam=’true’>
<description>Briggs robustness parameter</description>
<value>0.0</value>
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<allowed kind="range">
<value range="min">-2.0</value>
<value range="max">2.0</value>

</allowed>
</param>

<param type="bool" name="uvtaper">
<description>Apply additional uv tapering of visibilities.</description>
<value>False</value>

</param>

<param type="stringArray" name="outertaper" subparam="true">
<description>uv-taper on outer baselines in uv-plane</description>
<value type="vector">
<value></value>

</value>
</param>

<param type="stringArray" name="innertaper" subparam="true">
<description>uv-taper in center of uv-plane</description>
<value>1.0</value>

</param>

<param type="string" name="modelimage">
<description>Name of model image(s) to initialize cleaning</description>
<value></value>

</param>
<param type="stringArray" name="restoringbeam">
<description>Output Gaussian restoring beam for CLEAN image</description>
<value></value>

</param>
<param type="bool" name="pbcor">

<description>Output primary beam-corrected image</description>
<value>False</value>

</param>

<param type="double" name="minpb">
<description>Minimum PB level to use</description>
<value>0.1</value>

</param>

<param type="any" name="noise" subparam=’true’>
<description>noise parameter for briggs abs mode weighting</description>
<any type="variant"/>



APPENDIX J. APPENDIX: WRITING TASKS IN CASA 547

<value type="string">1.0Jy</value>
</param>

<param type="int" name="npixels" subparam=’true’>
<description>number of pixels for superuniform or briggs weighting
</description>
<value>0</value>

</param>

<param type="int" name="npercycle" subparam=’true’>
<description>Number of iterations before interactive prompt</description>
<value>100</value>

</param>
<param type="double" name="cyclefactor" subparam=’true’>
<description>change depth in between of csclean cycle</description>
<value>1.5</value>

</param>
<param type="int" name="cyclespeedup" subparam=’true’>

<description>Cycle threshold doubles in this number of iteration</description>
<value>-1</value>

</param>

<constraints>
<when param="selectdata">

<equals type="bool" value="False"/>
<equals type="bool" value="True">
<default param="timerange"><value type="string"></value>
</default>
<default param="uvrange"><value type="string"></value>
</default>
<default param="antenna"><value type="string"></value>
</default>
<default param="scan"><value type="string"></value>
</default>

</equals>
</when>
<when param="multiscale">

<notequals type="vector" value="[]" >
<default param="negcomponent"><value>-1</value>
</default>
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</notequals>
</when>
<when param="mode">

<equals value="mfs"/>
<equals value="channel">

<default param="nchan"><value>1</value></default>
<default param="start"><value>0</value>

<description>first input channel to use</description>
</default>
<default param="width"><value>1</value></default>

</equals>
<equals value="velocity">

<default param="nchan"><value>1</value></default>
<default param="start"><value type="string">0.0km/s</value>

<description>Velocity of first image channel: e.g. \’0.0km/s\’
</description>

</default>
<default param="width"><value type="string">1km/s</value>

<description>image channel width in velocity units:
e.g. \’-1.0km/s\’</description>

</default>
</equals>
<equals value="frequency">

<default param="nchan"><value>1</value></default>
<default param="start"><value type="string">1.4GHz</value>

<description>Frequency of first image channel: e.q. \’1.4GHz\’
</description>

</default>
<default param="width"><value type="string">10kHz</value>

<description>Image channel width in frequency units:
e.g. \’1.0kHz\’</description>

</default>
</equals>

</when>

<when param="weighting">
<equals value="natural"/>
<equals value="uniform"/>
<equals value="briggs">

<default param="robust"><value>0.0</value></default>
<default param="npixels"><value>0</value>

<description>number of pixels to determine uv-cell size
0=&gt; field of view</description>

</default>
</equals>
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<equals value="briggsabs">
<default param="robust"><value>0.0</value></default>
<default param="noise"><value type="string">1.0Jy</value></default>
<default param="npixels"><value>0</value>

<description>number of pixels to determine uv-cell size
0=&gt; field of view</description>

</default>
</equals>
<equals value="superuniform">

<default param="npixels"><value>0</value>
<description>number of pixels to determine uv-cell size

0=&gt; +/-3pixels</description>
</default>

</equals>
</when>
<when param="uvtaper">

<equals type="bool" value="False"/>
<equals type="bool" value="True">

<default param="outertaper"><value type="vector"></value></default>
<default param="innertaper"><value type="vector"></value></default>

