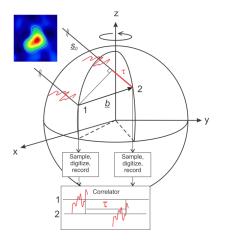


Introduction to Geodetic VLBI

David Mayer^a, Matthias Schartner^a

^aTU Wien, Department of Geodesy and Geoinformation



Geodetic, Astrometric and Astronomic VLBI What's the difference?

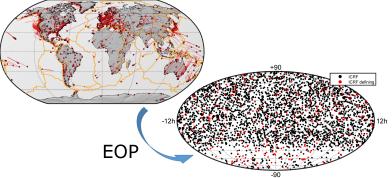
- Geodesy uses VLBI to derive earth bound parameters
- Astrometry uses VLBI to measure the position and movement of astronomical objects
- Astronomie uses VLBI to image astronomical objects

Geometric principal

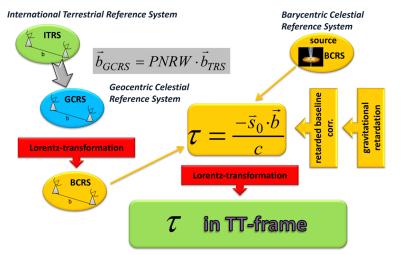
$$\tau = -\frac{\vec{b}\cdot\vec{s}_0}{c} = t_2 - t_1 \qquad (1)$$

- Baseline (station positions) and source position must be in the same reference frame
- τ is what we observe with VLBI
- Normal VLBI session consists of a globally distributed network

Definitions

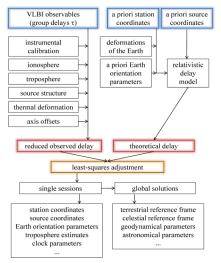

scan: a time period during which multiple stations observes the same source simultaneously Example: 5 stations observe source 0454-234

observation: a single baseline during a scan Number of observations per scan: $n_{obs} = \frac{n_{sta} \cdot (n_{sta}-1)}{2}$ Example: $n_{sta} = 5 \rightarrow n_{obs} = 10$

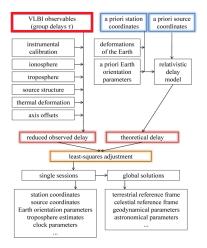

Earth orientation

From the International Terrestrial Reference System (ITRS) to the Geocentric Celestial Reference System (GCRS) at the epoch of the observation t

Earth orientation



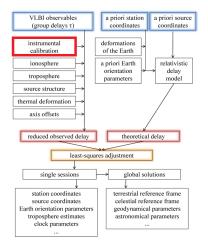
Least Squares Method


Understanding LSM is necessary to understand results and requirements for geodetic VLBI \rightarrow short introduction (unfortunately with some math)

VLBI analysis flowchart

Observations are provided by correlator

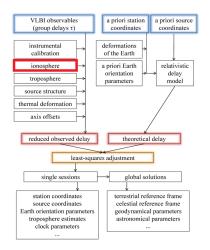
- NGS format (ASCII)
- VGOS-DB (netCDF files)



Observation corrections NGS format

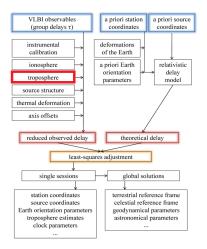
- baseline
- time
- source
- observation τ (formal error)
- cable calibration correction
- meteorological observations
- ionospheric corrections

```
TSUKUB32
       WETTZELL
                0059+581 2014 06 17 17 02 57.000000000
 6179107.24911047
                    .00202
                            825648.6829278118
                                               .00613
 .00623 .00000
                   .00000
                             .00000 .735289988539280
                .00 .0
                                          .00 .0
    .00
       . 0
                                .00 .0
-.00577 -.00206
                             .00000 .00000 .00000
       17.000 1002.500
 21.005
                            946.800
                                   96.000 63.400
                .00258
    -3.2154615660
                                -.0002886440
                                               .00525
 6179107.24911047
                   .03704
                            825648.6829278118
                                               .22030
```



instrumental calibration

stretching of cables introduces an additional delay

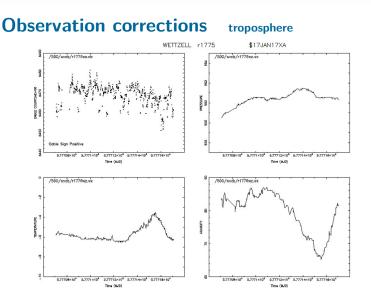

ionosphere

lonosphere is dispersive (changes with frequency) for radio waves Observing two frequencies (Xand S-band) at the same time lets you calculate the ionospheric correction

