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1.0 Introduction

Pointing models are used to correct the pointing of antennas and telescopes for deviations
from ideal construction. The model accounts for a variety of mechanical and electrical errors.

This document describes the standard pointing model used in the Field System. This model
is similar in form to pointing models used by many radio telescopes. This particular model, in
terms of the choices of signs and which terms are estimated is a variant of the model used to
analyze Apollo 13 tracking data (Apollo 13 MSFN Metric Tracking Performance, Final Report,
Document X-832-70-156, NASA Goddard Space Flight Center, Greenbelt, MD 20771, July
1970). A brief description of the model is given in the Pointing Model File manual.

There are three sections in this manual. The first states the model with an explanation of each
term including a physical interpretation. The second section discusses some of the details of
using the model. The third section explains, in some detail, the steps used to derive the model.
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2.0 Pointing Model

The current model contains 14 terms. Every term is not used by every telescope. The model
gives values for “observed-minus-calculated” angles. In other words, the model calculates an
offset which is added to the calculated command angles to get the corrected command angles,
which actually will point the antenna in the desired direction.

The nomenclature will be that the corrected angles are the “apparent” angles, and the
uncorrected angles, which refer to a fixed local reference frame will be the “true” angles.
Consequently, another way of saying “observed-minus-calculated” is “apparent-minus-true”.

One of the differences between the model used here and for the Apollo 13 data (see reference
in section 1.0 of this document) is that the model has been generalized to include all the antenna
axis types used by the Crustal Dynamics Project: XY (both NS and EW), AZEL, and HADC.
The basic similarity between these coordinate systems is that the first coordinate is always a
longitude-like coordinate and the second coordinate is always a latitude-like coordinate. The
difference is that the XY angle systems are right-handed and the AZEL and HADC angle
systems are left-handed if an outward radial direction is assumed for the third coordinate.
Otherwise all the antenna coordinates represent the same system rotated to different orientations.
The Goddard X-Document: Mathematical Relationships of the MFOD Antenna Axes (Document
X-553-67-123, NASA Goddard Space Flight Center, Greeenbelt, MD 20771, May 1967) gives
the coordinate relationships for the different axis types as well as a general procedure for
determining transformations from one system to another. The Coordinate Conversions manual
collects the results of this X-Document for easy reference.

The longitude-like coordinate (X, AZ, HA) correction AX, expressed for X and Y angles is:

AX = P, - P,cos¢sinXsecY + Pytan¥ - P,secY + P sinX tanY
- PscosXtanY + P,X + PcosX + P, sinX 1)
+ P sc0s2X + P sin2X

The latitude-like coordinate (Y, EL, DC) correction AY, expressed for X and Y angles is:
where:
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AY = P;cosX + PgsinX + P, - Pycos¢ cosXsinY - sing cosY) ?)
+ PY + P cosY + P sinY
is the angle between the Y= +90° and the horizon, measured positive in the direction from
Y=490° to X,Y=(0°,0°). For a nominal XY (NS or EW) system, ¢=0.0°; for a
nominal AZEL, ¢=90.0°; for a nominal HADC, ¢=geodetic latitude.

is the X-angle offset, the difference of the X-angle encoder bias (positive if encoder
reading is too high) minus ‘tilt around’, which is the tilt of the antenna around the
Y=+90° (positive if apparent X,Y =(0°,0°) is closer to true X,Y=(+90°,0°))

is the X angle sag, the effect of gravity on the RF axis of the dish projected on the X
direction (positive if the RF axis is lower)

is the perpendicular axis skew, the apparent Y=+90° to true ¥=0° plane- lack of
orthogonality in the plane perpendicular to the current X angle meridian (positive if
apparent Y=+90° is closer to true X, Y=((current X)-90°,0°))

is the box offset, RF-axis to radial direction misalignment along the X direction (positive
if RF-axis is toward the increasing X angle direction)

is the “tilt out”, tilt of the apparent Y=+90° toward the true X,Y=(0°,0°) position
(positive if apparent ¥Y=+90° is closer to true X,¥=(0°,0°))

is the “tilt over”, tilt of the ¥Y=+90° toward the X,¥=(+90°,0°) position (positive if
apparent Y= +90° is closer to true X,¥Y=(+90°,0°))

is the Y angle offset, difference of the Y angle encoder bias (positive if encoder reads too
high) minus the sum of the skew of ¥=+90° along the current X meridian angle (positive
if apparent Y= +90° is farther from true X,Y=(current X,0°)) plus the RF axis to radial
direction misalignment along the Y direction (positive if the RF axis is toward the
increasing Y angle direction) :

is the Y angle sag, the effect of gravity on the RF axis of the dish projected on the Y
direction (positive if the RF axis is lower)
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P, is an ad hoc Y-angle excess scale factor (greater than O if the encoder read-out changes
faster than the actual antenna position)

