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Radiation Transfer

Absorption → κν

Iν
0

Emission → jν

General solution for homogeneous Sν:

Iν (τν) = Iν(0) e-τν + Sν (1 – e-τν)

𝑑𝑑𝐼𝐼𝜈𝜈
𝑑𝑑𝑐𝑐 = −𝜅𝜅𝜈𝜈 𝐼𝐼𝜈𝜈
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𝑑𝑑𝑐𝑐 = 𝑗𝑗𝜈𝜈

em
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𝑑𝑑𝐼𝐼𝜈𝜈
𝑑𝑑𝑐𝑐 = 𝑗𝑗𝜈𝜈 − 𝜅𝜅𝜈𝜈 𝐼𝐼𝜈𝜈

Optical depth τν:   dτν = κν ds =>      𝑑𝑑𝑑𝑑𝜈𝜈
𝑑𝑑𝜏𝜏𝜈𝜈

= 𝑆𝑆𝜈𝜈 − 𝐼𝐼𝜈𝜈

Source Function:  𝑆𝑆𝜈𝜈 =
𝑗𝑗𝜈𝜈
𝜅𝜅𝜈𝜈

Radiative Transfer Equation



Radiation Transfer (II)

Iν (τν) = Iν(0) e-τν + Sν (1 – e-τν)

Special Cases

1) Absorption spectra

Bright background source 
behind a cold absorber

(Sν ≈ 0)

Iν (τν) = Iν(0) e-τν



Radiation Transfer (III)

Iν (τν) = Iν(0) e-τν + Sν (1 – e-τν)

Special Cases

2) Emission spectra

No significant background source

(Iν (0) ≈ 0)

Iν (τν) =                  Sν (1 – e-τν)

I) Optically thick emission:

Iν (τν) =                  Sν

(τν >> 1)



Radiation Transfer (IV)

Iν (τν) = Iν(0) e-τν + Sν (1 – e-τν)

Special Cases

2) Emission spectra

No significant background source

(Iλ (0) ≈ 0)

Iν (τν) ≈ Sν τν

II) Optically thin emission:

(τλ << 1)

≈ jν ∆s
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Thermal Blackbody Radiation

In Thermal Equilibrium (LTE):

Sν = Iν = Bν(T) = 2 ℎ 𝜈𝜈
3

𝑐𝑐2
1

(𝑒𝑒ℎ𝜈𝜈/𝑘𝑘𝐵𝐵𝑇𝑇−1)

= Planck Function

Rayleigh-Jeans Limit:

hν << kBT

=>   Bν(T) ≈ 2 𝜈𝜈
2

𝑐𝑐2
𝑘𝑘𝐵𝐵𝑇𝑇

Iν (τν) = Iν(0) e-τν + Sν (1 – e-τν)



Thermal Blackbody Spectrum



Brightness Temperature
Define Brightness Temperature Tb by setting measured 
intensity Iν equal to Blackbody in Rayleigh-Jeans Limit:

Iν = 2 (ν2/c2) kBTb

⇒ Tb = 𝑑𝑑𝜈𝜈 𝑐𝑐
2

2 𝜈𝜈2 𝑘𝑘𝐵𝐵

Note: Tb usually has nothing to do with the 
source’s real temperature!



Brightness Temperature
Brightness temperatures Tb > 1012 K seem 

unphysical because of strong Compton scattering 
(see point 4 below)

(Angelakis et al. 2012)

… but many active 
galactic nuclei show 

Tb > 1012 K …



Relativistic Beaming / Boosting
In the co-moving frame 
of the emission region:

ν’

In the stationary 
(observer’s) frame:
δ = (Γ[1 – βΓcosθ])-1: 

Doppler boosting factor

Isotropic emission I’ν’ at 
frequency ν’

Γ = (1−βΓ
2)−1/2

ν = δ ν’
Beamed emission:

Iν = δ3 I’ν’

Time interval t’var

For power-law Fν ∼ ν−α: 
Fν = δ(3+α) F’ν

Time interval 
tvar = t’var / δ



Relativistic Beaming / Boosting

Fν

ν

ν−α

δ
δ3

δ3+α

νFν

ν

δ

δ4

νFν
pk ∼

L      
4π dL

2
______      

L ~ δ4 L’      Tb ~ δ3 T’b

(if the size of the emitter is 
determined from variability)
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Cyclotron/Synchrotron Radiation

νcy = eB/(2πmec) ~ 2.8*106 (B/G) Hz

Cyclotron frequency:

Magnetic 
field B

Iν

ν

Nonrelativistic 
electrons

νcy

Harmonics:

In ~ (v/c)2n

Cyclotron radiation



Synchrotron Radiation

νsy (γ) ~ 4.2*106 (B/G) γ2 Hz

Relativistic electrons:

Lo
g(

I ν)

Log(ν)νsy

ν1/3

e−ν/νsy

Power output into synchrotron 
radiation (single electron):

Single 
Electron



Synchrotron Emissivity



Synchrotron Radiation
Power-law distribution of relativistic electrons:

lo
g(

I ν)

Log(ν)

Ne(γ) ~ γ-p

jν ~ ν-α α = (p−1)/2

ν-(p−1)/2

Opt. thin

κν ~ ν-β β = (p+4)/2

Opt. 
thick

ν5/2

If there are electrons with ν = νsy (γ), then: 



Polarization
Preferred direction of E-field vectors of radiation

Obs.