</equals>
</when>
<when param="interactive">

<equals type="bool" value="False"/>
<equals type="bool" value="True">

<default param="npercycle"><value>100</value></default>
</equals>

</when>
<when param="imagermode">

<equals value=""/>
<equals value="csclean">

<default param="cyclefactor"><value>1.5</value></default>
<default param="cyclespeedup"><value>-1</value></default>

</equals>
<equals value="mosaic">

<default param="mosweight"><value>False</value></default>
<default param="ftmachine"><value type="string">mosaic</value>

</default>
<default param="scaletype"><value type="string">SAULT</value>

</default>
<default param="cyclefactor"><value>1.5</value></default>
<default param="cyclespeedup"><value>-1</value></default>

</equals>
</when>

<!--Get rid of that soon
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<when param="mosaicmode">
<equals type="bool" value="False"/>
<equals type="bool" value="True">

<default param="mosweight"><value>False</value></default>
<default param="ftmachine"><value type="string">mosaic</value></default>
<default param="scaletype"><value type="string">SAULT</value></default>

</equals>
</when>

-->
</constraints>

</input>

<returns type="void"/>

<example>

The main clean deconvolution task. It contains many functions

1) Make ’dirty’ image and ’dirty’ beam (psf)
2) Multi-frequency-continuum images or spectral channel imaging
3) Full Stokes imaging
4) Mosaicking of several pointings
5) Multi-scale cleaning
6) Interactive clean boxing
7) Initial starting model

vis -- Name of input visibility file
default: none; example: vis=’ngc5921.ms’

imagename -- Pre-name of output images:
default: none; example: imagename=’m2’
output images are:
m2.image; cleaned and restored image

With or without primary beam correction
m2.psf; point-spread function (dirty beam)
m2.flux; relative sky sensitivity over field
m2.model; image of clean components
m2.residual; image of residuals
m2.interactive.mask; image containing clean regions

field -- Select fields in mosaic. Use field id(s) or field name(s).
[’go listobs’ to obtain the list id’s or names]

default: ’’=all fields
If field string is a non-negative integer, it is assumed to

be a field index otherwise, it is assumed to be a
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field name
field=’0~2’; field ids 0,1,2
field=’0,4,5~7’; field ids 0,4,5,6,7
field=’3C286,3C295’; field named 3C286 and 3C295
field = ’3,4C*’; field id 3, all names starting with 4C

spw -- Select spectral window/channels
NOTE: This selects the data passed as the INPUT to mode
default: ’’=all spectral windows and channels
spw=’0~2,4’; spectral windows 0,1,2,4 (all channels)
spw=’0:5~61’; spw 0, channels 5 to 61
spw=’&lt;2’; spectral windows less than 2 (i.e. 0,1)
spw=’0,10,3:3~45’; spw 0,10 all channels, spw 3,

channels 3 to 45.
spw=’0~2:2~6’; spw 0,1,2 with channels 2 through 6 in each.
spw=’0:0~10;15~60’; spectral window 0 with channels

0-10,15-60
spw=’0:0~10,1:20~30,2:1;2;3’; spw 0, channels 0-10,

spw 1, channels 20-30, and spw 2, channels, 1,2 and 3
selectdata -- Other data selection parameters

default: True
&gt;&gt;&gt; selectdata=True expandable parameters

See help par.selectdata for more on these
timerange -- Select data based on time range:

default = ’’ (all); examples,
timerange = ’YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss’
Note: if YYYY/MM/DD is missing date defaults to first

day in data set
timerange=’09:14:0~09:54:0’ picks 40 min on first day
timerange= ’25:00:00~27:30:00’ picks 1 hr to 3 hr

30min on NEXT day
timerange=’09:44:00’ pick data within one integration

of time
timerange=’&gt;10:24:00’ data after this time

uvrange -- Select data within uvrange (default units meters)
default: ’’ (all); example:
uvrange=’0~1000klambda’; uvrange from 0-1000 kilo-lambda
uvrange=’&gt;4klambda’;uvranges greater than 4 kilo lambda

antenna -- Select data based on antenna/baseline
default: ’’ (all)
If antenna string is a non-negative integer, it is
assumed to be an antenna index, otherwise, it is
considered an antenna name.