P, is an ad hoc AYcosY coefficient
P,, is an ad hoc AYsinY coefficient

P, is an ad hoc X-angle excess scale factor (greater than O if the encoder read-out changes
faster than the actual antenna position)

P,y is an ad hoc AXcosX coefficient
P, is an ad hoc AXsinX coefficient
P,; is an ad hoc AXcos2X coefficient

Py, is an ad hoc AXsin2X coefficient
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3.0 Discussion

The terms of the model break down into two classes: (1) those that model some misalignment
in the coordinate system, and (2) gravitational deformation and other, perhaps ad hoc, terms.
Among these two classes: Py, P;, Py, Ps, P;, and P, represent misalignments of the antenna and
feed system from ideal, all the other terms represent gravitational deformation and/or ad hoc
terms. P, and P represent the effect of a gravitational sag of the antenna. However, depending
on the actual structure of the antenna other ad hoc terms may be necessary and the gravitational
effects may also contaminate other terms. This is discussed in more detail below.

The interpretations of model terms in the previous section were written somewhat obliquely,
so that their inferpretation is independent of axis type. X could be globally replaced with AZ or
HA and Y replaced with EL or DC respectively with no change in the interpretation of the terms.
The terms of the model form a fairly comprehensive set of the possible misalignments of the
antenna: tilts of the axis system, RF axis misalignments, skewing between the two coordinate
axes, and biases in the encoder read-out. '

Terms P; and P, or “tilt out” and “tilt over”, represent two orthogonal components of the
tilt of a coordinate system’s equatorial plane. Table 3.1 contains a summary of the interpretation
of the two terms in local coordinates for different axis systems. For an XYNS, tilt out is the
displacement of the apparent Y=+90° up from true Y=490° and the tilt over is its
displacement east. Similarly for an AZEL system, tilt out is the displacement of apparent
EL=+90° to the north and tilt over is its displacement to the east. For a HADC system, not
at the north or south pole, tilt out is the displacement of apparent DC=+90° toward zenith, tilt
out is its displacement toward +6 hours local hour angle. Finally, for an XYEW system, tilt out
is the displacement of apparent Y= +90° up, tilt over is its displacement to the south. The use
of up, east, zenith, six hours local hour angle, and south may not be accurate if ¢ does not have
the nominal value for its coordinate system, or for a nominal HADC antenna at the north or
south pole.
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Table 3.1 Tilt Directions
Displacment of apparent Y (or EL or DC) =+90° corresponding to a positive parameter
value.
Term Name XYNS XYEW AZEL HADC
(¢=0°) (#=0°) | ($=90°) (-90° < ¢ < +90°)
P tilt out up up north zenith
P tilt over east south east +6 hours HA

The P, and P, terms represent the same geometrical effect, gravitational deflection, however
they are estimated independently. The actual deflection may be different in different directions
depending on the symmetry and rigidity of the dish. Hence the deflection along the X-direction
may differ from that along the Y-direction. An effective argument could be made that these
terms should be estimated as one and ad hoc terms used to account for any differences.

In general there is no a priori model for gravitational deflection. For a perfectly symmetric
dish and backup structure the terms P, and P, should be the same and completely model the sag.
However, since no dish is perfect, these terms will differ and may in fact be inadequate for
modeling the deformations. Depending on the details of the dish, the true deflection terms may
have a form similar to other terms already being estimated. In terms of increasing complexity
the true, but unknown, deformation terms are: (1) identically O, perfectly rigid dish; (2) P, and
P, not zero but identical, dish and structure fairly rigid and deform the same way along both
coordinate axes; (3) P, and P; different and other terms are not required, dish and structure
fairly rigid and deform differently along the two axes; (4) P, and P; different and other, ad hoc,
terms anti-symmetric about 0° zenith angle are necessary, dish less rigid but behaves repeatably;
(5) P, and P; different and other, ad hoc, terms both symmetric and anti-symmetric about 0°
zenith angle are necessary, dish less rigid and less symmetric but behaves repeatably; and (6)
pointing not repeatable, complicated hysteresis. Although gravitational deformation may lead to
a need to estimate additional terms, ad hoc terms may be necessary for other reasons.
Conversely, depending on the form of the deformation, it may change the apparent value of
other terms. Because of these problems, determinig a model for gravitational deformation may,
in absence of a good structural model for an antenna, turn into an ad Aoc procedure of simply
trying to remove any systematic effects that are left in the residuals. Whether or not this is
acceptable depends on the application the pointing model will be used for. If the only
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requirement is to achieve accurate pointing then such an ad hoc strategy may be the best choice
anyway.

