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1 Theory

1.1 Radio Waves

Radio waves are electromagnetic waves having wavelengths greater than a centimetre (Fig. 1). For example,
commercial FM radio operates in the frequency range from 88 to 108 MHz, corresponding to a wavelength
of about 3 metres. Cellphones operate at a frequency ν of about 900 MHz, i.e. a wavelength λ of 33 cm.

The microwave band is the short wavelength part of the radio band and covers 1 to 30 cm wavelength.
Microwave ovens operate at 12 cm (2.4 GHz). DSTV satellites transmit at 2.5 cm (12 GHz). DSTV dishes
have a smooth solid surface in order to reflect incoming radio waves with high efficiency. Satellite dishes
working at the longer wavelength of 8 cm (3.8 GHz) can get away with a rougher mesh surface and still have
acceptable efficiency.

1.2 Radio Telescope Antennas

A “classic” radio telescope for use in the microwave band has a circular parabolic reflector with a feed horn
at the focus to collect the incoming microwaves and pass them to transistor amplifiers in the receiver. A
DSTV satellite dish also works in this way. It can be used as a mini-radio telescope by replacing the DSTV
decoder with a radiometer for measuring the signal strength.

To understand how a reflector antenna responds to radiation coming from different angles, consider what
happens when a plane wave of wavelength λ arrives at a circular aperture of diameter D (Fig. 2). Con-
structive and destructive interference produces a circularly symmetric diffraction pattern, with a central
maximum and concentric rings of decreasing strength (Fig. 3). This same pattern describes the response
of a circular antenna to plane waves coming from different angles, and it is then called an antenna beam
pattern.

Figure 1: The electromagnetic spectrum.
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Figure 2: A focusing lens or reflector with a circular

aperture.

Figure 3: The diffraction pattern produced by a

circular focusing lens or reflector.

Figure 4: Cross-sections through the beam pattern

of an ideal antenna and a practically realizable an-

tenna, shown with a linear vertical scale.

Figure 5: Beam cross-sections of ideal and practi-

cally realizable antennas, with a logarithmic vertical

scale to show the sidelobe structure.

An “ideal” antenna would produce a beam that captures 100% of the incoming energy in the main beam
and would have no sidelobes. This antenna would have a “main beam efficiency” ǫm of 1.0. It is not possible
to actually achieve this, and ǫm usually lies between 0.6 and 0.8.

Figs. 4 and 5 show an ideal and an actual beam pattern in cross-section on linear and logarithmic scales.
The “ideal” pattern has been modelled here with a parabolic shape, while the mathematical form of the real
pattern is a (sinX/X)2 function. This describes the diffraction pattern where nothing obstructs the path of
the waves, i.e. it has an “unblocked aperture”, and is uniformly illuminated. The first minimum or null in
the pattern occurs at a radius of about 1.2λ/D radians, so the beamwidth to first nulls is

BWFN ∼ 2.4λ/D [radians]. (1)

The beamwidth at the half-power points (HPBW), also called the Full Width at Half Maximum (FWHM),
is about half this, as shown in figs. 4 and 5.

HPBW = FWHM ∼ BWFN/2 = 1.2λ/D [radians]. (2)

1.3 Brightness Temperature and Antenna Temperature

Fig. 6 shows the brightness as a function of frequency for several black body radiators modelled as having
equal size but different temperatures. The frequencies of satellite TV transmission and visible light are
marked. Clearly, hotter objects produce more radiation than cooler ones, and the brightness maximum
occurs at a higher frequency. The wavelength or frequency at which the intensity peaks is given by the
well-known Wien displacement law.

From Fig. 6 we can see that for all objects with temperatures more than a few degrees above absolute zero,
the brightness peak occurs well above the operating range of radio telescopes. Hence radio telescopes work
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Figure 6: Blackbody radiation from solid objects of the same angular size, at different temperatures

in the range where hν << kT , so the Rayleigh-Jeans law applies and the brightness B - and hence the power
measured by a radio telescope - is proportional to the temperature T of the emitting source:

B =
2kT

λ2
[W m−2 Hz−1 sr−1] (3)

where k = Boltzmann’s constant = 1.38× 10−23 [J K−1].

The apparent temperature of an emitting source at a given frequency is a property of the object emitting
the radio waves. This is called its “brightness temperature”, TB.

For some astronomical objects the brightness temperature that is measured using a radio telescope is mean-
ingful as a physical temperature, for example when observing a planet or moon. For other objects it may
not be, depending on the mechanism that produced the radio emission.

By pointing the antenna at objects of known temperature that completely fill the beam, we can calibrate
the output signal in units of absolute temperature (Kelvins). So one can think of a radio telescope as a
remote-sensing thermometer.

The “antenna temperature” TA of a source is the increase in temperature (receiver output) measured
when the antenna is pointed at a radio-emitting source. It will be less than brightness temperature of the
source if the source does not fill the whole beam of the telescope. Note that “antenna temperature” has
nothing to do with the physical temperature of the antenna.