antenna=’5&amp;6’; baseline between antenna index 5 and
index 6.

antenna=’VA05&amp;VA06’; baseline between VLA antenna 5
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and 6.
antenna=’5&amp;6;7&amp;8’; baselines 5-6 and 7-8
antenna=’5’; all baselines with antenna index 5
antenna=’05’; all baselines with antenna number 05

(VLA old name)
antenna=’5,6,9’; all baselines with antennas 5,6,9

index numbers
scan -- Scan number range.

default: ’’ (all)
example: scan=’1~5’
Check ’go listobs’ to insure the scan numbers are in

order.
mode -- Frequency Specification:

NOTE: See examples below:
default: ’mfs’
mode = ’mfs’ means produce one image from all

specified data.
mode = ’channel’; Use with nchan, start, width to specify

output image cube. See examples below
mode = ’velocity’, means channels are specified in

velocity.
mode = ’frequency’, means channels are specified in

frequency.
&gt;&gt;&gt; mode expandable parameters (for modes other than ’mfs’)

Start, width are given in units of channels, frequency
or velocity as indicated by mode, but only channel
is complete.

nchan -- Number of channels (planes) in output image
default: 1; example: nchan=3

start -- Start input channel (relative-0)
default=0; example: start=5

width -- Output channel width in units of the input
channel width (&gt;1 indicates channel averaging)

default=1; example: width=4
examples:

spw = ’0,1’; mode = ’mfs’
will produce one image made from all channels in spw

0 and 1
spw=’0:5~28^2’; mode = ’mfs’

will produce one image made with channels
(5,7,9,...,25,27)

spw = ’0’; mode = ’channel’: nchan=3; start=5; width=4
will produce an image with 3 output planes
plane 1 contains data from channels (5+6+7+8)
plane 2 contains data from channels (9+10+11+12)
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plane 3 contains data from channels (13+14+15+16)
spw = ’0:0~63^3’; mode=’channel’; nchan=21; start = 0;

width = 1
will produce an image with 20 output planes
Plane 1 contains data from channel 0
Plane 2 contains date from channel 2
Plane 21 contains data from channel 61

spw = ’0:0~40^2’; mode = ’channel’; nchan = 3; start =
5; width = 4
will produce an image with three output planes
plane 1 contains channels (5,7)
plane 2 contains channels (13,15)
plane 3 contains channels (21,23)

psfmode -- method of PSF calculation to use during minor cycles:
default: ’clark’: Options: ’clark’,’hogbom’
’clark’ use smaller beam (faster, usually good enough)
’hogbom’ full-width of image (slower, better for poor
uv-coverage)
Note: psfmode will be used to clean is imagermode = ’’

imagermode -- Advanced imaging e.g. mosaic or Cotton-Schwab clean
default: imagermode=’’: Options: ’’, ’csclean’, ’mosaic’
default ’’ =&gt; psfmode cleaning algorithm used

&gt;&gt;&gt; imagermode=’mosaic’ expandable parameter(s):
Image as a mosaic of the different pointings (uses csclean
style too)

mosweight -- Individually weight the fields of the mosaic
default: False; example: mosweight=True
This can be useful if some of your fields are more
sensitive than others (i.e. due to time spent
on-source); this parameter will give more weight to
higher sensitivity fields in the overlap regions.

ftmachine -- Gridding method for the image;
Options: ft (standard interferometric gridding), sd
(standard single dish) both (ft and sd as appropriate),
mosaic (gridding use PB as convolution function)
default: ’mosaic’; example: ftmachine=’ft’

scaletype -- Controls scaling of pixels in the image plane.
(Not fully implemented...for now only controls
what is seen if interactive=True...but in the future will
control the image on which clean components are searched)
default=’SAULT’; example: scaletype=’PBCOR’
Options: ’PBCOR’,’SAULT’
’SAULT’ when interactive=True shows the residual

with constant noise across the mosaic. If
pbcor=False, the final output image is NOT
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corrected for the PB pattern, and therefore is
not "flux correct". Division of SAULT
&lt;imagename&gt;.image by the &lt;imagename&gt;.flux image
will produce a "flux correct image", can also
be achieved by setting pbcor=True.

’PBCOR’ uses the SAULT scaling scheme for
deconvolution, but if interactive=True shows the
primary beam corrected image; the final PBCOR
image is "flux correct" if pbcor=True.