The terms that represent excess scale factors in X and Y, P, and P, are not likely to be
needed for encoder and synchro read antenna positions since there should be no scale factor
error is such systems. They may however be useful as ad hoc parameters since they each
correspond to a slope.

When pointing in plunge, i.e. Y-angles greater than +90°, some care must be exercised in
using this model. To establish definitions: "pointing in plunge" or "plunging the antenna” refers
to the Y coordinate exceeding +90°. The term "plunged coordinates" refers to X and Y angles,
where the Y angle would exceed +90°, but have been modified so that the Y angle is less than
+90°; “natural coordinates” will refer to raw or unfixed angles in which Y could, and may or
may not, exceed +90°, For example a natural coordinate position of X, ¥=(+45°,+135°) would
be represented by plunged coordinates X,Y=(-135°,+45°), When the antenna is plunged,
positive Y offsets will increase the natural Y coordinate or equivalently decrease the plunged Y
coordinate. For plunged coordinates, some adjustment of the signs of the model terms may be
necessary. The corrections can be determined by considering what the effective correction would
be. The simplest thing to do is to stick with natural coordinates. For natural coordinates, all the
terms in the model have the correct sign regardless of whether the antenna is plunged.

Other modifications of the reported coordinates are possible. The antenna may “reverse
plunge” or go to Y angles less than -90°. Also there may be more than one full rotation or
“wrap” in the X direction. The recommendation for these cases is to continue to use the natural
antenna coordinates, reporting Y angles below -90° and X angles with the addition or subtraction
of multiples of 360° to account for the wraps. There may be antennas for which certain ad hoc
model terms would be more naturally represented in “plunged” rather the “natural” coordinates.
For those cases, however, it is recommended that the ad hoc terms be modified to take this into
account and that natural antenna coordinates be used for the raw data.
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4.0 Model Derivation

This section summarizes the mathematical steps needed to formulate the pointing model. The
first eight terms of the model represent simple geometric effects that can be derived with a
simple application of vector analysis. For a given coordinate system, say XYNS, the usual
strategy is: (1) take an arbitrary true XYNS pointing direction and convert it to a direction
cosines representation in a cartesian coordinate system aligned with the pole and equator of the
XYNS system, (2) manipulate the cartesian coordinates with rotations to mimic the desired
physical effect, (3) gather terms and simplify using the small angle approximation and discarding
terms of quadratic or higher order in small angles. This derivation points out the limitations of
the model: the parameters are required to have small values so that they may be considered
independent of rotations and may not be used too close to the poles of the coordinate system.

There are two problems with the model near the poles: (1) The correction may require the
Y angle to plunge over the top, if the antenna cannot plunge, then the point may be effectively
unreachable. (2) The closer the Y value is to the pole, the smaller the range of X angles over
which the assumption that X and Y angles are perpendicular is a good approximation. The later
problem reflects the small angle approximation and linear approximations breaking down. Terms
P, through P, and P; fail in this way. This is not too serious an obstacle since most antennas
have difficulty tracking, if they can point at all, near the poles,

If corrections are required near the poles for terms P, through P, and P, they can be
calculated directly by applying the appropriate rotations without any approximations. Of course
for corrected Y angles that are at the pole, the X angle is indeterminate. The derivations for all
terms except P, and P; start by constructing the exact correction and then linearizing. The exact
expression can be solved for the corrected angle. In this section, = and = are used carefully
for exact and approximate equality.

In some instances derivation of the linearized pointing corrections requires division by cosY
or sinX or cosX. Division by cosY is unavoidable and makes such terms invalid at the poles,
which is not a great problem since most of them are not valid even in the region near the pole.
Division by cosX or sinX makes it impossible to verify the terms along the meridians of +90°
or 0° and 180° respectively. However, for these cases it is always possible to verify the
expression for the problem meridians by considering an alternate derivation.