β β
n

.

Erad ~ n x [(n – β) x β]

B

.

Erad predominantly ⊥ to projection of B



Synchrotron Polarization

p = 2 → Π = 69 % 

p = 3 → Π = 75 % 



Stokes Parameters

x (= North)

y

χ

Erad

χ = polarization angle 
(180o ambituity!)

Define Stokes Parameters:

Ι = Total intensity     ->   Polarized Intensity Ιpol = Π Ι
Q = Ιpol cos(2β) cos(2χ)    (β = phase-shift y vs. x => circ. pol.)
U = Ιpol cos(2β) sin(2χ)
V = Ιpol sin(2β) = circularly polarized intensity (typically, β << 1)

+Q

-Q +U-U



Stokes Parameters
Stokes parameters are additive:
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Compton Scattering
In the electron rest frame: 

For ε' << 1 → ε's ≈ ε'   (elastic scattering – Thomson Regime)

For ε' >> 1 → ε's ~ 1 (inelastic scattering –
Klein-Nishina [KN] Regime)

ε = hν/(mec2)



Compton Scattering

Thomson



Compton Scattering by Relativistic 
Electrons – Thomson Regime

θ
µ = cos(θ)

ph in electron rest frame (‘):           ε’ = ε γ (1 − βµ)
In Thomson Regime (ε’ << 1):       εs’ = ε’    
Doppler boost into lab frame:        εs = γ εs’ = ε γ2 (1 − βµ) 

Concentrated in forward direction (Ωe)



Compton Losses and Spectra
Power output into Compton 
radiation (single electron):



Compton Spectra
Power-law distribution of relativistic electrons:

lo
g(

I ν)

Log(ν)

Ne(γ) ~ γ-p

jν ~ ν-α α = (p−1)/2

ν-(p−1)/2

ν2

If there are electrons with ν = νC (γ), then: 

ν = ν0 γmin
2



Compton Scattering by Relativistic 
Electrons – KN Regime

ph in electron rest frame (‘):           ε’ = ε γ (1 − βµ)
In the KN-Regime (ε’ >> 1):           εs’ = 1

Doppler boost into lab frame:        εs = γ εs’ = γ

⇒ Photon takes all of the electron’s energy
(εs ~ εγ2 > γ  →  would violate energy conservation!)

F ν

ε2 εsε1

Cut-off in the 
resulting Compton-
scattered spectra 
around εs ~ 1/ε

1/ε



Total Energy Loss Rate of 
Relativistic Electrons

γ

−d
γ/

dt

1/ε

Thomson
Klein-Nishina

Compton energy loss becomes less efficient at 
high energies (Klein-Nishina regime).



Compton Polarization

e k

p

p’

Compton cross section is polarization-dependent:

ε = hν/(mec2)

Thomson regime: ε ≈ ε’
⇒dσ/dΩ = 0 if e∙e’ = 0

⇒ Scattering preferentially in the 
plane perpendicular to e!

Preferred EVPA is preserved. 

Scattering of polarized rad. by 
relativistic e- =>  Π reduced to ~ ½ 
of target-photon polarization.

(e- rest frame)



X-ray Polarimeters

INTEGRAL

XIPE

X-Calibur
→ PolSTAR ASTROSAT



X-Ray Polarimeters

B
Single Compton 

scattering 

Look for angular 
modulation of 

scattered X-rays



X-Ray 
Polarimetry

(POLAR: Kole et al. 2016)



Gamma-Ray Polarimetry 
with Fermi-LAT

e
k

e+e-

e+e- pair is preferentially produced in the plane 
of (k, e) of the γ-ray. 

Potentially detectable at E < 200 MeV
→ PANGU / eASTROGAM



Thank you!