&gt;&gt;&gt; imagermode=’csclean’ expandable parameter(s): Image using the
Cotton-Schwab algorithm in between major cycles
cyclefactor -- Change the threshold at which

the deconvolution cycle will stop, degrid
and subtract from the visibilities. For
poor PSFs, reconcile often (cyclefactor=4 or
5); For good PSFs, use cyclefactor 1.5 to
2.0. Note: threshold = cyclefactor * max
sidelobe * max residual.
default: 1.5; example: cyclefactor=4

cyclespeedup -- Cycle threshold doubles in this
number of iterations default: -1;
example: cyclespeedup=3
try cyclespeedup = 50 to speed up cleaning

multiscale -- set of scales to use in deconvolution. If set,
cleans with several resolutions using hobgom clean. The
scale sizes are in units of cellsize. So if
cell=’2arcsec’, a multiscale scale=10 = 20arcsec. First
scale should always be 0 (point), we suggest second on
the order of synthesized beam, third 3-5 times
synthesized beam, etc. For example if synthesized beam
is 10" and cell=2", try multscale = [0,5,15]. Note,
multiscale is currently a bit slow.
default: multiscale=[] (standard CLEAN using psfmode algorithm,
no multi-scale). Example: multscale = [0,5,15]

&gt;&gt;&gt; multiscale expandable parameter(s): negcomponent -- Stop
component search when the largest scale has found this
number of negative components; -1 means continue
component search even if the largest component is
negative. default: -1; example: negcomponent=50

imsize -- Image pixel size (x,y)
default = [256,256]; example: imsize=[350,350]
imsize = 500 is equivalent to [500,500]

cell -- Cell size (x,y)
default= ’1.0arcsec’;
example: cell=[’0.5arcsec,’0.5arcsec’] or



APPENDIX J. APPENDIX: WRITING TASKS IN CASA 555

cell=[’1arcmin’, ’1arcmin’]
cell = ’1arcsec’ is equivalent to [’1arcsec’,’1arcsec’]
NOTE:cell = 2.0 =&gt; [’2arcsec’, ’2arcsec’]

phasecenter -- direction measure or fieldid for the mosaic center
default: ’’ =&gt; first field selected ; example: phasecenter=6
or phasecenter=’J2000 19h30m00 -40d00m00’

restfreq -- Specify rest frequency to use for output image
default=’’ Occasionally it is necessary to set this (for
example some VLA spectral line data). For example for
NH_3 (1,1) put restfreq=’23.694496GHz’

stokes -- Stokes parameters to image
default=’I’; example: stokes=’IQUV’;
Options: ’I’,’IV’’QU’,’IQUV’,’RR’,’LL’,’XX’,’YY’,’RRLL’,’XXYY’

niter -- Maximum number iterations,
if niter=0, then no CLEANing is done ("invert" only)
default: 500; example: niter=5000

gain -- Loop gain for CLEANing
default: 0.1; example: gain=0.5

threshold -- Flux level at which to stop CLEANing
default: ’0.0mJy’;
example: threshold=’2.3mJy’ (always include units)

threshold = ’0.0023Jy’
threshold = ’0.0023Jy/beam’ (okay also)

interactive -- use interactive clean (with GUI viewer)
default: interactive=False
example: interactive=True
interactive clean allows the user to build the cleaning

mask interactively using the viewer. The viewer will
appear every npercycle iteration, but modify as needed
The final interactive mask is saved in the file
imagename_interactive.mask. The initial masks use the
union of mask and cleanbox (see below)

&gt;&gt;&gt; interactive=True expandable parameter npercycle -- this is the
number of iterations between each clean to update mask
interactively. Set to about niter/5, but can also be
changed interactively.

mask -- Specification of cleanbox(es), mask image(s), and/or
region(s) to be used for CLEANing. As long as the image has
the same shape (size), mask images from a previous
interactive session can be used for a new execution. NOTE:
the initial clean mask actually used is the union of what
is specified in mask and &lt;imagename&gt;.mask default: [] (no
masking); Possible specification types: (a) Explicit
cleanbox pixel ranges example: mask=[110,110,150,145] clean
region with blc=110,100; trc=150,145 (pixel values) (b)
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Filename with cleanbox pixel values with ascii format:
example: mask=’mycleanbox.txt’ &lt;fieldid blc-x blc-y
trc-x trc-y&gt; on each line
1 45 66 123 124
2 23 100 300 340
(c) Filename for image mask example: mask=’myimage.mask’
(d) Filename for region specification (e.g. from viewer)
example: mask=’myregion.rgn’ (e) Combinations of any of the
above example: mask=[[110,110,150,145],’mycleanbox.txt’,
’myimage.mask’,’myregion.rgn’]

uvtaper -- Apply additional uv tapering of the visibilities.
default: uvtaper=False; example: uvtaper=True