MODEL-8 Version 8.2/September 1, 1993
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4.1 Definitions and Identities

The cartesian coordinate system aligned with the XYNS axis system will be (ijk). +i will be
aligned along X,Y=(0°,0°) true. +j will be aligned along X,Y=(+90°,0°) true. +k will be
along ¥=+90° true. Apparent coordinates will be represented by priming the corresponding

- designator. Converting from XYNS to (ijk) or vice-versa is accomplished by:

i cosY cosX 1

X| |[tan
J| = |cosYsinX [Y] = t _ &)
k sinY sin"'%

The tan in this case must retain the correct quadrant. A straightforward way to do this is to
use the half-angle identity. The rotation matrices for a counterclockwise, considered positive,
rotation of the coordinate axes about the +i, +j, or +k axes by an angle 6 are:

1 0 0 cos® O -sind cosb sinb O
R(0)=|0 cos® sin| R@B)=| 0 1 0 | Ry(0)=|-sind cosd 0 )
0 -sin0 cos6 sind 0 cosO 0 0 1

In the derivations below, the effects of pointing errors are simulated by rotating the
coordinate axes to the place where they would “appear-to-be.”

Use is made of the following trigonometric identities:

sin(-A) = -sind )

cos(-A) = cosd (6)

cos’A + sin®4 = 1 Q)

cos(A + B) = cosA cosB F sind sinB (8)
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sin(4 + B) = sinA cosB + cosA sinB ®

sind - sinB = 2cos® Fsind 2 (10)
2 2

The small angle approximation is that for sufficiently small angles 4:
sind = A and cosd = 1 (11)

Discarding terms of quadratic or greater order in B for small values of B is an assumption
that these terms can be safely neglected because:

B > B? | (12)

By definition:

AY =Y -Y and AX =X'-X (13)

4.2 Encoder Biases

These are the simplest terms since they are constants. In some sense they are instrumentation
errors rather than alignment errors. Suppose that the encoder on a given axis always reads high

by a fixed amount. Then clearly the angles reported by that encoder should be high by that same
fixed amount:

AX = P, and AY = P, (14)

4.3 Coordinate Axis Tiits

As long as we consider only a small tilt we can model an arbitrary tilt as three independent
rotations: (1) P; tilt over, a rotation around -i, (2) P; tilt out, a rotation around +j, and (3) P,
tilt around, a rotation around +%.

MODEL-10 Version 8.2/September 1, 1993
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Term P, tilt over, is a positive rotation of the axis system around -i or a negative rotation
of the coordinate system around +i. A rotation matrix that will transform the true (ijk)
coordinates to apparent coordinates in the (ik)’ system, using equation (4) is:

il 1 0 0 i
il = 0 cosPg -sinPy |j (15)
k!l |0 sinP, cosP| |k

Examining coordinate k' and using equation (3), we get an expression for ¥":

sinY’ = sinP,cosYsinX + cosP,sinY (16)

Reducing this to a linear form is a multi-step process. Since a similar reduction is necessary
for most of the terms, it would be very tedious to do this in complete detail for all of the terms.
However, as an example, the steps in linearizing equation (16) are: use equation (11) for P,, use
equation (10), use ¥'+¥Y=2Y+AY, use equation (8), use equation (11) for A¥/2, then use
equation (12) for AY, and finally divide by cosY. The result is:

AY ~ PsinX a7

Examining coordinate j' and using equation (3), we get an expression for X':

cosY’sinX’ = cosPgcosYsinX - sinPsinY (18)

Approximating and using the already derived expression in equation (17) for AY leads to the
linearized expression:

AX = -PtanY cosX (19)

Derivation of the linear AX term requires division by cosX, making the result impossible to
verify for X = +90°. However, if i’ had been considered, division by sinX would be required
instead, which would have been impossible to verify for X=0° and X=+180°. In combination
these two results show that the expression is valid for all X.

Term P, tilt out, is a positive rotation of the axis system around +j. From equation (4), a
rotation matrix that will transform the true (ijk) coordinates to apparent coordinates in the (ijk)’
system is:
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i’ cosP; 0 -sinP,| [;
i'l=1 0 1 0 |[|j (20)
k'| |sinP; O cosPg| |k

Examining &’ and using equation (3) we get an expression for Y’:

sinY’ = cosP, sinY + sinP5 cosY cosX 7 (21)

which approximates to the linear form:

AY = PcosX (22)

Examining i’ and using equation (3) gives the complete expression for X':

cosY’ cosX’ = cosPcosY cosX - sinP,sinY (23)
Approximating and using the already derived expression for AY gives the linearized form: (
AX = PganYsinX (24)

Division by sinX in deriving the AX term here can be overcome in an analogous fashion to
overcoming division by cosX in the derivation of P.