To obtain the brightness temperature TB of the emitting source from its measured antenna temperature TA,
we have to measure the angular size of the source and of the telescope beam. The ratio of the angular size
(solid angle) of the source to the angular size of the beam gives the fraction of the beam that is filled by the
source.
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Figure 7: Comparison of physical radius r and angular radius θ. In diagram A the two objects have different

physical radii: r2 > r1, but the same angular radii as seen by telescope T : θ1 = θ2. This applies to the

Moon and Sun as seen from Earth. By contrast, in diagram B, r4 > r3, but θ4 < θ3.

1.4 Angular Sizes and the Sun’s Brightness Temperature

The difference between physical diameter and angular diameter is shown in Fig. 7. For example, the Sun
has a physical diameter of 1.4 million km, while the Moon has a diameter of 3500 km. Yet, as seen from
the Earth, the Sun and the Moon appear to be the same size, i.e. they have the same angular diameter.
How can this be? The Sun is 400 times bigger than the Moon, but it is also 400 times further away. As the
projection of the antenna beam onto the sky is two-dimensional, we shall need to find the angular area that
it covers. Angular area is called a “solid angle” and the units are radians2, or steradians (sr). An object
with an angular radius θ radians subtends a solid angle

Ω = 2π(1 − cos θ) [sr]. (4)

For small θ,
Ω = πθ2 [sr]. (5)

We can use this equation to calculate the solid angle of the Sun as seen from the Earth, Ωs.

The beam solid angle ΩA of the antenna can be obtained from the half-power beamwidth (HPBW) - in units
of radians - by assuming the main lobe of the beam has a Gaussian shape:

ΩA ∼ 1.133 (HPBW )2 [sr]. (6)

The Sun’s brightness temperature TB can then be estimated by scaling its measured antenna temperature
TA by the ratio of the beam solid angle ΩA to the Sun’s solid angle Ωs and correcting for the main beam
efficiency ǫm being less than unity:

TB =
ΩATA

Ωsǫm
[K]. (7)

2 Detecting Radio Emission from Space

When the telescope looks at a radio source in the sky, the receiver output is the sum of the radio waves
received from several different sources:

• Behind the radio source whose brightness we want to measure is the cosmic microwave background
(CMB) coming from every direction in space. This is the radiation emitted as the first atoms formed,
380 000 years after the Big Bang. The black body temperature of the CMB Tcmb has now decreased to
2.7 Kelvins, as the expansion of the Universe has stretched out the waves by a factor of 1000. The CMB
produces a brightness temperature TBcmb of ∼2.7 K at 1.4 or 4 GHz, reducing to 2.5 K at 12 GHz.

• The emission from the radio source we want to measure, which produces the antenna temperature TA.
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• Radiation from the dry atmosphere Tat and from the water vapour in the atmosphere Twv. The dry
air adds about 1K, and at 12 GHz water vapour adds 1 - 2 K, depending on the humidity.

• The radiation the feed receives through the antenna sidelobes from the (warm - ∼290 K) ground or
nearby buildings beyond the edge of the antenna, of brightness temperature Tg. With the antenna
pointing straight up at zenith this could add 5 - 15 K; 10 K is a reasonable number to use. It increases
when pointing close to the horizon.

• The amplifiers in the receiver generate their own electronic noise and so produce a receiver noise
temperature TR.

The sum of these parts is called the “system temperature” Tsys. Summing from the most distant noise
contributor to the nearest we have:

Tsys = TBcmb + TA + Tat + Twv + Tg + TR [K] (8)

3 Apparatus

3.1 A Simple Radio Telescope

The main parts of a simple radio telescope comprising a satellite dish and radiometer are shown in Fig. 8.
The incoming radio waves from natural emitters are weak and noise-like. If the output of the detector is
connected to a loudspeaker, the signal sounds like a hiss, as one hears if a radio is tuned off-station. The
internal noise produced in the amplifiers is generally larger than the signal from natural radio sources.

3.2 Apparatus for Measuring the Antenna Beamwidth

This is optional. Apparatus required is a tripod or mount on which the satellite dish can be locked in
position, a timer (e.g. watch on which seconds are displayed), pen and notepad.

3.3 Apparatus for Measuring the Diameter of the Sun

You will need two pieces of card, a pencil, a sharp knife, a ruler and a 2 metre tape measure.

4 Experimental Procedure

4.1 Calibrating the Radio Telescope

The satellite dish produces an output voltage proportional to the temperature of the object it is pointed at
plus its own internal receiver temperature. We need to establish a scale of Kelvins per radiometer output
unit. We do this by using the sky at zenith as a “cold load”, and the ground as a “hot load”. If V 1 and V 2
are the two meter readings and c is a constant of proportionality, then:

TR + Tsky = cV 1 [K] (9)

where Tsky = TBcmb + Tat + Twv + Tg ∼ 15 K.