&gt;&gt;&gt; uvtaper=True expandable parameters
outertaper -- uv-taper on outer baselines in uv-plane
[bmaj, bmin, bpa] taper Gaussian scale in uv or
angular units. NOTE: uv taper in (klambda) is roughly on-sky
FWHM(arcsec/200)
default: outertaper=[]; no outer taper applied
example: outertaper=[’5klambda’] circular taper

FWHM=5 kilo-lambda
outertaper=[’5klambda’,’3klambda’,’45.0deg’]
outertaper=[’10arcsec’] on-sky FWHM 10"
outertaper=[’300.0’] default units are meters

in aperture plane
innertaper -- uv-taper in center of uv-plane
[bmaj,bmin,bpa] Gaussian scale at which taper falls to
zero at uv=0
default: innertaper=[]; no inner taper applied
NOT YET IMPLEMENTED

modelimage -- Name of model image(s) to initialize cleaning. If
multiple images, then these will be added together to
form initial staring model NOTE: these are in addition
to any initial model in the &lt;imagename&gt;.model image file
default: ’’ (none); example: modelimage=’orion.model’
modelimage=[’orion.model’,’sdorion.image’] Note: if the
units in the image are Jy/beam as in a single-dish
image, then it will be converted to Jy/pixel as in a
model image, using the restoring beam in the image
header

weighting -- Weighting to apply to visibilities:
default=’natural’; example: weighting=’uniform’;
Options: ’natural’,’uniform’,’briggs’,

’superuniform’,’briggsabs’,’radial’
&gt;&gt;&gt; Weighting expandable parameters

For weighting=’briggs’ and ’briggsabs’
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robust -- Brigg’s robustness parameter
default=0.0; example: robust=0.5;
Options: -2.0 to 2.0; -2 (uniform)/+2 (natural)

For weighting=’briggsabs’
noise -- noise parameter to use for Briggs "abs"
weighting

example noise=’1.0mJy’
For superuniform/briggs/briggsabs weighting
npixels -- number of pixels to determine uv-cell size
for weight calculation
example npixels=7

restoringbeam -- Output Gaussian restoring beam for CLEAN image
[bmaj, bmin, bpa] elliptical Gaussian restoring beam
default units are in arc-seconds for bmaj,bmin, degrees
for bpa default: restoringbeam=[]; Use PSF calculated
from dirty beam.
example: restoringbeam=[’10arcsec’] circular Gaussian

FWHM 10" example:
restoringbeam=[’10.0’,’5.0’,’45.0deg’] 10"x5"
at 45 degrees

pbcor -- Output primary beam-corrected image
default: pbcor=False; output un-corrected image
example: pbcor=True; output pb-corrected image (masked outside
minpb) Note: if you set pbcor=False, you can later
recover the pbcor image by dividing by the .flux image
(e.g. using immath)

minpb -- Minimum PB level to use default=0.1; example:
minpb=0.01 Note: this minpb is always in effect
(regardless of pbcor=True/False)

</example>

</task>

</casaxml>

J.3.2 File task clean.py

Task clean implementation file.

import os
from taskinit import *
from cleanhelper import *
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def clean(vis,imagename,field, spw, selectdata, timerange, uvrange, antenna,
scan, mode,niter, gain,threshold, psfmode, imagermode, ftmachine,
mosweight, scaletype, multiscale, negcomponent,interactive,mask,
nchan,start,width,imsize,cell, phasecenter, restfreq, stokes,
weighting,robust, uvtaper,outertaper,innertaper, modelimage,
restoringbeam,pbcor, minpb, noise, npixels, npercycle, cyclefactor,
cyclespeedup):