Term P,, tilt around, is a positive rotation of the axis system around +£k, a rotation matrix
that will iransform the true (§jk) coordinates to apparent coordinates in the (ifk)’' system, is:

i/ cosP, sinP, O|[;
j’| = |-sinP, cosP; O||j (25)
k' 0 0 1]k

Examining &', we get:
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sinY’ = sin¥ (26)

which implies, without approximation, that:

AY =0 27

Examining j', we get:

cosY'sinX’ = cosP, cosY sinX - sinP, cosY cosX (28)

Using the already derived fact that ¥' =Y gives, without approximation:

AX = -P, 29)

4.4 Axis Skew

Axis skew represents a misalignment between the two axes. The skewing could be thought
of as tilt of ¥=+90° relative to the Y=0° plane. However it differs from the tilts derived
previously in that the phase of the X angle with respect to the tilt direction always appears to
be the same. We can view the skewing as having two orthogonal components, one along a
meridan of X=90° from the current X angle, the other along the current X meridian. The effect
for a point along the X=0° meridian corresponds to the effect of tilt over and tilt out,
respectively.

For a skewing P, of Y=+90° toward X,Y=(-90°,0°), opposite sense of tilt over, equations
(16) and (18), with X=0°, give:

sinY’ = cosP,sinY and cosY’sinAX = sinP, sinY (30)

The lingarized forms are:

AY =0 and  AX = P,tan¥ @1

Equations (30) and (31) are independent of the actual value of the X angle as expected. They
represent a skewing of Y=+90° along a meridian of X=90° from the current meridian.
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The other component of skew, by a similar argument, for a point along X=0° is modeled by
a tilt of ¥=+490° along X=0° meridan. For a skew of P, of Y=+490° away from X,Y=(0°,0°),
opposite sense of tilt out, equations (21) and (23), with X=0°, give:

sin¥’ = cosP, sinY - sinP, cos¥
‘and (32)
cosY’cosX’ = cosP, cosY + sinP, sinY

Reduced forms are obtained without approximations:

AY = -P, and AX =0 (33)

Again the particular value of the X angle does not matter. This represents a skewing of
Y=+90° along the current meridian of X. The effect is the same, except for the sign, toa Y
angle encoder offset.

4.5 Box Offsets

The box offsets represent the angular misalignment of the RF axis relative to the current X-
angle meridian and Y-angle parallel. Consider a RF misalignment perpendicular to the current (
X-angle meridian, This effect would be independent of the particular X-angle meridian but would
depend on the Y angle since meridians are “bunched together” near the pole. Without loss of
generality we will consider a point on the X=0° meridian. To construct the appropriate
transformation, three steps are required: (1) Rotate around +j by an angle -Y to represent the
point in a reference frame where it is on the equator; (2) rotate by an an angle P, around the
new +k axis to represent the effect of the beam being P, too far in the +X direction; (3)
perform the inverse of rotation (1) to place the point back in the original reference frame:

il [cosY O -sinY]| cosP, sinP, O|[ cosy 0 sinY] [i

j'l={0 1 0 |[|-sinP, cosP, Of| O 1 0 |}j (34)
k! sin¥ 0 cosY|| ¢ 0 1|[-sinY O cosYj |k
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i/l |cosP,cos’¥ + sin’Y sinP, cosY cosY sin¥[cosP, - 1| [;
i’ = -sinP, cosY cosP, -sinP, sin}Y’ j 35)
k! cosYsi]:lY(cosP4 - 1) sinP,sin¥ cosP, sin?Y + cos?Y| L&
Assuming X=0°, we get an exact expression for Y’,by examining £';
sin¥’ = sin¥ cosP, : (36)
or if we approximate, we get the linear expression:
AY = 0 37
If we examine j', again assuming X=0°, we get an exact expression for X';
cosY’sinAX = -sinP, (38)
If we approximate and use the linearized result AY=0°, we get:
AX = -PsecY (39

Considering a RF misalignment along the current X meridian, there is no loss of generality
in considering a point on the X=0° meridian. If we rotate that point by an amount -P; around
+j to simulate the RF axis being too far toward Y= +90° then:

il cosP, 0 sinP,[;
jl - 0 1 0 j (40)
k! -sinP, 0 cosP;| |k

If we examine ', by assumption X=0°, we get:

sin¥’ = cosP,sinY - sinP, cosY (41)

which implies, without approximation:
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AY = -P, “2)
Examining j' and using the assumption that X=0° gives:
cosY’sinX’ = 0 (43)
which implies without approximation:
AX =0 (44)

