Astrophysical Radiation Mechanisms and Polarization

Markus Böttcher North-West University Potchefstroom, South Africa

- 1. Introduction to Radiation Transfer
- 2. Blackbody Spectrum Brightness Temperature
- 3. Introduction to Synchrotron Radiation (spectra, energy losses, polarization, Stokes parameters)
- 4. Introduction to Compton Scattering (spectra, energy losses, Compton polarization, X-ray/γ-ray polarimetry)

Radiation Transfer

 400

TiO

600

Wavelength (nm)

700

1) Absorption spectra

Bright background source behind a cold absorber

Radiation Transfer (III)

Special Cases

 $I_{v}(\tau_{v}) = I_{v}(0) e^{-\tau_{v}} + S_{v} (1 - e^{-\tau_{v}})$

2) Emission spectra

No significant background source

 $(I_{\nu}(0) \approx 0)$

I) Optically thick emission:

 $(\tau_{v} >> 1)$

Radiation Transfer (IV)

Special Cases

 $I_{v}(\tau_{v}) \approx I_{v}(0) e^{-\tau_{v}} + S_{v} \text{ (1)} \approx g_{v}^{\tau_{v}} \text{/s}$

2) Emission spectra

No significant background source

 $(I_2(0) \approx 0)$

II) Optically thin emission:

 $(\tau_{\lambda} << 1)$

- 1. Introduction to Radiation Transfer
- 2. Blackbody Spectrum Brightness Temperature
- 3. Introduction to Synchrotron Radiation (spectra, energy losses, polarization, Stokes parameters)
- 4. Introduction to Compton Scattering (spectra, energy losses, Compton polarization, X-ray/γ-ray polarimetry)

Thermal Blackbody Radiation

$$
I_{v}(\tau_{v}) = I_{v}(0) e^{-\tau_{v}} + S_{v} (1 - e^{-\tau_{v}})
$$

Thermal Blackbody Spectrum

Brightness Temperature

Define *Brightness Temperature* T_b by setting measured intensity I_v equal to Blackbody in Rayleigh-Jeans Limit:

$$
I_{v} = 2 (v^2/c^2) k_B T_b
$$

$$
\Rightarrow T_b = \frac{I_v c^2}{2 v^2 k_B}
$$

Note: T_b usually has nothing to do with the source's real temperature!

Brightness Temperature

Brightness temperatures $T_b > 10^{12}$ K seem unphysical because of strong Compton scattering (see point 4 below)

Relativistic Beaming / Boosting

Relativistic Beaming / Boosting

(if the size of the emitter is determined from variability)

- 1. Introduction to Radiation Transfer
- 2. Blackbody Spectrum Brightness Temperature
- 3. Introduction to Synchrotron Radiation (spectra, energy losses, polarization, Stokes parameters)
- 4. Introduction to Compton Scattering (spectra, energy losses, Compton polarization, X-ray/γ-ray polarimetry)

Cyclotron/Synchrotron Radiation

Synchrotron Radiation

Relativistic electrons:

 $v_{\rm sv}$ (γ) ~ 4.2*10⁶ (B/G) γ² Hz

Power output into synchrotron radiation (single electron):

$$
\left(\frac{dE}{dt}\right)_{\text{sy}}\left(\gamma\right) = \frac{4}{3} \text{ c } \sigma_{\text{T}} \text{ u}_{\text{B}} \gamma^2 \beta^2
$$

Simple delta-function approximation for single-electron emissivity:

$$
P_v(\gamma) \approx \left(\frac{dE}{dt}\right)_{sy} \delta(v - v_{sy}[\gamma])
$$

$$
\nu_{\text{sy}}(\gamma) = \nu_0 \, \gamma^2
$$

 $j_v = \int_1^{\infty} d\gamma P_v(\gamma) N_e(\gamma) \sim N_e(\gamma_c) v^{1/2}$ $\gamma_c = (v/v_0)^{1/2}$

Synchrotron Radiation

Power-law distribution of relativistic electrons:

 $N_e(\gamma) \sim \gamma^{-p}$

If there are electrons with $v = v_{sy}(\gamma)$, then:

Preferred direction of E-field vectors of radiation

 E_{rad} predominantly \perp to projection of B

Synchrotron Polarization

Calculate polarization-dependent intensities I_{ν}^{\perp} and I_{ν}^{\parallel} perpendicular and parallel to B-field projection

$$
\frac{\text{Degree of Polarization:}}{\prod_{max} I_{max} + I_{min}} = \frac{I_v^{\perp} - I_v^{\parallel}}{I_v^{\perp} + I_v^{\parallel}}
$$

In perfectly ordered, homogeneous B-field:

$$
\Pi = \frac{p+1}{p+7/3} = \frac{\alpha+1}{\alpha+5/3} \qquad (\alpha = \frac{p-1}{2})
$$

 $p = 2 \rightarrow \Pi = 69 \%$ $p = 3 \rightarrow \Pi = 75 \%$

Stokes Parameters

tan(2 χ)

Define Stokes Parameters:

I = Total intensity -> Polarized Intensity $I_{pol} = \Pi I$ $Q = I_{pol} \cos(2\beta) \cos(2\chi)$ (β = phase-shift y vs. x => circ. pol.) U = I_{pol} cos(2β) sin(2χ) V = I_{pol} sin(2 β) = circularly polarized intensity (typically, β << 1)

Stokes Parameters

Stokes parameters are additive:

Simply add up Stokes parameters from different zones:

 $I_{\text{total}} = \sum_{k=1}^{N} I_k$ $\prod_{i} \equiv \frac{\sqrt{Q_{total}}^2 + U_{total}^2 + V_{total}^2}{\sqrt{Q_{total}}^2 + Q_{total}^2}$ I_{total} $Q_{total} = \sum_{k=1}^{N} Q_k$ $\tan(2\chi) = \frac{U_{total}}{Q}$ $U_{total} = \sum_{k=1}^{N} U_k$ $V_{\text{total}} = \sum_{k=1}^{N} V_k$

- 1. Introduction to Radiation Transfer
- 2. Blackbody Spectrum Brightness Temperature
- 3. Introduction to Synchrotron Radiation (spectra, energy losses, polarization, Stokes parameters)
- 4. Introduction to Compton Scattering (spectra, energy losses, Compton polarization, X-ray/γ-ray polarimetry)

Compton Scattering

For ε' << 1 $\rightarrow \varepsilon'_{s} \approx \varepsilon'$ (elastic scattering – Thomson Regime) For $\varepsilon' >> 1 \rightarrow \varepsilon'_{s} \sim 1$ (inelastic scattering – Klein-Nishina [KN] Regime)

$$
\sigma_C(\epsilon') = \frac{\pi r_e^2}{\epsilon'^2} \left(4 + \frac{2\epsilon'^2 (1+\epsilon')}{(1+2\epsilon')^2} + \frac{\epsilon'^2 - 2\epsilon' - 2}{\epsilon'} \ln(1+2\epsilon') \right)
$$

Compton Scattering

Compton Scattering by Relativistic Electrons – Thomson Regime

ph in electron rest frame ('): $\varepsilon' = \varepsilon \gamma (1 - \beta \mu)$ In Thomson Regime $(ε' < 1)$: $\epsilon_{\rm c}^{\prime} = \epsilon^{\prime}$ Doppler boost into lab frame: $\varepsilon_{\rm s} = \gamma \varepsilon_{\rm s}' = \varepsilon \gamma^2 (1 - \beta \mu)$

Concentrated in forward direction (Ω_e)

Thomson approximation for differential cross section: $\frac{d\sigma_{C}}{d\epsilon d\Omega_{s}} = \sigma_{T} \delta(\epsilon_{s} - \epsilon \gamma^{2} [1 - \beta \mu]) \delta(\Omega_{s} - \Omega_{e})$

Compton Losses and Spectra

Power output into Compton radiation (single electron):

$$
\left(\frac{dE}{dt}\right)_C \left(\gamma\right) = \frac{4}{3} c \sigma_T u_{\text{rad}} \gamma^2 \beta^2
$$

Delta-function approximation for single-electron emissivity:

$$
P_v(\gamma) \approx \left(\frac{dE}{dt}\right)_C \delta(v - v_C[\gamma])
$$

$$
v_C(\gamma) \sim v_0 \gamma^2
$$

$$
j_v = \int_1^\infty d\gamma \, P_v(\gamma) \, N_e(\gamma) \sim N_e(\gamma_c) \, v^{1/2}
$$

$$
\gamma_c = (v/v_0)^{1/2}
$$

Compton Spectra

Power-law distribution of relativistic electrons:

 $N_e(\gamma) \sim \gamma^{-p}$

If there are electrons with $v = v_C(y)$, then:

Compton Scattering by Relativistic Electrons – KN Regime

ph in electron rest frame ('): $\varepsilon' = \varepsilon \gamma (1 - \beta \mu)$ In the KN-Regime $(\varepsilon' >> 1)$: $\varepsilon_{\rm s}^{\prime} = 1$ Doppler boost into lab frame: $^{\prime}=\gamma$

 \Rightarrow Photon takes all of the electron's energy $(\varepsilon_{s} \sim \varepsilon \gamma^{2} > \gamma \rightarrow$ would violate energy conservation!)

Cut-off in the resulting Comptonscattered spectra around $\epsilon_{\rm s} \sim 1/\epsilon$

Compton Polarization

Compton cross section is polarization-dependent:

$$
\frac{d\sigma}{d\Omega} = \frac{r_0^2}{4} \left(\frac{\epsilon'}{\epsilon}\right)^2 \left(\frac{\epsilon}{\epsilon'} + \frac{\epsilon'}{\epsilon} - 2 + 4\left[\vec{e'} \cdot \vec{e'}\right]^2\right)
$$

(e- rest frame)

 $\varepsilon = h \nu/(m_{\rm e} c^2)$

Thomson regime: $\varepsilon \approx \varepsilon'$ \Rightarrow dσ/dΩ = 0 if e⋅e' = 0

 \Rightarrow Scattering preferentially in the plane perpendicular to \overrightarrow{e} !

Preferred EVPA is preserved.

Scattering of polarized rad. by relativistic $e^- \implies \Pi$ reduced to $\sim \frac{1}{2}$ of target-photon polarization.

X-ray Polarimeters

INTEGRAL

X-Ray Polarimeters

(POLAR: Kole et al. 2016)

Gamma-Ray Polarimetry with Fermi-LAT \int_{k}

 \vec{e}

e⁺e⁻ pair is preferentially produced in the plane of (\vec{k}, \vec{e}) of the *γ*-ray. Potentially detectable at E < 200 MeV → PANGU / eASTROGAM

1. Introduction to Radiation Transfer

2. Radiation Mechanisms: Introduction to Synchrotron: Radiation (spectra, energy losses, polarization, Stokes parameters)

3. Introduction to Compton Scattering (spectra, energy losses, Compton polarization, X-ray/γ-ray polarimetry)

4. Introduction to $\gamma\gamma$ absorption / pair production, Doppler factor estimate from γγ opacity

γγ **Absorption and Pair Production**

Threshold energy ε_{thr} of a *γ*-ray to interact with a background photon with energy ε_1 : 2

Delta-Function Approximation:

$$
\sigma_{\gamma\gamma}^{\delta}(\epsilon_1,\epsilon_2)=\frac{1}{3}\,\sigma_T\,\epsilon_1\,\delta\left(\epsilon_1-\frac{2}{\epsilon_2}\right)
$$

VHE gamma-rays interact preferentially with IR photons:

$$
\lambda_2 = 2.4\,E_{1,\text{TeV}}\,\,\mu\text{m}
$$

Spectrum of the Extrgalactic Background Light (EBL)

EBL Absorption

γγ Absorption Intrinsic to the Source

Optical depth to $γγ$ -absorption:

$$
\tau_{\gamma\gamma}(\epsilon_{\gamma}) \sim n_{ph} \left(\frac{2}{\epsilon_{\gamma}}\right) R \sigma_{T}
$$

$$
n_{ph} \sim \frac{L}{4\pi R^2 c \, \varepsilon \, m_e c^2} = \frac{4\pi \, d_L^2 F}{4\pi R^2 c \, \varepsilon \, m_e c^2}
$$

Importance of intrinsic $\gamma\gamma$ -absorption is estimated by the Compactness Parameter:

$$
\ell = \frac{L_{\gamma} \sigma_T}{4 \pi R \langle \epsilon \rangle m_e c^3}
$$

γγ Absorption Intrinsic to the Source

Estimate R from variability time scale:

 $R \sim c \Delta t_{var}$

Optical depth to γγ-absorption:

With F_x and Δt_{var} from PKS 2155-304: $\tau_{\gamma\gamma}$ (ε_{TeV}) >> 1

Relativistic Beaming / Boosting

Relativistic Beaming / Boosting

γγ Absorption Intrinsic to the Source

Optical depth to *yy*-absorption:

$$
\tau_{\gamma\gamma}(\epsilon_{\gamma}) \sim \frac{d_{L}^{2} F_{\epsilon}(\frac{2}{\epsilon_{\gamma}}) \sigma_{T}}{\Delta t_{var}(\frac{2}{\epsilon_{\gamma}}) m_{e} c^{4}}
$$

$$
F_{\varepsilon} = \delta^{-(3+\alpha)} F_{\varepsilon}^{obs}
$$

$$
\varepsilon_{\gamma} = \varepsilon_{\gamma}^{obs} / \delta
$$

$$
\Delta t_{var} = \delta \Delta t_{var}^{obs}
$$

$$
\boxed{\Rightarrow \tau_{\gamma\gamma} \propto \delta^{-(5+\alpha)}}
$$

- Class of AGN consisting of BL Lac objects and gamma-ray bright quasars
- Rapidly (often intra-day) variable
- Strong gamma-ray sources
- Radio jets, often with superluminal motion
- Radio and optical polarization

Blazar Spectral Energy Distributions (SEDs)

Flux and Polarization **Variability**

Multi-wavelength variability on various time scales (months – minutes) Sometimes correlated, sometimes not

Observed polarization fractions $\Pi_{\rm obs}$ <~ 10 % << $\Pi_{\rm max}$

=> Not perfectly ordered magnetic fields!

Both degree of polarization and polarization angles vary. Swings in polarization angle sometimes associated with high-energy flares!

Open Physics Questions

- Source of Jet Power (Blandford-Znajek / Blandford/Payne?)
- Physics of jet launching / collimation / acceleration – role / topology of magnetic fields
- Composition of jets (e--p or e+-e- plasma?) leptonic or hadronic high-energy emission?
- Mode of particle acceleration (shocks / shear layers / magnetic reconnection?) - role of magnetic fields
- Location of the energy dissipation / gamma-ray emission region

Blazar Models

Blazar Models

Injection, acceleration of ultrarelativistic electrons and protons

 $\mathsf{Q}_{\mathsf{e},\mathsf{p}}$

ν Ļ. ν

(γ,t)

Proton-

induced

Requirements for lepto-hadronic models

- To exceed p-γ pion production threshold on interactions with synchrotron (optical) photons: E_p > 7x10¹⁶ E⁻¹_{ph,eV} eV
- For proton synchrotron emission at multi-GeV energies: E_p up to $\sim 10^{19}$ eV (=> UHECR)
- Require Larmor radius

 $r_1 \sim 3x10^{16}$ E₁₉/B_G cm ≤ a few x 10¹⁵ cm => B ≥ 10 G (Also: to suppress leptonic SSC component below synchrotron) – inconsistent with radio-core-shift measurements if emission region is located at \sim pc scales (e.g., Zdziarski & Böttcher 2015).

• Low radiative efficiency: Requiring jet powers $L_{\text{jet}} \sim L_{\text{Edd}}$

SED Model Fit Degeneracy

RGB J0710+591 (HBL)

Polarization Induced by Anisotropic Compton Scattering

• Thermal + Non-Thermal Electron Distributions from Diffusive Shock Acceleration

AO 0235+164

(Baring et al. 2016)

Expected Polarization from Bulk Compton

Polarization Induced by Anisotropic Scattering

Calculation of X-Ray and Gamma-Ray Polarization in Leptonic and Hadronic Blazar Models

Upper limits on high-energy polarization, assuming perfectly ordered magnetic field perpendicular to the line of sight (Zhang & Böttcher 2013)

Synchrotron polarization:

Standard Rybicki & Lightman description

SSC Polarization:

Bonometto & Saggion (1974) for Compton scattering in Thomson regime

• External-Compton emission (relativistic e-): **Unpolarized:**

The Doppler Factor Crisis

VHE $γ$ -ray variability on time scales as short as a few minutes!

γ−γ opacity constraints, assuming isotropic emission in the co-moving frame of the emission region

 \Rightarrow $\Gamma \sim \delta$ > 50

Strong disagreement with observed superluminal motions!

Edited by M. Boettcher, D. E. Harris, and H. Krawczynski

WILEY-VCH

Relativistic Jets from **Active Galactic Nuclei**