TR + Tground = cV 2 [K] (10)
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Figure 8: Main components of a typical satellite dish and radiometer.
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Figure 9: Sun projection.

Tground must be measured (or estimated by touch).

Now we can use Eqns. 9 and 10 to solve for the two unknowns, c and TR.

4.2 Measure the Antenna Temperature from the Sun

We need to aim the telescope at the Sun. With an offset-fed paraboloid this can be a litle tricky. Hold
the dish horizontal. then turn the dish horizontally so the shadow of the feed arm falls across the centre
of the dish. Then rotate the dish in elevation so the shadow of the feed arm on the dish gets shorter. The
Sun comes into the beam just after the shadow leaves the edge of the dish. Adjust the direction gently up
and down and sideways to maximise the signal from the Sun; the signal should roughly double. Take a new
meter reading V 3:

TR + Tsky + TAsun = cV 3 [K]. (11)

As c and TR are known from the calibration, and we have a reasonable estimate of Tsky, we can immediately
calculate the antenna temperature of the Sun as measured with this telescope using eqn. 11.

Next we need to measure the angular diameter of the Sun and of the telescope beam in order to calculate
the solid angles they subtend.

4.3 Measure the Angular Diameter of the Sun

The usual sources of information will give the angular diameter of the Sun. However we can actually measure
for ourselves the angular diameter of the photosphere - the surface of the Sun from which light is emitted.

Use pinhole projection to measure the angular diameter of the Sun. On one piece of card use a ruler
and pencil to mark three equilateral triangles several cm apart, with sides of about two, three and four
millimetres. Cut out the triangles using the sharp knife and ruler.

The card with the holes is used to project images of the Sun onto the second card (Fig. 9). The two cards
need to be separated by a distance D, measured by tape measure. To optimise your experiment: What
shape should the projected Sun have? Which hole gives the best image to work with? What distance D
(large or small) will give the most accurate result? The linear diameter d of the projected Sun is measured
with the ruler. The angular diameter of the Sun is d/D radians, so its angular radius Θs is given by:

Θs =
d

2D
[rad] (12)

From its solar radius Θs (Eqn. 12), calculate the solid angle subtended by the Sun Ωs using Eqn. 5.
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4.4 Measure the Half-Power Beamwidth of the Radio Telescope

The half-power beam width (HPBW) of the antenna can be estimated using Eqn. 2.

If the satellite dish is mounted on a tripod or mount so that it can be locked in position, then it is possible
to carry out a “drift scan” across the Sun, as follows.

Point the antenna to get the maximum signal from the Sun. Lock the antenna’s position. Immediately write
down the time (minutes and seconds) and the voltage on the meter recording the signal strength, and repeat
every ten seconds.

The drift scan will give a cross-section of half the antenna beam pattern, as in Fig. 4. The time for the
signal to go from maximum to halfway down to minimum is equal to half of the HPBW , in seconds. Units
of time are converted to angle by noting that the Sun moves through 1 degree in 4 minutes / cos(Sun’s
declination). The Sun’s declination is how far north or south of the equator it is at the time of observation.
Its declination is -23.44◦ on about Dec 21, 0◦ on March 21 and September 21, and +23.44◦ on June 21.
It follows a sinusoidal path between those dates. Alternatively, get the “Apparent Dec” of the Sun for the
measurement date from http://www.calsky.com/cs.cgi/Sun/1? .

This will give you the half-power beamwidth (HPBW) in degrees. Convert this to radians. Check your
answer by comparing this to the estimate from Eqn. 2.

Calculate the beam solid angle ΩA from the half-power beamwidth (estimated or measured, in radians) using
Eqn. 6.

4.5 Calculate the Brightness Temperature of the Sun

To calculate the brightness temperature of the Sun we now have the Sun’s solid angle Ωs from Eqn. 5, the
beam solid angle ΩA from Eqn. 6, and the antenna temperature measured from the Sun TA, from Eqn. 11.

We can now calculate the brightness temperature of the Sun:

TBSun =
ΩATA

Ωsǫm
[K]. (13)

What we are missing from Eqn. 13 is a value for the main beam efficiency ǫm. Experiments indicate that a
reasonable value for ǫm for a DSTV dish at 12 GHz is about 0.75. For mesh surface satellite dishes working
at 3.8 GHz, a lower value is more likely as the surface shape is less accurate, and ǫm is about 0.5. For a
mesh dish with a 1.4GHz can feed, ǫm is about 0.5. These values are based on measurements with domestic
satellite dishes.

Estimate the uncertainty in your result in the usual way, by propagating estimates of the error in each of
your measurements. Assume an uncertainty in ǫm of 10%.

How does your result for the Sun’s brightness temperature compare to the temperature usually quoted for
the Sun’s photosphere (light emitting surface)? What do you think this implies?
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