4.6 Gravitational Sag Terms

Terms P, and P; which are elevation angle deflections, have a slightly more mvolved
derivation than the previous terms. Consider an XYNS antenna with an arbitrary value of ¢
pointing in an arbitrary direction. The (ijk) coordinates of the pointing angle must first be
represented in a coordinate system aligned with the local horizon: Up, East, and North (uen) are
convenient coordinates. A rotation of -¢ around +j is used. Then the (uen) coordinates are (
represented in a reference frame, call it (abc), aligned with the azimuth of the point. A rotation '
of -AZ around +u brings the point into a reference frame where it is at azimuth 0°. At this stage
an increase in the elevation of the RF axis by a small angle ¢ can be modeled as a simple
rotation around +5. This produces apparent coordinates (abc)’. Then the (abc)’ coordinates must
be rotated back to (xen)’ and then back to (ijk)’:

a 1 0 0 cos¢p O sing||i
bl =10 cosAZ -sindZ|| 0 1 0 || (45)
¢ 0 sinAZ cosAZ| |-sing O cosd| |k '

al

cose 0 -sine
pi=10 1 0 ||b (46)

¢!l |sine 0 cose

&

iy}
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i'l [cosp 0 -sinp][l O 0 |la’
il=10 1 0 ||0 cosdZ sindZ| |p’ 7

2 sing 0 cosd) |0 -sindZ cosAZ) |,/

Equations (45), (46), and (47) can be multiplied out and equation (49) substituted directly to
give the complete correction, However the resulting rotation matrix is rather large and not very
useful. Instead the small angle approximation is used for e:

il 1 -esindZcosd -ecosAZ | |i
j!| = |esinAZcosd 1 esinAZsing| |j (48)
k' ecosAZ  -esinAZsing 1 k

o

The elevation deflection e is assumed to be caused by gravity and represents a lowering of
the RF axis. The effect is assumed to be proportional to the force exerted along the current
azimuth and perpendicular to the local horizon plane. The component of deflection along
increasing elevation angle is:

€ = -P,cosEL (49)
The sign is negative because we initially assumed ¢ was an increase in the elevation. Examining
k'
sin¥’ = sin¥ - P,(cosEL cosAZ cosY cosX (50)
- cosEL sinAZ sind cos¥ sinX)
From equations (1) and (10) of the Coordinate Converions manual:

cosEL sinAZ = cosYsinX
and (31)
cosEL cosAZ = cosd sinY - sind cosY cosX

which we can substitute into equation (50) and yield the approximation:
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AY = -P,{cosd sinY cosX - sin¢ cosY) (52)

Examining i’, we get:

cosY’ cosX’ = cosY cosX + P,(cosEL sinAZ cos¢ cosY sinX (53)
- + coSEL cosAZ sinY)

Using equation (51) and the derived expression for AY from (52), the resuit is:

AX = -P,cos sinX secY ' (54)

4.7 Other Coordinate Systems

Derivation of the pointing model in the other coordinate systems is most easily handled by
noting that equation (3) for AZEL and HADC telescopes is obtained by substituting -AZ or -HA
for X and EL or DC for Y. The resulting pointing model is the same. Considering equation (1),
the sign of AX is changed. However, because terms Py, P;, P,, and Ps are defined in terms of
increasing X angles or the location of X=+90°, the sign of the rotation used to simulate the
effect has flipped as well. For terms P, and Ps the sign of the rotation has not changed, but the
terms include a factor of sinX which does change sign. For equation (2), the sign of AY has not
changed, nor has the effect of terms Ps, P;, and Py. The effect of term Py has changed sign, but
so has the sinX factor for that term. The use of equation (51) in the derivation of P, and P, does
not cause a problem because the sinX term appears as sin’X when substituted into equations (50)
and (53). In this way, the model is seen to be correctly defined for left-handed, AZEL, and
HADC, as well as right-handed coordinate systems.

It is evident that the model would correctly represent the misalignments even if the XYNS
system were rotated in azimuth 90°, i.e. for the XYEW system. The only terms whose
derivation utilized the azimuth of the fixed axis were P, and P;. Those terms model a
gravitational sag, the effect of which is independent of an azimuth rotation of the coordinates.
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