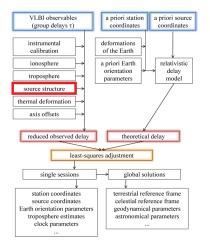
$$\Delta \tau_X^{ion} = (\tau_X - \tau_S) \cdot \frac{f_S^2}{f_X^2 - f_S^2}$$

$$f_S = 2.3 GHz$$

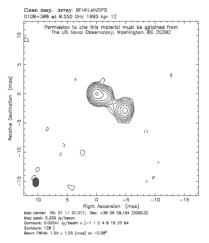
$$f_X = 8.4 GHz$$



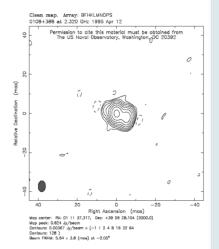
Observation corrections troposphere

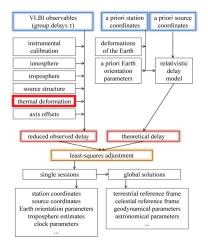


Measuring tropospheric parameters (e.g. pressure) on site

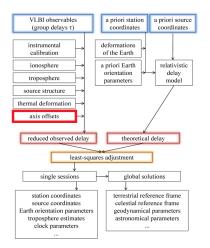

Source is not always point-like

source structure

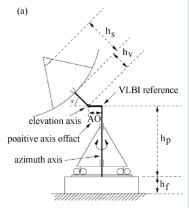

 Structure can change with frequency

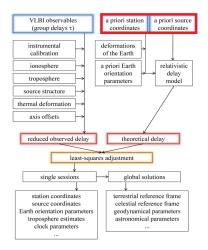

Observation corrections X-Band

troposphere S-Band



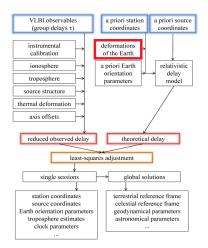
thermal deformation


Modeling thermal expansion of telescopes



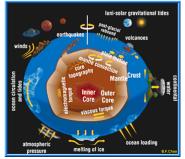
axis offsets

Axes of telescopes usually don't intersect

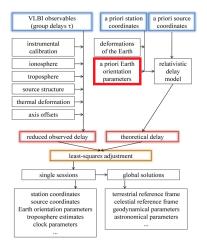


a priori coordinates

From TRS and CRS realisations

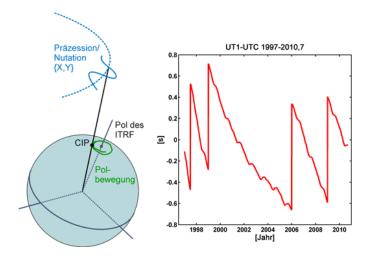

ITRF2014ICRF2

deformations of the earth

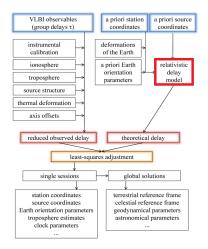

- Various models need to be applied
 - IERS Conventions

http://geodesy.agu.org

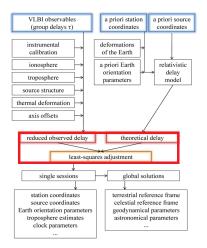
a priori Earth orientation parameters


A priori time series (e.g. C04) from the International Earth Rotation and Reference Systems Service (IERS)

Five Earth Orientation parameters (EOPs):


- polar motion (x_p, y_p)
- precession, nutation (X, Y)
- UT1-UTC (*dUT*1)

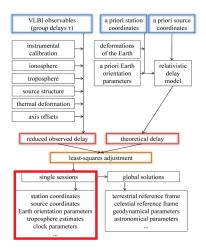
The theoretical delay a priori Earth orientation parameters


relativistic delay model

Relativistic corrections:

- Retarded baseline correction
- Gravitational retardation

Least Squares Adjustment

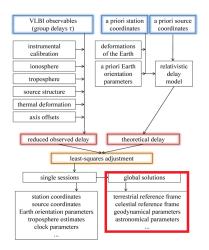

Now we have our reduced observed delay and our theoretical delay

 \rightarrow we can build the observed minus computed vector o - cand make a least squares adjustment

The results are the estimated parameters

Results single session

Primary parameters:


- station position
- source position
- EOPs

Secondary parameters (can not be modelled, and therefore have to be estimated)

- troposphere
- clock

Results global solution

Combination of single sessions into one global adjustment. Session specific parameters, such as troposphere and clock are reduced Usual parameters:

- TRF
- CRF
- EOP
- Special parameters
 - axis offsets
 - seasonal harmonics of station positions

Lecture Introduction to Geodetic VLBI

Results

Polar motion x_p, y_p	Accuracy	50-80 $\mu \rm{as}$
	Product delivery	8-10 days
	Resolution	1 day
	Frequency of solution	$\sim 3~{\rm days/week}$
UT1-UTC	Accuracy	$3-5 \ \mu s$
	Product delivery	8-10 day
	Resolution	1 day
	Frequency of solution	$\sim 3~{\rm days/week}$
UT1-UTC (Intensives)	Accuracy	15-20 $\mu \rm{as}$
	Product delivery	1 day
	Resolution	1 day
	Frequency of solution	7 days/week
Celestial pole dX , dY	Accuracy	50 μ as
	Product delivery	8-10 days
	Resolution	1 day
	Frequency of solution	$\sim 3~{\rm days/week}$
TRF (x, y, z)	Accuracy	5 mm
CRF (α, δ)	Accuracy	40-250 $\mu \rm as$
	Frequency of solution	1 year
	Product delivery	3 months

Status 2010 of IVS main products (Schlüter and Behrend 2007)

Lecture Introduction to Geodetic VLBI

David Mayer^a, david.mayer@geo.tuwien.ac.at Matthias Schartner^a, matthias.schartner@geo.tuwien.ac.at ^aTU Wien, Department of Geodesy and Geoinformation