#Python script

casalog.origin(’clean’)

maskimage=’’
if((mask==[]) or (mask==’’)):

mask=[’’]
if (interactive):

if( (mask==’’) or (mask==[’’]) or (mask==[])):
#try:
if(1):

imCln=imtool.create()
imset=cleanhelper(imCln, vis)

if((len(imagename)==0) or (imagename.isspace())):
raise Exception, ’Cannot proceed with blank imagename’

casalog.origin(’clean’)

imset.defineimages(imsize=imsize, cell=cell, stokes=stokes,
mode=mode, spw=spw, nchan=nchan,
start=start, width=width,
restfreq=restfreq, field=field,
phasecenter=phasecenter)

imset.datselweightfilter(field=field, spw=spw,
timerange=timerange,
uvrange=uvrange,
antenna=antenna, scan=scan,
wgttype=weighting,
robust=robust,
noise=noise, npixels=npixels,
mosweight=mosweight,
innertaper=innertaper,
outertaper=outertaper)



APPENDIX J. APPENDIX: WRITING TASKS IN CASA 559

if(maskimage==’’):
maskimage=imagename+’.mask’

imset.makemaskimage(outputmask=maskimage,imagename=imagename,
maskobject=mask)

###define clean alg
alg=psfmode
if(multiscale==[0]):

multiscale=[]
if((type(multiscale)==list) and (len(multiscale)>0)):

alg=’multiscale’
imCln.setscales(scalemethod=’uservector’,

uservector=multiscale)
if(imagermode==’csclean’):

alg=’mf’+alg
if(imagermode==’mosaic’):

if(alg.count(’mf’) <1):
alg=’mf’+alg

imCln.setoptions(ftmachine=ftmachine, padding=1.0)
imCln.setvp(dovp=True)

###PBCOR or not
sclt=’SAULT’
if((scaletype==’PBCOR’) or (scaletype==’pbcor’)):

sclt=’NONE’
imCln.setvp(dovp=True)

else:
if(imagermode != ’mosaic’):

##make a pb for flux scale
imCln.setvp(dovp=True)
imCln.makeimage(type=’pb’, image=imagename+’.flux’)
imCln.setvp(dovp=False)

##restoring
imset.setrestoringbeam(restoringbeam)
###model image
imset.convertmodelimage(modelimages=modelimage,

outputmodel=imagename+’.model’)

####after all the mask shenanigans...make sure to use the
####last mask
maskimage=imset.outputmask
if((imagermode==’mosaic’)):

imCln.setmfcontrol(stoplargenegatives=negcomponent,scaletype=sclt,
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minpb=minpb,cyclefactor=cyclefactor,
cyclespeedup=cyclespeedup,
fluxscale=[imagename+’.flux’])

else:
imCln.setmfcontrol(stoplargenegatives=negcomponent,

cyclefactor=cyclefactor, cyclespeedup=cyclespeedup)

imCln.clean(algorithm=alg,niter=niter,gain=gain,
threshold=qa.quantity(threshold,’mJy’),
model=[imagename+’.model’],
residual=[imagename+’.residual’],
image=[imagename+’.image’],
psfimage=[imagename+’.psf’],
mask=maskimage, interactive=interactive,
npercycle=npercycle)

imCln.close()
presdir=os.path.realpath(’.’)
newimage=imagename
if(imagename.count(’/’) > 0):

newimage=os.path.basename(imagename)
os.chdir(os.path.dirname(imagename))

result = ’\’’ + newimage + ’.image’ + ’\’’;
fluxscale_image = ’\’’ + newimage + ’.flux’ + ’\’’;
if (pbcor):

if(sclt != ’NONE’):
##otherwise its already divided
ia.open(newimage+’.image’)

pixmask = fluxscale_image+’>’+str(minpb);
ia.calcmask(pixmask,asdefault=True);

pixels=’iif(’+ fluxscale_image+’>’+str(minpb)+’,’
+ result+’/’+fluxscale_image+’, 0)’

ia.calc(pixels=pixels)
ia.close()

else:
## people has imaged the fluxed corrected image
## but want the
## final image to be non-fluxed corrected
if(sclt==’NONE’):

ia.open(newimage+’.image’)
result=newimage+’.image’
fluxscale_image=newimage+’.flux’
pixels=result+’*’+fluxscale_image
ia.calc(pixels=pixels)
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ia.close()
os.chdir(presdir)

del imCln

# except Exception, instance:
# print ’*** Error *** ’,instance
# raise Exception, instance
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