Outline

1. Introduction to Radiation Transfer 

2. Radiation Mechanisms: Introduction to Synchrotron 
Radiation (spectra, energy losses, polarization, Stokes 
parameters)

3. Introduction to Compton Scattering (spectra, energy 
losses, Compton polarization, X-ray/γ-ray polarimetry)

4. Introduction to γγ absorption / pair production, Doppler 
factor estimate from γγ opacity



γγ Absorption and Pair Production
Threshold energy εthr of a γ-ray to interact with a background 
photon with energy ε1:

εthr = 
2

ε1 (1 – cosθ)

ε1
εγ

e+ e-

θ

εpk ~ 2/ε1



γγ Absorption
Delta-Function Approximation:

VHE gamma-rays interact 
preferentially with IR photons:



Spectrum of the Extrgalactic 
Background Light (EBL)

(Finke et al. 2010)

Starlight

Dust



EBL Absorption

(Finke et al. 2010)



γγ Absorption Intrinsic to the Source

Importance of intrinsic γγ-absorption is estimated by the 
Compactness Parameter:

Optical depth to γγ-absorption:

𝜏𝜏𝛾𝛾𝛾𝛾 𝜖𝜖𝛾𝛾 ~ 𝑛𝑛𝑝𝑝𝑝
2
𝜀𝜀𝛾𝛾

𝑅𝑅𝑅𝑅𝑇𝑇

𝑛𝑛𝑝𝑝𝑝 ~
𝐿𝐿

4𝜋𝜋 𝑅𝑅2 𝑐𝑐 𝜀𝜀 𝑚𝑚𝑒𝑒𝑐𝑐2 =
4𝜋𝜋 𝑑𝑑𝐿𝐿2 𝐹𝐹

4𝜋𝜋 𝑅𝑅2 𝑐𝑐 𝜀𝜀 𝑚𝑚𝑒𝑒𝑐𝑐2



γγ Absorption Intrinsic to the Source
Estimate R from variability time scale:

𝑅𝑅 ~ 𝑐𝑐∆𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣
Optical depth to γγ-absorption:

𝜏𝜏𝛾𝛾𝛾𝛾 𝜖𝜖𝛾𝛾 ~
𝑑𝑑𝐿𝐿2 𝐹𝐹𝜖𝜖 2

𝜖𝜖𝛾𝛾
𝑅𝑅𝑇𝑇

∆𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣 ( 2
𝜀𝜀𝛾𝛾

)𝑚𝑚𝑒𝑒𝑐𝑐4

With Fx and ∆tvar from 
PKS 2155-304: τγγ (εTeV) >> 1

VHE γ-rays

(Aharonian et al. 2007)

PKS 2155-304



Relativistic Beaming / Boosting
In the co-moving frame 
of the emission region:

ν’

In the stationary 
(observer’s) frame:
δ = (Γ[1 – βΓcosθ])-1: 

Doppler boosting factor

Isotropic emission I’ν’ at 
frequency ν’

Γ = (1−βΓ
2)−1/2

ν = δ ν’
Beamed emission:

Iν = δ3 I’ν’

Time interval t’var

For power-law Fν ∼ ν−α: 
Fν = δ(3+α) F’ν

Time interval 
tvar = t’var / δ



Relativistic Beaming / Boosting

Fν

ν

ν−α

δ
δ3

δ3+α

νFν

ν

δ

δ4

νFν
pk ∼

L      
4π dL

2
______      

L ~ δ4 L’      



γγ Absorption Intrinsic to the Source
Optical depth to γγ-absorption:

𝜏𝜏𝛾𝛾𝛾𝛾 𝜖𝜖𝛾𝛾 ~
𝑑𝑑𝐿𝐿2 𝐹𝐹𝜖𝜖 2

𝜖𝜖𝛾𝛾
𝑅𝑅𝑇𝑇

∆𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣 ( 2
𝜀𝜀𝛾𝛾

)𝑚𝑚𝑒𝑒𝑐𝑐4

𝐹𝐹𝜀𝜀 = δ−(3+α) 𝐹𝐹𝜖𝜖𝑐𝑐𝑜𝑜𝑐𝑐

𝜀𝜀𝛾𝛾 = 𝜀𝜀𝛾𝛾𝑐𝑐𝑜𝑜𝑐𝑐/𝛿𝛿

∆𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣 = 𝛿𝛿 ∆𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣𝑐𝑐𝑜𝑜𝑐𝑐

⇒ 𝜏𝜏𝛾𝛾𝛾𝛾 ∝ δ−(5+α)





Radiation Mechanisms
Bremsstrahlung

εν ~ e-(hν/kT)

lo
g(

I ν)

log(ν)

Opt. thin
Opt. thick

~ ν2



Blazars

• Class of AGN consisting of BL Lac objects and 
gamma-ray bright quasars

• Rapidly (often intra-day) variable
• Strong gamma-ray sources
• Radio jets, often with superluminal motion
• Radio and optical polarization



Blazar Spectral Energy 
Distributions (SEDs)

Non-thermal spectra with 
two broad bumps:

• Low-energy (probably synchrotron): 
radio-IR-optical(-UV-X-rays)

• High-energy (X-ray – γ-rays)

3C66A



Flux and 
Polarization 
Variability

(Abdo et al. 2010)

Observed polarization fractions 
Πobs <~ 10 % << Πmax

=> Not perfectly ordered 
magnetic fields! 

Both degree of polarization and 
polarization angles vary.

Swings in polarization angle 
sometimes associated with 

high-energy flares!

Multi-wavelength variability on various 
time scales (months – minutes)

Sometimes correlated, sometimes not



Open Physics Questions
• Source of Jet Power (Blandford-Znajek / 

Blandford/Payne?)
• Physics of jet launching / collimation / 

acceleration – role / topology of magnetic fields
• Composition of jets (e--p or e+-e- plasma?) –

leptonic or hadronic high-energy emission?
• Mode of particle acceleration (shocks / shear 

layers / magnetic reconnection?) - role of 
magnetic fields

• Location of the energy dissipation / gamma-ray 
emission region



Blazar Models
Relativistic jet outflow with Γ ≈ 10

Injection, 
acceleration of 
ultrarelativistic 

electrons

Q
e

(γ
,t)

γ

Synchrotron 
emission

νF
ν

ν

Compton 
emission

νF
ν

ν

γ2γ1

γ-q

Seed photons:

Synchrotron (SSC), 
Accr. Disk + BLR (EC) 

Injection over finite 
length near the 
base of the jet.

Additional contribution from 
γγ absorption along the jet

Leptonic
Models 



Blazar Models
Relativistic jet outflow with Γ ≈ 10

Injection, 
acceleration of 
ultrarelativistic 
electrons and 

protons

Q
e,

p
(γ

,t)

γ

Synchrotron 
emission of 
primary e-

νF
ν

ν

Proton-
induced 
radiation 

mechanisms:

νF
ν

ν

γ2γ1

γ-q

• Proton 
synchrotron

Hadronic 
Models 

• pγ → pπ0

π0 → 2γ

• pγ → nπ+ ;   π+ → µ+νµ

µ+ → e+νeνµ

→ secondary µ-, 
e-synchrotron

• Cascades …



Requirements for lepto-hadronic models
• To exceed p-γ pion production threshold on interactions 

with synchrotron (optical) photons: Ep > 7x1016 E-1
ph,eV eV 

• For proton synchrotron emission at multi-GeV energies: 
Ep up to ~ 1019 eV (=> UHECR)

• Require Larmor radius 
rL ~ 3x1016 E19/BG cm ≤ a few x 1015 cm =>  B ≥ 10 G
(Also: to suppress leptonic SSC component below 
synchrotron) – inconsistent with radio-core-shift 
measurements if emission region is located at ~ pc scales 
(e.g., Zdziarski & Böttcher 2015).

• Low radiative efficiency: Requiring jet powers Ljet ~ LEdd



SED Model Fit Degeneracy

Red = leptonic
Green = lepto-hadronic

(HBL)

In many cases, leptonic 
and hadronic models 
can produce equally 
good fits to the SEDs.

Possible 
Diagnostics to 
distinguish:

• Variability 
• Neutrinos
• Polarization



Polarization Induced by Anisotropic 
Compton Scattering

• Thermal + Non-Thermal Electron Distributions from 
Diffusive Shock Acceleration

Summerlin & Baring (2012)



(Baring et al. 2016)

Bulk Compton emission 
(Comptonization of dust-torus IR 

by thermal e- in the jet)



Expected Polarization from Bulk Compton

IC by 
Thermal 
Electrons

IC by Non-
Thermal 
(Relativistic) 
Electrons

ε ∼ Γ2 ε0

(Garrigoux et al., in prep.)



Polarization Induced by Anisotropic Scattering

Obs.

E

(Moran 2007)



Calculation of X-Ray and Gamma-Ray Polarization 
in Leptonic and Hadronic Blazar Models

• Synchrotron polarization: 
Standard Rybicki & Lightman description

• SSC Polarization:
Bonometto & Saggion (1974) for Compton scattering in Thomson regime

• External-Compton emission (relativistic e-): Unpolarized:

Upper limits on high-energy polarization, assuming perfectly ordered 
magnetic field perpendicular to the line of sight (Zhang & Böttcher 2013)

e− (γ)

1/γ



The Doppler Factor Crisis

VHE γ-rays

(Aharonian et al. 2007)

VHE γ-ray variability on 
time scales as short as a 

few minutes!

PKS 2155-304

γ−γ opacity constraints, 
assuming isotropic 

emission in the co-moving 
frame of the emission 

region 

=> Γ ~ δ > 50

Strong disagreement with 
observed superluminal 

motions!



Thank 
you
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